

Suan Sunandha Rajabhat University Faculty of Education, Branch of Mathematics Final Examination, Semester 2/2016

ID Subject	Course Name	Test Time	Full Scores
MAT12305	Linear Algebra	9am - 12am	105 points
		Thur 4 May 2017	30%

Name	ID	Section
------	----	---------

Direction

- 1. 10 questions and 12 pages.
- 2. Write obviously your name, id and section all pages.
- 3. Can use a calculator(s) but can not use communication tools.
- 4. Don't take text books and others come to the test room.
- 5. Cannot answer sheets out of test room.
- 6. Deliver to the staff if you make a mistake in the test room.

Signature

Lecturer: Thanatyod Jampawai, Ph.D.

1	2	3	4	5	6	7	8	9	10	

ID	Section

1. (10 points) Write answers in the right blanks

1.1 Let
$$T(x,y) = (x+y, x-y)$$
. Find $T^{-1}(4,2)$

1.2 Let
$$T_1 \circ T_2^{-1}(x, y) = (2x, 3y)$$
 If $T_2(1, 1) = (3, 4)$, find $T_1^{-1}(6, 12)$

1.3 Compute the **rank** of
$$T(x, y, z) = (x + 2y + z, y + z, x + y)$$

1.4 In
$$\mathbb{P}_3$$
, compute the norm $||1 + 2x - 2x^2||$

1.5 If
$$\{(a,1,b), (1,2,-2), (-2,2,1)\}$$
 is an orthogonal basis, what is $a+b$.

1.6 Let
$$u$$
 and v be vectors in an inner product space. If u is orthogonal to v and $||u-v||=5$, compute $||u-v||$

1.7 Let
$$W = \{(1,1,1), (1,0,1)\}$$
. Find W^{\perp} (spanning)

1.8 Compute all eigenvalues of
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 1 & 1 & 3 \end{bmatrix}$$

1.9 Let
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
. Compute A^{2017} .

1.10 Compute all eigenvalues of
$$\begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix}^{10}$$
.

- 2. (10 points) Explain your answers
 - 2.1 (5 points) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by

$$T(x, y, z) = (x + 2y, -y + z, x + y + z)$$

Show that T is a linear operator (linear transformation).

2.2 (5 points) Find Nullity(T_A) and Rank(T_A) where

$$A = \begin{bmatrix} 1 & -1 & 0 & 3 \\ 0 & 1 & -1 & 0 \\ -2 & -3 & 0 & -1 \\ 0 & -1 & 0 & 1 \\ 0 & 1 & 0 & -1 \end{bmatrix}$$

3. (10 points) Let T_1 and T_2 be linear operators on \mathbb{R}^3 such that

$$T_1(x, y, z) = (x + y, x + z, y + z)$$

$$T_2 \circ T_1(x, y, z) = (x + 2y - z, 2x, x + 2y + z)$$

Find $T_2(x, y, z)$ and $T_1 \circ T_2(x, y, z)$

4. (10 points) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation defined by

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} 2x_1 - x_2 \\ x_1 + x_2 + x_3 \\ x_2 - x_3 \end{bmatrix}$$

Find
$$[T]_B$$
 where $B = \left\{ \begin{bmatrix} 2\\1\\3 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} -1\\1\\1 \end{bmatrix} \right\}$ is a basis for \mathbb{R}^3

- 5. (10 points) Explain your answers
 - 5.1 (5 points) Let u = (a, b) and v = (c, d). Defined an inner product on \mathbb{R}^2 by

$$\langle \boldsymbol{u}, \boldsymbol{v} \rangle = 4ac + 5bd$$

Find **cosine** of the angle between (1,2) and (2,-1)

5.2 **(5 points)** Let $A = \begin{bmatrix} 1 & 1 \\ a & 0 \end{bmatrix}$ be **orthogonal** to $B = \begin{bmatrix} b & 2 \\ 1 & 2 \end{bmatrix}$ in $M_{22}(\mathbb{R})$. If ||A|| = 2, what is the **norm** of B.

ID	Section
LL/	DEC01011

- 6. (10 points) Explain your answers
 - 6.1 (7 points) Let u, v and w be vectors in an inner product space. Suppose that

$$u + v + w = 0$$
, $||u + v|| = 5$, $||v + w|| = 3$ and $||v|| = \sqrt{10}$

Compute $\langle \boldsymbol{u}, \boldsymbol{w} \rangle$

6.2 (3 points) Let $B = \{(1, 2, -1), (2, 1, 4), (5, -10, 0)\}$ be an **orthogonal basis** for \mathbb{R}^3 . Evaluate $[v]_B$ where v = (3, 2, -1)

[D	Section
LD	DEC11011

7. (10 points) Use Gram-Schmidt process to transform the basis B into orthonormal basis.

$$B = \{(-1,0,1,0), (0,-1,0,1), (1,1,1,0), (0,1,1,1)\}$$

- 8. (10 points) Explain your answers
 - 8.1 (5 points) Let A be in $M_{22}(\mathbb{R})$ that has 3 and -1 to be eigenvalues corresponding to eigenvectors $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$, respectively. What is the matrix A?

8.2 (5 points) If 3 is an eigenvalue of

$$A = \begin{bmatrix} a & 2 & 3 \\ -1 & 1 & -3 \\ 2 & 4 & 9 \end{bmatrix}$$

Compute other eigenvalues.

9. (20 points) Use diagonalization to find A^{10} where

$$A = \begin{bmatrix} 2 & 3 & -2 \\ 2 & 3 & 0 \\ 6 & -6 & 7 \end{bmatrix}$$

ID	Section

ID	Section

10. (5 points) Review Linear Algebra MAT2305 (Don't over claim).