

Suan Sunandha Rajabhat University Faculty of Education, Division of Mathematics Final Examination, Semester 2/2017

ID Subject	Course Name	Test Time	Full Scores
MAT2305	Linear Algebra	1pm - 4pm	105 points
		Mon 23 Apr 2018	30%
Name		ID	Section

Direction

- 1. 10 questions and 12 pages.
- 2. Write obviously your name, id and section all pages.
- 3. Can use a calculator(s) but can not use communication tools.
- 4. Don't take text books and others come to the test room.
- 5. Cannot answer sheets out of test room.
- 6. Deliver to the staff if you make a mistake in the test room.

Signature

Lecturer: Thanatyod Jampawai, Ph.D.

1	2	3	4	5	6	7	8	9	10	

1. (10 points) Write answers in the right blanks

1.1 Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation. If T(1,2) = (3,4), find T(4,8).

1.2 If $\mathbb{R}^{15} \to \mathbb{R}^{10}$ be a linear transformation and rank(T) = 6. Find nullity(T).

1.3 Let T(x,y) = (ax, bx + cy). If T(2x, 3y) = (4x, 6x + 9y), compute a + b + c.

1.4 Assume that $T: \mathbb{R}^3 \to \mathbb{R}^2$ is a linear transformation and $Ker(T) = \{\mathbf{0}\}$. If $T^{-1}(1,2) = (3,1,2)$ and $T^{-1}(2,1) = (1,2,3)$, compute T(4,3,5).

1.5 Let \boldsymbol{u} and \boldsymbol{v} be vectors in an inner product space. If $\|\boldsymbol{u}\| = \|\boldsymbol{v}\| = 3$ and $\langle \boldsymbol{u}, \boldsymbol{v} \rangle = 1$, compute $\|\boldsymbol{u} - \boldsymbol{v}\|$.

1.6 Let $A = \begin{bmatrix} \sin \theta & \cos \theta \\ 2 & 2 \end{bmatrix}$ where $\theta \in \mathbb{R}$. Find ||A|| (standard norm in $M_{22}(\mathbb{R})$).

1.7 Let $f(x) = x^2$. Compute ||f|| in C[0, 5].

1.8 Let $\mathcal{B} = \{(1,3), (-3,1)\}$ be a basis for \mathbb{R}^2 . What is $[(7,1)]_{\mathcal{B}}$.

1.9 If λ_1 and λ_2 are two eigenvalues of T where T(x,y) = (-2x - y, 4x + 3y), compute $\lambda_1 + \lambda_2$.

1.10 Find all eigenvalues of $\begin{bmatrix} 1 & 2 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{bmatrix}^4.$

- 2. Explain your answers
 - 2.1 (4 points) Let $T: M_{22}(\mathbb{R}) \to \mathbb{R}^3$ defined by

$$T\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x+y, y+z, z+w).$$

Show that T is a linear transformation

2.2 (4 points) Assume that T is a linear transformation from \mathbb{R}^2 to \mathbb{R}^3 . If

$$T\left(\begin{bmatrix}3\\4\end{bmatrix}\right) = \begin{bmatrix}1\\-1\\0\end{bmatrix}$$
 and $T\left(\begin{bmatrix}4\\5\end{bmatrix}\right) = \begin{bmatrix}2\\3\\1\end{bmatrix}$.

What is formula of T(x, y).

3. Let T be a linear operator on \mathbb{R}^3 defined by

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} x+y+z \\ x-y+z \\ 3x+y+3z \end{bmatrix}$$

- 3.1 (4 points) Find Ker(T) and nullity(T)
- 3.2 (4 points) Find Ran(T) and rank(T)

4. Let T_1 and T_2 be linear operator on \mathbb{R}^3 . If

$$T_2(x, y, z) = (x, x + y, x + z)$$
 and $(T_1 \circ T_2)^{-1}(x, y, z) = (x + y, x + z, y + z)$

- 4.1 **(4 points)** Find $(T_1 \circ T_2)(x, y, z)$
- 4.2 (4 points) Find $T_1(x, y, x)$

5. (10 points) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation defined by

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} x+y-z \\ x-y+z \\ x+y+z \end{bmatrix}.$$

If
$$\mathcal{B} = \left\{ \begin{bmatrix} 1 \\ 6 \\ 13 \end{bmatrix}, \begin{bmatrix} 1 \\ 5 \\ 10 \end{bmatrix}, \begin{bmatrix} 1 \\ 4 \\ 8 \end{bmatrix} \right\}$$
 is a basis for \mathbb{R}^3 . Compute $[T]_{\mathcal{B}}$

- 6. Explain your answers
 - 6.1 (5 points) Let $f, g \in C[a, b]$ and a < b. An inner product on C[a, b] is defined by

$$\langle f, g \rangle = \frac{1}{b-a} \int_a^b f(x)g(x) dx$$

If $||f||^2 = 0.5$ where $f(x) = \sin x$. Compute the **minimum** of b - a. (Hint: $\sin^2 x = \frac{1}{2}(1 - \cos 2x)$)

6.2 (6 points) Let u and v be vectors in an inner product space. If ||u|| = 1, ||v|| = 4 the angle between u and v is 60°. Compute $\frac{||u + v||}{||2u + v||}$ 7. Let $\mathcal{B} = \{(1,2,3), (a,b,11), (-5,1,1)\}$ be an **orthogonal basis** for \mathbb{R}^3 .

- 7.1 (5 points) Find a and b
- 7.2 (5 points) Compute $[(2,5,6)]_{\mathcal{B}}$

TD.	C1.
[D	Section

8. (10 points) Use Gram-Schmitd process to find $orthonormal\ basis$ of

$$\mathcal{B} = \{(1,1,1), (1,0,1), (1,1,0)\}$$

9. (20 points) Use diagonalization to compute A^{10} where

$$A = \begin{bmatrix} 0 & 1 & 2 \\ -4 & 1 & 4 \\ -5 & 1 & 7 \end{bmatrix}$$
 (there is one eigenvalue to be 1)

ID	Section

- 10. Explain your answers
 - 10.1 (5 points) Let T(x,y) = (-x + 4y, 3x + 3y). Find eigenvalues and eigenspaces of T.

10.2 **(5 points)** Choose some topic(s) in linear algebra (MAT2305) to teach your student and write **lesson plan** (sketch).