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Some Definition to prove this examination.

1. f is continuous at a ⇐⇒ ∀ε > 0 ∃δ > 0, |x− a| < δ −→ |f(x)− f(a)| < ε

2. f is uniformly continuous on E ⇐⇒ ∀ε > 0 ∃δ > 0 ∀x, a ∈ E, |x− a| < δ −→ |f(x)− f(a)| < ε

3. f is differentiable at a ⇐⇒ lim
x→a

f(x)− f(a)

x− a
exists

4. f is increasing on E ⇐⇒ ∀x1, x2 ∈ E, x1 < x2 −→ f(x1) < f(x2)

5. f is decreasing on E ⇐⇒ ∀x1, x2 ∈ E, x1 < x2 −→ f(x1) > f(x2)

6. f is integrable on [a, b] ⇐⇒ ∀ε > 0 ∃Pε, U(f, P )− L(f, P ) < ε

7. Upper integral (U)

∫ b

a

f(x) dx = inf{U(f, P ) : P is a partition of [a, b]}

8. Lower integral (L)

∫ b

a

f(x) dx = sup{L(f, P ) : P is a partition of [a, b]}

9. Riemann sum converges to I(f) ⇐⇒ ∀ε > 0 ∃Pε ⊆ {x0, x1, ..., xn} −→

∣∣∣∣∣
n∑

i=1

f(tj)∆xj − I(f)

∣∣∣∣∣ < ε

10. Cauchy Criterion:
∞∑
k=1

ak converges ⇐⇒ ∀ε > 0 ∃N ∈ N,m > n ≥ N −→

∣∣∣∣∣
m∑

k=n

ak

∣∣∣∣∣ < ε

⇐⇒ ∀ε > 0 ∃N ∈ N,m > n ≥ N −→
m∑

k=n

|ak| < ε
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1. (10 marks) Use definition to prove that

f(x) = (x− 1)(x+ 1) + 24

is continuous at x = −1.
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2. (10 marks) Let f : [0, 1] → R be uniformly continuous on [0, 1]. Define

g(x) = xf(x) where x ∈ [0, 1].

Prove that g is uniformly continuous on [0, 1].
Hint : Use Extreme Value Theorem (EVT), i.e., if f is continous on E, then ∃M > 0 such that

|f(x)| ≤ M for all x ∈ E.
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3. (10 marks) Use the Mean Value Theorem (MVT) to prove that

lnx ≤
√
x for all x ≥ 1.
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4. (10 marks) Define f(x) = x+ lnx where x ∈ R+.

4.1 (5 marks) Show that f is injective (one-to-one) on x ∈ R+.
4.2 (2 marks) Use the result from 4.1 and the Inverse Function Theorem (IFT) to explain that f−1

differentiable on R+.
4.3 (3 marks) Compute (f−1)′(1).
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5. (10 marks) Define

f(x) =

{
2 if x ∈ (0, 1)

1 if x ∈ [1, 2).

Draw the graph of f on [0, 2] and use definition to show that f is integrable on [0, 2].
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6. (10 marks) Let f(x) = (x− 1)(x+ 1) + 24 where x ∈ [0, 2] and

P =

{
2j

n
: j = 0, 1, ..., n

}
=

{
0,

2

n
,
4

n
,
6

n
, ..., 2

}
be a partition of [0, 2]. Find the Riemann sum of f and find I(f) on [0, 2].
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7. (10 marks) Let g be differentiable and integrable on R. Define

f(x) =

∫ x2

1
2
√
t · g(t2) dt where x ∈ R.

Show that
∫ 0

−1
f(x) dx+

∫ 1

0
g(x) dx = 0.

Hint: Use integration by part to
∫ 0

−1
f(x) dx and change variable.
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8. (10 marks) Find a ∈ R satisfying
∞∑
k=1

1

ak

[
1− 1

(k + 1)a
+

1

k

]
=

1

132
.

Hint: Use Telescoping and Geometric Series.
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9. (10 marks) Let a ∈ R. Determine whether

∞∑
k=1

(
a+ (−1)k

)k
converges or NOT.

Verify your answer.
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10. (10 marks) Prove that
∞∑
k=1

(−1)k
(

k + 1

k2 + 1

)
is conditionally convergent.
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Solution Final Exam. 2/2023
MAC3309 Mathematical Analysis

Created by Assistant Professor Thanatyod Jampawai, Ph.D.

1. (10 marks) Use definition to prove that

f(x) = (x− 1)(x+ 1) + 24

is continuous at x = −1.

Proof. Let ε > 0. Choose δ = min{1, ε3}.
Let x ∈ R such that |x+ 1| < δ. Then |x+ 1| < 1.

So, |x| − |1| ≤ |x+ 1| < 1. We obtain |x| ≤ 2.

By triangle inequility, it follows that

|f(x)− f(−1)| = |(x− 1)(x+ 1) + 24− 24|
= |x− 1||x+ 1|
< (|x|+ 1)δ

< (2 + 1)δ

= 3δ < 3 · ε
3
= ε.

Therefore, f is continuous at x = −1.
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2. (10 marks) Let f : [0, 1] → R be uniformly continuous on [0, 1]. Define

g(x) = xf(x) where x ∈ [0, 1].

Prove that g is uniformly continuous on [0, 1].
Hint : Use Extreme Value Theorem (EVT), i.e., if f is continous on E, then ∃M > 0 such that

|f(x)| ≤ M for all x ∈ E.

Proof. Assume that f be uniformly continuous on [0, 1].
Let ε > 0. There is an δ0 > 0 such that

|x− a| < δ0 for all x, a ∈ [0, 1] implies |f(x)− f(a)| < ε

2
.

Since f is continuous on [0, 1], by EVT, there is an M > 0 such that

|f(x)| ≤ M for all x ∈ [0, 1].

Choose δ = min
{
δ0,

ε

2(M + 1)

}
. Let x, a ∈ [0, 1] such that |x− a| < δ. Then |x| ≤ 1 and |f(a)| ≤ M .

Apply the triangle inequality, we have

|g(x)− g(a)| = |xf(x)− af(a)|
= |xf(x)− af(a) + xf(a)− xf(a)|
= |x[f(x)− f(a)] + f(a)[x− a]|
≤ |x| · |f(x)− f(a)|+ |f(a)| · |x− a|

< 1 · ε
2
+M · ε

2(M + 1)

<
ε

2
+

ε

2
· 1 = ε.

Thus, g is uniformly continuous on [0, 1].
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3. (10 marks) Use the Mean Value Theorem (MVT) to prove that

lnx ≤
√
x for all x ≥ 1.

Proof. Let a > 1 and define

f(x) =
√
x− lnx where x ∈ [1, a].

Then f is continuous on [1, a] and differentiable on (1, a). It follows that

f(1) = 1

f ′(x) =
1

2
√
x
− 1

x

By the Mean Value Theorem, there is a c ∈ (1, a) such that

f(a)− f(1) = f ′(c)(a− 1)

√
a− ln a− 1 =

(
1

2
√
c
− 1

c

)
(a− 1)

√
a− ln a =

(
1

2
√
c
− 1

c

)
(a− 1) + 1

From 1 < c < a, it leads to 1 <
√
c <

√
a and

1

a
<

1

c
< 1 −→ −1 < −1

c
< −1

a

2 < 2
√
c < 2

√
a −→ 1

2
√
a

<
1

2
√
c

<
1

2

We have
(

1

2
√
c
− 1

c

)
<

(
−1

a
+

1

2

)
. Since a > 1, a− 1 > 0 and a(a− 1) > 0 and

(
1

2
√
c
− 1

c

)
(a− 1) >

(
−1

a
+

1

2

)
(a− 1)(

1

2
√
c
− 1

c

)
(a− 1) + 1 >

(
−1

a
+

1

2

)
(a− 1) + 1

= −1 +
1

a
+

a

2
− 1

2
+ 1

=
1

a
+

a

2
− 1

2

=
2 + a2 − a

2a

=
a(a− 1) + 2

2a
> 0

Thus,

√
a− ln a =

(
1

2
√
c
− 1

c

)
(a− 1) + 1 > 0

We conclude that lnx ≤
√
x for all x ≥ 1.
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4. (10 marks) Define f(x) = x+ lnx where x ∈ R+.

4.1 (5 marks) Show that f is injective (one-to-one) on x ∈ R+.

Proof. Let x, y ∈ R+ and x ̸= y. WLOG x > y > 0. We obtain

lnx > ln y.

It follows that

x+ lnx > y + ln y

f(x) > f(y)

So, f(x) ̸= f(y). Therefore, f is injective on R+.

4.2 (2 marks) Use the result from 4.1 and the Inverse Function Theorem (IFT) to explain that f−1

differentiable on R+.
Solution. Since f is injective, f−1 exists. It is clear that f is continous on R+. By IFT, we
conclude that f−1 differentiable on R+.

4.3 (3 marks) Compute (f−1)′(1).

Solution. We see that f ′(x) = 1 +
1

x
and

f(1) = 1 + ln 1 = 1 + 0 = 1.

So f−1(1) = 1. By IFT,

(f−1)′ (1) =
1

f ′(f−1(1))

=
1

f ′(1)

=
1

1 + 1
1

=
1

1 + 1

=
1

2
#
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5. (10 marks) Define

f(x) =

{
2 if x ∈ (0, 1)

1 if x ∈ [1, 2).

Draw the graph of f on [0, 2] and use definition to show that f is integrable on [0, 2].

Proof. Let ε > 0.
Case ε ≤ 1. Choose P =

{
0, 1− ε

2
, 1, 1 +

ε

2
, 2
}

.

X

Y

0 1 2

1

2

1− ε
2 1 + ε

2

We obtain

U(f, P ) = 2
(
1− ε

2

)
+ 2

(ε
2

)
+ 1

(ε
2

)
+ 1

(
1− ε

2

)
L(f, P ) = 2

(
1− ε

2

)
+ 1

(ε
2

)
+ 1

(ε
2

)
+ 1

(
1− ε

2

)
U(f, P )− L(f, P ) =

ε

2
< ε.

Case ε > 1. Choose P = {0, 1, 2}. Then

U(f, P ) = 2 (1− 0) + 1 (2− 1)

L(f, P ) = 1 (1− 0) + 1 (2− 1)

U(f, P )− L(f, P ) = 1 < ε.

Thus, f is integrable on [0, 2].
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6. (10 marks) Let f(x) = (x− 1)(x+ 1) + 24 where x ∈ [0, 2] and

P =

{
2j

n
: j = 0, 1, ..., n

}
=

{
0,

2

n
,
4

n
,
6

n
, ..., 2

}
be a partition of [0, 2]. Find the Riemann sum of f and find I(f) on [0, 2].
Solution. Choose The Right End Point , i.e., f(tj) = f(2jn ) on the subinterval [xj−1, xj ]
and

∆xj =
2j

n
− 2(j − 1)

n
=

2

n
for all j = 1, 2, 3, ..., n.

From f(x) = (x− 1)(x+ 1) + 24 = x2 − 1 + 24 = x2 + 23. We obtain

n∑
j=1

f(tj)∆xj =
n∑

j=1

f

(
2j

n

)
2

n
=

2

n

n∑
j=1

[(
2j

n

)2

+ 23

]

=
2

n

 n∑
j=1

4j2

n2
+

n∑
j=1

23


=

2

n

 4

n2

n∑
j=1

j2 + 23n


=

2

n

[
4

n2
· n(n+ 1)(2n+ 1)

6
+ 23n

]
=

4(n+ 1)(2n+ 1)

3n2
+ 46

Thus,

I(f) = lim
∥P∥→0

n∑
j=1

f(tj)∆xj = lim
n→∞

4(n+ 1)(2n+ 1)

3n2
+ 46 =

8

3
+ 46 =

146

3
#
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7. (10 marks) Let g be differentiable and integrable on R. Define

f(x) =

∫ x2

1
2
√
t · g(t2) dt where x ∈ R.

Show that
∫ 0

−1
f(x) dx+

∫ 1

0
g(x) dx = 0.

Hint: Use integration by part to
∫ 0

−1
f(x) dx and change variable.

Solution. By the First Fundamental Theorem of Calculus and Chain rule,

f ′(x) = 2
√
x2 · g((x2)2) · 2x = 2|x| · g(x4) · 2x = 4x|x| · g(x4).

We have

f(−1) =

∫ 1

1
2
√
t · g(t2) dt = 0

By integration by part, we obtain∫ 0

−1
f(x) dx =

∫ 0

−1
x′f(x) dx = [xf(x)]0−1 −

∫ 0

−1
xf ′(x) dx

= 0f(0)− (−1)f(−1)−
∫ 0

−1
x · 4x|x|g(x4) dx

= 0− 0−
∫ 0

−1
x · 4x(−x)g(x4) dx

=

∫ 0

−1
4x3g(x4) dx

=

∫ 0

−1
g(x4) · (x4)′ dx

=

∫ 0

−1
g(ϕ(x))ϕ′(x) dx Change of Variable ϕ(x) = x4

=

∫ ϕ(0)

ϕ(−1)
g(t) dt

=

∫ 0

1
g(t) dt

= −
∫ 1

0
g(t) dt

= −
∫ 1

0
g(x) dx

Thus,
∫ 0

−1
f(x) dx+

∫ 1

0
g(x) dx = 0.
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8. (10 marks) Find a ∈ R satisfying
∞∑
k=1

1

ak

[
1− 1

(k + 1)a
+

1

k

]
=

1

132
.

Hint: Use Telescoping and Geometric Series.
Solution. We consider

1

ak

[
1− 1

(k + 1)a
+

1

k

]
=

1

ak
− 1

(k + 1)ak+1
+

1

kak
=

1

ak
+

(
1

kak
− 1

(k + 1)ak+1

)
.

So, the above sequence consist of a geometric and telescoping sequences. It follows that

1

132
=

∞∑
k=1

1

ak

[
1− 1

(k + 1)a
+

1

k

]
=

∞∑
k=1

[
1

ak
+

(
1

kak
− 1

(k + 1)ak+1

)]

=
∞∑
k=1

1

ak
+

∞∑
k=1

(
1

kak
− 1

(k + 1)ak+1

)
.

=
1
a

1− 1
a

+

(
1

a
− lim

k→∞

1

(k + 1)ak+1

)
if |a| > 1

=
1

a− 1
+

(
1

a
− 0

)
=

2a− 1

a(a− 1)

We obtain a(a− 1) = 132(2a− 1) or a2 − 265a+ 132 = 0 . Then,

a =
265−

√
2652 − 4(1)(132)

2(1)
< 1 and a =

265 +
√

2652 − 4(1)(132)

2(1)
> 1

Thus, a =
265+

√
2652−4(1)(132)

2(1) #

EDIT: Find a ∈ R satisfying
∞∑
k=1

1

ak

[
1 +

1

(k + 1)a
− 1

k

]
=

1

132
.

Hint: Use Telescoping and Geometric Series.
Solution. We consider

1

ak

[
1 +

1

(k + 1)a
− 1

k

]
=

1

ak
+

1

(k + 1)ak+1
− 1

kak
=

1

ak
−
(

1

kak
− 1

(k + 1)ak+1

)
.

So, the above sequence consist of a geometric and telescoping sequences. It follows that

1

132
=

∞∑
k=1

1

ak

[
1 +

1

(k + 1)a
− 1

k

]
=

∞∑
k=1

[
1

ak
−
(

1

kak
− 1

(k + 1)ak+1

)]

=
∞∑
k=1

1

ak
−

∞∑
k=1

(
1

kak
− 1

(k + 1)ak+1

)
.

=
1
a

1− 1
a

−
(
1

a
− lim

k→∞

1

(k + 1)ak+1

)
if |a| > 1

=
1

a− 1
−
(
1

a
− 0

)
=

1

a(a− 1)

We obtain 132 = a(a− 1) or (a− 12)(a+ 11) = a2 − a− 132 = 0. Thus, a = 12,−11 #
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9. (10 marks) Let a ∈ R. Determine whether

∞∑
k=1

(
a+ (−1)k

)k
converges or NOT.

Verify your answer.

Solution. Claim that the series diverges.

Proof. Assume that
∞∑
k=1

(
a+ (−1)k

)k
converges. By the Root Test, r < 1 if

r = lim sup
k→∞

∣∣∣∣(a+ (−1)k
)k∣∣∣∣ 1k

= lim sup
k→∞

∣∣∣a+ (−1)k
∣∣∣

= lim
n→∞

sup{|a− 1|, |a+ 1|}

= sup{|a− 1|, |a+ 1|}

If a = 0, then r = sup{1} = 1. This contradicts r < 1.
Suppose that a ̸= 0.
Case r = |a− 1| < 1. Then

|a+ 1| < sup{|a− 1|, |a+ 1|} = |a− 1| (∗)

We obatian
−1 < a− 1 < 1
0 < a < 2
1 < a+ 1 < 3

So, |a+ 1| > 1. We get |a+ 1| > 1 > |a− 1|. It contradicts (∗).
Case r = |a+ 1| < 1. Then

|a− 1| < sup{|a− 1|, |a+ 1|} = |a+ 1| (∗∗)

We obatian
−1 < a+ 1 < 1
−2 < a < 0
−3 < a− 1 < −1

So, |a− 1| > 1. We get |a− 1| > 1 > |a+ 1|. It contradicts (∗∗).

Therefore,
∞∑
k=1

(
a+ (−1)k

)k
diverges.
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10. (10 marks) Prove that
∞∑
k=1

(−1)k
(

k + 1

k2 + 1

)
is conditionally convergent.
Solution. Firstly, we see that

lim
k→∞

k + 1

k2 + 1
= lim

k→∞

k(1 + 1
k )

k2(1 + 1
k2
)
= lim

k→∞

1

k

(
1 + 1

k

1 + 1
k2

)
= 0 · 1 = 0.

Next, let f(x) =
x+ 1

x2 + 1
where x ≥ 1. The derivative of f(x) is

f ′(x) =
(x2 + 1) · 1− (x+ 1) · 2x

(x2 + 1)2

=
x2 + 1− 2x2 − 2x

(x2 + 1)2

=
1− 2x− x2

(x2 + 1)2
=

2− (1 + 2x+ x2)

(x2 + 1)2

=
2− (x+ 1)2

(x2 + 1)2
< 0 for all x ≥ 1.

So,
{

k + 1

k2 + 1

}
is decreasing. By Alternating Series Test (AST),

∞∑
k=1

(−1)k
(

k + 1

k2 + 1

)
converges.

Finally, we consider
∞∑
k=1

∣∣∣∣(−1)k
(

k + 1

k2 + 1

)∣∣∣∣ = ∞∑
k=1

(
k + 1

k2 + 1

)
and

lim
k→∞

(
k+1
k2+1

)
1
k

= lim
k→∞

k(k + 1)

k2 + 1
= lim

k→∞

(
k2 + k

k2 + 1

)
= 1 > 0

Since
∞∑
k=1

1

k
diverges (p = 1), by the Limit Comparision Test, it implies that

∞∑
k=1

(
k + 1

k2 + 1

)
diverges.

Therefore, we conclude that
∞∑
k=1

(−1)k
(

k + 1

k2 + 1

)
is conditionally convergent.
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