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1. Use the Mean Value Theorem to prove that

arctanx ≤ x for all x ≥ 0.

2. Determine whether f is diferentiable at x = 0 if

f(x) =

{
x2 sin( 1x) if x ̸= 0

0 if x = 0

3. Define f : [−1
2 ,

1
2 ] → R by

f(x) =
1

x+ cosx

If f is 1-1 and continuous on [−1
2 ,

1
2 ]. Use the Inverse Function Theorem to find (f−1)′(1).

4. Use Change of Variable to show that
∫ π

−π
sin(x3) dx = 0.

5. If f(x) =
∫ 1

x2

e
1
t dt, show that

64

∫ 2

1

f(x)

x5
dx−

∫ 4

1
e

1
xdx = 16(e

1
4 − e).

6. Determine whether the series
∞∑
k=1

1

(k + 1)
√
k + k

√
k + 1

converges or diverges. Find the values if it converges .

7. Show that
∞∑
n=1

n(−1)n+1xn+1

3n+1
=

(
x

3 + x

)2

where |x| < 3

8. Find the interval of convergence of
∞∑
n=2

x2n

n(lnn)2

9. Suppose that fn → f and gn → g, as n → ∞, uniformly on some set E ⊆ R. Prove that

if f and g are bounded on E, then fngn → fg uniformly on E.

10. Prove that the following limit exist and evaluate lim
n→∞

∫ 2

1

x2 + n

nx3 + x
dx.

11. Let A ⊆ R and A′ be the set of all limit points of A. Prove that

A is closed if and only if A = A ∪A′.

12. Let {xn} be a sequence of real number. Prove that {xn} converges to x ∈ R if and only if

for every neighborhood U of x there is N ∈ N such that xn ∈ U for all n > N .
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Solution Final Examination
Suject Mathematical Analysis MAP2406 Semester 2/2018
Teacher Assistant Professor Thanatyod Jampawai, Ph.D., Division of Mathematics,

Faculty of Education, Suan Sunandha Rajabhat University
Full Score 100 marks
Time Wednesday 1 May 2019

1. Use the Mean Value Theorem to prove that

arctanx ≤ x for all x ≥ 0.

Proof. Let f(x) = arctanx − x on [0, x] where x ≥ 0. Then f is continuous and differentiable on [0, x].
We obtain

f ′(x) =
1

1 + x2
− 1 = − x2

1 + x2
≤ 0 for all x ≥ 0.

By the Mean Value Theorem, there is a c ∈ [0, x] such that

f(x)− f(0) = f ′(c)(x− 0)

arctanx− x =

(
− c2

1 + c2

)
x ≤ 0

Since x ≥ 0 and − c2

1 + c2
≤ 0,

arctanx ≤ x for all x ≥ 0

2. Determine whether f is diferentiable at x = 0 if

f(x) =

{
x2 sin( 1x) if x ̸= 0

0 if x = 0

Solution. Consider the limit

lim
x→0

f(x)− f(0)

x− 0
= lim

x→0

x2 sin( 1x)
x

= lim
x→0

x sin
(
1

x

)

Since 0 ≤
∣∣∣∣sin(1

x

)∣∣∣∣ ≤ 1,

0 ≤
∣∣∣∣x sin

(
1

x

)∣∣∣∣ ≤ |x|.

It follows that lim
x→0

|x| = 0. By Squeeze Theorem,

lim
x→0

∣∣∣∣x sin
(
1

x

)∣∣∣∣ = 0.

So, lim
x→0

x sin
(
1

x

)
= 0. Therefore f is differentiable at x = 0 and

f ′(0) = lim
x→0

f(x)− f(0)

x− 0
= lim

x→0
x sin

(
1

x

)
= 0.
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3. Define f : [−1
2 ,

1
2 ] → R by

f(x) =
1

x+ cosx

If f is 1-1 and continuous on [−1
2 ,

1
2 ]. Use the Inverse Function Theorem to find (f−1)′(1).

Solution. Since
f(0) =

1

0 + cos 0 = 1,

f−1(1) = 0. Then

f ′(x) = − 1

(x+ cosx)2 · (1− sinx)

f ′(0) = − 1

(0 + cos 0)2 · (1− sin 0) = −1

By the Inverse Function Theorem,

(f−1)′(1) =
1

f ′(f−1(1))
=

1

f ′(0)
=

1

−1
= −1 #

4. Use Change of Variable to show that
∫ π

−π
sin(x3) dx = 0.

Solution. Consider ∫ π

−π
sin(x3) dx =

∫ 0

−π
sin(x3) dx+

∫ π

0
sin(x3) dx.

Use Change of Variable u(x) = −x to the term∫ 0

−π
sin(x3) dx.

Hence, ∫ 0

−π
sin(x3) dx =

∫ 0

π
sin((−u)3) (−du)

=

∫ π

0
sin(−u3) du

= −
∫ π

0
sinu3 du

= −
∫ π

0
sinx3 dx

Therefore, ∫ π

−π
sin(x3) dx = −

∫ π

0
sin(x3) dx+

∫ π

0
sin(x3) dx = 0.

5. If f(x) =
∫ 1

x2

e
1
t dt, show that

64

∫ 2

1

f(x)

x5
dx−

∫ 4

1
e

1
xdx = 16(e

1
4 − e).

Solution. Apply Chain rule and the Fundamental of Calculus,

f ′(x) =
d

dx

∫ 1

x2

e
1
t dt

=
d

dx

(
−
∫ x2

1
e

1
t dt

)
= −e

1
x2 2x = −2xe

1
x2
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Use Integration by part we have∫ 2

1

f(x)

x5
dx =

∫ 2

1

(
− 1

4x4

)′
f(x) dx

=

[
− 1

4x4
x3f(x)

]2
1

−
∫ 2

1

(
− 1

4x4

)
f ′(x) dx

= − 1

64
f(2) +

1

4
f(1) +

1

4

∫ 2

1

1

x4

(
−2xe

1
x2

)
dx

= − 1

64

∫ 1

4
e

1
xdx+

1

4

∫ 1

1
e

1
xdx− 1

2

∫ 2

1

1

x3
· e

1
x2 dx

=
1

64

∫ 4

1
e

1
xdx+ 0− 1

2

∫ 2

1

1

x3
· e

1
x2 dx ; u =

1

x2

=
1

64

∫ 4

1
e

1
xdx+

[
1

4
e

1
x2

]2
1

=
1

64

∫ 4

1
e

1
xdx+

1

4
(e

1
4 − e)

Thus,

64

∫ 2

1

f(x)

x5
dx−

∫ 4

1
e

1
xdx = 16(e

1
4 − e).

6. Determine whether the series
∞∑
k=1

1

(k + 1)
√
k + k

√
k + 1

converges or diverges. Find the values if it converges .
Solution. Consider

1

(k + 1)
√
k + k

√
k + 1

=
1√

k
√
k + 1(

√
k + 1 +

√
k)

=
1√

k
√
k + 1(

√
k + 1 +

√
k)

·
√
k + 1−

√
k

√
k + 1−

√
k

=

√
k + 1−

√
k√

k
√
k + 1((

√
k + 1)2 − (

√
k)2)

=

√
k + 1−

√
k√

k
√
k + 1

=

√
k + 1√

k
√
k + 1

−
√
k√

k
√
k + 1

=
1√
k
− 1√

k + 1

We have

Sn =

n∑
k=1

1

(k + 1)
√
k + k

√
k + 1

=

n∑
k=1

(
1√
k
− 1√

k + 1

)
=

(
1√
1
− 1√

2

)
+

(
1√
2
− 1√

3

)
+

(
1√
3
− 1√

4

)
+ · · ·+

(
1√
n
− 1√

n+ 1

)
= 1− 1√

n+ 1

Hence, the series converges and
∞∑
k=1

1

(k + 1)
√
k + k

√
k + 1

= lim
n→∞

Sn = lim
n→∞

(
1− 1√

n+ 1

)
= 1.
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7. Show that
∞∑
n=1

n(−1)n+1xn+1

3n+1
=

(
x

3 + x

)2

where |x| < 3

Solution. Use geometric series (uniformly convergent)

1

1− x
=

∞∑
n=0

xn where |x| < 1,

1

1 + x
3

=

∞∑
n=0

(
−x

3

)n ∣∣∣−x

3

∣∣∣ < 1

3

3 + x
=

∞∑
n=0

(−1)n

3n
xn |x| < 3

d

dx

3

3 + x
=

d

dx

∞∑
n=0

(−1)n

3n
xn |x| < 3

− 3

(3 + x)2
=

∞∑
n=1

(−1)n

3n
nxn−1 |x| < 3

3x2

(3 + x)2
= −x2

∞∑
n=1

(−1)n

3n
nxn−1 |x| < 3

− 3

(3 + x)2
=

∞∑
n=1

(−1)n

3n
nxn−1 |x| < 3

3x2

(3 + x)2
=

∞∑
n=1

(−1)n+1

3n
nxn+1 |x| < 3

− 3

(3 + x)2
=

∞∑
n=1

(−1)n

3n
nxn−1 |x| < 3

x2

(3 + x)2
=

∞∑
n=1

(−1)n+1

3n+1
nxn+1 |x| < 3

Therefore,

∞∑
n=1

n(−1)n+1xn+1

3n+1
=

(
x

3 + x

)2

where |x| < 3
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8. Find the interval of convergence of
∞∑
n=2

x2n

n(lnn)2

Solution. Use the Ratio Test,

lim
n→∞

∣∣∣∣ x2n+2

(n+ 1)(ln(n+ 1))2
· n(lnn)2

x2n

∣∣∣∣ = |x2| lim
n→∞

(
n

n+ 1

)(
lnn

ln(n+ 1)

)2

.

Apply L’Hospital’s Rule to

lim
x→∞

lnx

ln(x+ 1)
= lim

x→∞

1
x
1

x+1

= lim
x→∞

x+ 1

x

= lim
x→∞

1 +
1

x
= 1.

So, lim
n→∞

lnn

ln(n+ 1)
= 1 and

lim
n→∞

n

n+ 1
= lim

n→∞

1

1 + 1
n

= 1.

Then

lim
n→∞

∣∣∣∣ x2n+2

(n+ 1)(ln(n+ 1))2
· n(lnn)2

x2n

∣∣∣∣ = |x2| · 1 · 12 = x2.

So, the series converges when |x2| < 1. That is (−1, 1) to be an interval of convergence.
In this case x = ±1. Then

∞∑
n=2

x2n

n(lnn)2
=

∞∑
n=2

1

n(lnn)2
.

Let f(x) =
1

x(lnx)2
where x ≥ 2. We obtain

f ′(x) = − 1

(x(lnx)2)2
·
(
x2 lnx · 1

x
+ 1 · (lnx)2

)
= − 1

(x(lnx)2)2
·
(
2 lnx ·+(lnx)2

)
< 0 for all x ≥ 2

So, f is decreasing. That is
{

1

n(lnn)2

}
to be decreasing. Then

∫ ∞

2
f(x)dx = lim

t→∞

∫ t

2

1

x(lnx)2
dx

= lim
t→∞

[
− 1

lnx

]t
2

;u =
1

x

= lim
t→∞

[
− 1

ln t
+

1

ln 2

]
=

1

ln 2

Hence,
∞∑
n=2

1

n(lnn)2
converges. Therefore, [−1, 1] is the interval of convergent of the series.
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9. Suppose that fn → f and gn → g, as n → ∞, uniformly on some set E ⊆ R. Prove that

if f and g are bounded on E, then fngn → fg uniformly on E.

Proof. Suppose that fn → f and gn → g, as n → ∞, uniformly on E and f and g are bounded on E.
There are M > 0 and L > 0 such that

|f(x)| ≤ L and |g(x)| ≤ M for all x ∈ E.

Let ε > 0. Then there are N1, N2, N3 ∈ N such that

n ≥ N1 −→ |fn(x)− f(x)| < 1

n ≥ N2 −→ |fn(x)− f(x)| < ε

2M

n ≥ N3 −→ |gn(x)− g(x)| < ε

2(L+ 1)

From |fn(x)| − |f(x)| ≤ |fn(x)− f(x)| < 1, it follows that

|fn(x)| ≤ 1 + |f(x)| ≤ 1 + L.

Choose N = max{N1, N2, N3}. For each n ≥ N3 and x ∈ E, we obtain

|fn(x)gn(x)− f(x)g(x)| = |fn(x)(gn(x)− g(x)) + g(x)(fn(x)− f(x))|
≤ |fn(x)||gn(x)− g(x)|+ |g(x)||fn(x)− f(x)|

≤ (L+ 1) · ε

2(L+ 1)
+M · ε

2M
= ε

Thus, fngn → fg is uniformly on E.

10. Prove that the following limit exist and evaluate lim
n→∞

∫ 2

1

x2 + n

nx3 + x
dx.

Solution. Let fn(x) =
x2 + n

nx3 + x
where x ∈ [1, 2].

Let ε > 0. By Archimedean Principle, there is an N ∈ N such that 1

N
<

ε

15
.

Since 1 ≤ x ≤ 2, 1 ≤ x4 ≤ 16 and 1 ≤ x5 ≤ 32. That is

0 ≤ x4 − 1 ≤ 15 and 1

32
≤ 1

x5
≤ 1

For n ≥ N and x ∈ [1, 2], we have 1

n
≤ 1

N
and∣∣∣∣fn(x)− 1

x3

∣∣∣∣ = ∣∣∣∣ x2 + n

nx3 + x
− 1

x3

∣∣∣∣ = ∣∣∣∣ x5 − x

x3(nx3 + x)

∣∣∣∣ = ∣∣∣∣ x4 − 1

x3(nx2 + 1)

∣∣∣∣
≤ 15

x3(nx2 + 1)
≤ 15

x3(nx2)
=

15

x5n
=

15

n
· 1

x5

≤ 15

n
≤ 15

N
< ε

So, fn(x) →
1

x3
converges uniformly on [1, 2]. Therefore,

lim
n→∞

∫ 2

1

x2 + n

nx3 + x
dx =

∫ 2

1
lim
n→∞

x2 + n

nx3 + x
dx

=

∫ 2

1

1

x3
dx

=

[
− 1

2x2

]2
1

= −1

8
+

1

2
=

3

8
#
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11. Let A ⊆ R and A′ be the set of all limit points of A. Prove that

A is closed if and only if A = A ∪A′.

Proof. Suppose that A is closed. Obviously, A ⊆ A ∪A′. It remain to show that A ∪A′ ⊆ A.
Let x ∈ A ∪A′.
Case x ∈ A. It’s done.
Case x ∈ A′. Suppose that x /∈ A. Then x ∈ Ac. Since Ac is open, there is a δ > 0 such that

(x− δ, x+ δ) ⊆ Ac.

So, (x− δ, x+ δ) ∩A = ∅. It follows that

(x− δ, x+ δ) ∩A− {x} = ∅ since x /∈ A.

Hence, x is not a limit point of A. It contradicts.
Conversely, assume that A = A ∪A′. Let x ∈ Ac. Then x /∈ A. We obtain

x /∈ A ∪A′, i.e., x /∈ A and x /∈ A′

So, there is δ > 0 such that
(x− δ, x+ δ) ∩A− {x} = ∅.

Then, (x− δ, x+ δ) ∩A = ∅. Hence,
(x− δ, x+ δ) ⊆ Ac.

Therefore, Ac is open.

12. Let {xn} be a sequence of real number. Prove that {xn} converges to x ∈ R if and only if

for every neighborhood U of x there is N ∈ N such that xn ∈ U for all n > N .

Proof. Assume that xn → x. Let U be a neighborhood of x. Then there is a δ > 0 such that

(x− δ, x+ δ) ⊆ U.

There is an N ∈ N and n ≥ N , it implies that

|xn − x| < δ

−δ < xn − x < δ

x− δ < xn < x+ δ

Thus, xn ∈ (x− δ, x+ δ) ⊆ U for all n > N.
Conversely, assume that every neighborhood U of x there is N ∈ N such that xn ∈ U for all n > N .
Let ε > 0. Then U := (x− ε, x+ ε) is a neighborhood of x (it is clear). By assumption,

there is N ∈ N such that xn ∈ U for all n > N

So, xn ∈ (x− ε, x+ ε), i.e.,

x− ε < xn < x+ ε

−ε < xn − x < ε

|xn − x| < ε

Hence, xn → x.
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