

Suan Sunandha Rajabhat University Faculty of Education, Branch of Mathematics Final Examination, Semester 1/2017

ID Subject	Course Name	Test Time	Full Scores
MAT2303	Abstract Algebra	1pm - 4pm	105 points
		Fri 8 Dec 2017	30%
Name		ID	Section

Direction

- 1. 10 questions and 11 pages.
- 2. Write obviously your name, id and section all pages.
- 3. Can use a calculator(s) but can not use communication tools.
- 4. Don't take text books and others come to the test room.
- 5. Cannot answer sheets out of test room.
- 6. Deliver to the staff if you make a mistake in the test room.

Signature

.....

Teacher: Thanatyod Jampawai, Ph.D.

No.	1	2	3	4	5	6	7	8	9	10	Total
Scores											

1. (10 points) Write answers in the right blanks	
1.1 What is the inverse of $(5) + 2$ in quotient ring $\mathbb{Z}_{25}/(5)$?	
1.2 Find $Ker(\varphi)$ if $\varphi : \mathbb{Z} \to \mathbb{Z}_5$ defined by $\varphi(x) = (\bar{x})^5$	
1.3 Compute the number of all zero divisors of \mathbb{Z}_{23017}	
1.4 Find all prime ideals of \mathbb{Z}_{625}	
1.5 Find all irreducible elements in \mathbb{Z}_9	
1.6 Give one example of a field of order 121	
1.7 What is the inverse of $(x^2 + 1) + x$ in $\mathbb{Z}_3/(x^2 + 1)$	
1.8 Give an irreducible polynomial of degree 5 in $\mathbb{Q}[x]$	
1.9 Find all possible rational roots of $6x^3 - x^2 + x - 2$	
1.10 If 5 is a root of $x^5 - 5x^4 - 5x^3 + a$, what is a	

- 2. Explain your answers and verify.
 - 2.1 (5 points) Let $a, b \in \mathbb{Z}$. Define

$$a \oplus b = a + b$$
$$a \odot b = 2ab$$

Determine whether $(\mathbb{Z}, \oplus, \odot)$ is a ring

2.2 (5 points) Let $I = \left\{ \begin{bmatrix} 0 & 0 & 0 \\ 0 & x & 0 \\ 0 & 0 & 0 \end{bmatrix} : x \in \mathbb{R} \right\}$. Determine whether I is an right ideal, left ideal or ideal of $M_{33}(\mathbb{R})$.

- 3. Explain your answers and verify.
 - 3.1 (6 points) Let $\varphi : \mathbb{Z} \to \mathbb{Z}_{20}$. Define $\varphi(x) = 16\bar{x}$.
 - (a) (2 points) Show that φ is a ring homomorphism
 - (b) (2 points) Find $Ker(\varphi)$ and $Im(\varphi)$
 - (c) (2 points) Describe $\mathbb{Z}/5\mathbb{Z} \cong (4)$

3.2 (4 points) In a quotient ring $\mathbb{Z}_{20}/(10)$

- (a) (2 points) Write out element in $\mathbb{Z}_{20}/(10)$
- (b) (2 points) Find all inverses of elements in $\mathbb{Z}_{20}/(10)$

- 4. Explain your answers and verify.
 - 4.1 (5 points) Give two zero divisors in $M_{22}(\mathbb{R})$ and verify your answers.

4.2 (5 points) Find all maximal ideals and prime ideals in \mathbb{Z}_{65670}

- 5. Explain your answers and verify.
 - 5.1 (5 points) What is remainder when 2017^{2560} is divided by 13 (Use the little fermat's theorem)

- 5.2 (5 points) In ring $\mathbb{Z}[\sqrt{-7}]$
 - (a) (2 points) Find all units in $\mathbb{Z}[\sqrt{-7}]$
 - (b) (3 points) Give example(s) of element(s) in $\mathbb{Z}[\sqrt{-7}]$ to show that it is not U.F.D.

- 6. Explain your answers and verify.
 - 6.1 (5 points) Find all irreducible elements in \mathbb{Z}_{22}

6.2 (5 points) Find all prime elements in \mathbb{Z}_{12}

- 7. (10 points) In polynomial ring $\mathbb{Z}_3[x]$
 - 7.1 (2 points) Show that $2x^2 + 2$ is irreducible in $\mathbb{Z}_3[x]$
 - 7.2 (3 points) Write out elements in a field $\mathbb{Z}_3[x]/(2x^2+2)$
 - 7.3 (5 points) Find all inverses of elements in $\mathbb{Z}_3[x]/(2x^2+2)$

- 8. Explain your answers and verify.
 - 8.1 (5 points) What is the G.C.D. of polynomial

 $x^4 + x^3 - x^2 + x - 2$ and $x^5 + x^4 + x^3 + x^2 - 2x - 2$ in $\mathbb{Z}[x]$

8.2 (5 points) Show that $x^4 + x^3 + x^2 + x + 1$ is irreducible in $\mathbb{Z}[x]$

9. Explain your answers and verify.

9.1 (5 points) Let $p(x), q(x) \in \mathbb{Z}_3[x]$. If $p(x) = (q(x))^2$ and $p(x) = x^4 + 4x^3 + 2x + 4$. Find q(x)

9.2 (5 points) Find all roots in \mathbb{C} of

 $(x - 101)^4 + (x - 99)^4 = 82$

10. Explain your answers

10.1 (5 points) Find all roots in \mathbb{C} of

 $x^5 + 3x^4 + 5x^3 + 5x^2 + 3x + 1$

10.2 (5 points) What did you learn from this class.