

Suan Sunandha Rajabhat University Faculty of Education, Division of Mathematics Midterm Examination Semester 2/2022

	Course Name	Test Time	Full Scores
MAC3309	Mathematical	5pm - 8pm	100 marks
	Analysis	Mon 6 Feb 2023	25%

Direction

- 1. 10 questions of all 10 pages.
- 2. Write obviously your name, id and section all pages.
- 3. Don't take text books and others come to the test room.
- 4. Cannot answer sheets out of test room.
- $5.\,$ Deliver to the staff if you make a mistake in the test room.

Your signature

Lecturer: Assistant Professor Thanatyod Jampawai, Ph.D.

No.	1	2	3	4	5	6	7	8	9	10	Total
Scores											

1. (10 marks) Let a and b be real numbers. Prove that

$$(a+b+1)^2 \le 3(a^2+b^2+1).$$

2. (10 marks) Let x be a real numbers. Prove that

|1 - x| = 1 + |x| if and only if |x| + x = 0.

3. (10 marks) Define the set

$$A = \left\{ 1 + \frac{2n}{n+1} : n \in \mathbb{N} \right\}.$$

Find $\sup A$ and $\inf A$ with proving them.

$$\lim_{n \to \infty} \frac{n(n+1)}{n^2 + 1} = 1.$$

5. (10 marks) Assume that $x_n \to 1$ as $n \to \infty$. Show that

$$\frac{x_n}{n^2} \to 0$$
 as $n \to \infty$.

ID	Section
110	50001011

 $\{\sqrt{n+1} - \sqrt{n}\}$ is a Caucy sequence.

7. (10 marks) Define a set

$$E = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}.$$

Determine whether 0 is a **limit point** of E. Verify your answer.

$$\lim_{x \to 2} \frac{2x}{x - 3} = -4.$$

$$\lim_{x \to 1^{-}} \frac{1}{x^2 - 1} = -\infty.$$

10. (10 marks) Let f and g be real functions from a set E to \mathbb{R} . Assume that there are $\delta_0 > 0$ and K > 0 such that

$$|g(x)| \le K$$
 for all $x \in (a - \delta_0, a + \delta_0) \subseteq E$.

Let a be a limit point of E and f(x) > 0 on E. Prove that if $f(x) \to \infty$ as $x \to a$, then

$$\frac{g(x)}{f(x)} \to 0 \text{ as } x \to a.$$

Solution Midterm Exam. 2/2022 MAC3309 Mathematical Analysis

1. (10 marks) Let a and b be real numbers. Prove that

$$(a+b+1)^2 \le 3(a^2+b^2+1).$$

Proof. Let a and b be real numbers. By the fact that

$$(a-b)^2 \ge 0$$
, $(a-1)^2 \ge 0$ and $(b-1)^2 \ge 0$.

We obtain

$$0 \le (a-b)^2 + (a-1)^2 + (b-1)^2$$

$$0 \le (a^2 - 2ab + b^2) + (a^2 - 2a + 1) + (b^2 - 2b + 1)$$

$$2ab + 2a + 2b \le 2a^2 + 2b^2 + 2$$

$$(a^2 + b^2 + 1) + 2ab + 2a + 2b \le 2a^2 + 2b^2 + 2 + (a^2 + b^2 + 1)$$

$$(a+b+1)^2 \le 3(a^2 + b^2 + 1)$$

2. (10 marks) Let x be a real numbers. Prove that

$$|1 - x| = 1 + |x|$$
 if and only if $|x| + x = 0$.

Proof. Let x be a real numbers.

Assume that |1 - x| = 1 + |x|. Then

$$|1 - x|^2 = (1 + |x|)^2$$

$$(1 - x)^2 = 1 + 2|x| + |x|^2$$

$$1 - 2x + x^2 = 1 + 2|x| + x^2$$

$$-x = |x|.$$

So, |x| + x = 0.

Conversely, we assume that |x| + x = 0. We obtain

$$-x = |x|$$
$$1 - x = 1 + |x|$$

Since $|x| \ge 0$, $1 + |x| \ge 1 > 0$. So, 1 - x > 0. Thus,

$$1 - x = |1 - x| = 1 + |x|.$$

3. (10 marks) Define the set

$$A = \left\{ 1 + \frac{2n}{n+1} : n \in \mathbb{N} \right\}.$$

Find $\sup A$ and $\inf A$ with proving them.

Claim that $\inf A = 2$ and $\sup A = 3$

Proof. inf A=2

Let $n \in \mathbb{N}$. Then $1 \le n$. So, $1 + n \le n + n = 2n$. It's clear that $1 \le \frac{2n}{n+1}$. We obtain

$$2 = 1 + 1 \le 1 + \frac{2n}{n+1}.$$

Thus, 2 is a lower bound of A.

Let ℓ be a lower bound of A. For n = 1, we get

$$2 = 1 + \frac{2(1)}{1+1} \in A.$$

So, $\ell \leq 2$. Hence, $\inf A = 2$.

$\sup A = 3$

Let $n \in \mathbb{N}$. It is easy to see that 2n < 2 + 2n = 2(1+n). Then $\frac{2n}{n+1} \le 2$. We have

$$1 + \frac{2n}{n+1} \le 1 + 2 = 3.$$

Thus, 3 is an upper bound of A.

Assume that that there is an upper bound u_0 of A such that

$$u_0 < 3$$
.

By definition,

$$1 + \frac{2n}{n+1} \le u_0 \quad \text{ for all } n \in \mathbb{N} \qquad (*)$$

Since $u_0 < 3$, $\frac{3 - u_0}{2} > 0$. By Archimendean property, there is an $n_0 \in \mathbb{N}$ such that

$$\frac{1}{n_0} < \frac{3 - u_0}{2}.$$

By the fact that $n_0 + 1 > n_0$,

$$\frac{1}{n_0+1} < \frac{1}{n_0} < \frac{3-u_0}{2}$$

$$u_0 < 3 - \frac{2}{n_0+1} = \frac{3n_0+1}{n_0+1} = 1 + \frac{2n_0}{n_0+1}.$$

This is contradiction to (*). Therefore, $\sup A = 3$.

$$\lim_{n \to \infty} \frac{n(n+1)}{n^2 + 1} = 1.$$

Proof. Let $\varepsilon > 0$. By Archimedean property, there is an $N \in \mathbb{N}$ such that $\frac{1}{N} < \varepsilon$. Let $n \in \mathbb{N}$ such that $n \ge N$. We obtain $\frac{1}{n} \le \frac{1}{N}$. Since $n^2 + 1 > n^2$, $\frac{1}{n^2 + 1} < \frac{1}{n^2}$. From $n \ge 1$, we have |n - 1| = n - 1 > n. It follows that

$$\left| \frac{n(n+1)}{n^2 + 1} - 1 \right| = \left| \frac{n(n+1) - (n^2 + 1)}{n^2 + 1} \right|$$
$$= |n-1| \cdot \frac{1}{n^2 + 1} < n \cdot \frac{1}{n^2} = \frac{1}{n} \le \frac{1}{N} < \varepsilon.$$

Thus, $\lim_{n \to \infty} \frac{n(n+1)}{n^2 + 1} = 1$.

5. (10 marks) Assume that $x_n \to 1$ as $n \to \infty$. Show that

$$\frac{x_n}{n^2} \to 0$$
 as $n \to \infty$.

Proof. Assume that $x_n \to 1$ as $n \to \infty$.

Given $\varepsilon = 1$. There is an $N_1 \in \mathbb{N}$ such that $n \geq N_1$ implies $|x_n - 1| < 1$. Then

$$|x_n| - 1 \le |x_n - 1| \le 1$$
$$|x_n| \le 2.$$

Let $\varepsilon > 0$. By Archimedean property, there is an $N_2 \in \mathbb{N}$ such that $\frac{1}{N_2} < \frac{\varepsilon}{2}$.

Let $n \in \mathbb{N}$. Choose $N = \max\{N_1, N_2\}$. For each $n \geq N$, we obtain $n^2 > N^2$. So, $\frac{1}{n^2} \leq \frac{1}{N^2}$. Since $N \geq N_1 > 0$, $N^2 \geq N^2$. We have $\frac{1}{N^2} < \frac{1}{N_1^2}$. Use $N_1^2 \geq N_1$ to obtain $\frac{1}{N_1^2} \leq \frac{1}{N_1}$. It follows that

$$\left| \frac{x_n}{n^2} - 0 \right| = |x_n| \cdot \frac{1}{n^2} \le 2 \cdot \frac{1}{N^2} \le 2 \cdot \frac{1}{N_1^2} \le 2 \cdot \frac{1}{N_1} = \varepsilon.$$

Thus, $\frac{x_n}{n^2} \to 0$ as $n \to \infty$.

$$\{\sqrt{n+1} - \sqrt{n}\}$$
 is a Caucy sequence.

Proof. Let $\varepsilon > 0$. By Arichimedean property, there is an $N \in \mathbb{N}$ such that $\frac{1}{N} < \frac{\varepsilon^2}{4}$. Let $n, m \in \mathbb{N}$ such that $n, m \ge N$. Then $\sqrt{n} > \sqrt{N}$ and $\sqrt{m} > \sqrt{N}$. We obtain $\frac{1}{\sqrt{n}} \le \frac{1}{\sqrt{N}}$ and $\frac{1}{\sqrt{m}} \le \frac{1}{\sqrt{N}}$. It follows that

$$\begin{split} \left| (\sqrt{n+1} - \sqrt{n}) - (\sqrt{m+1} - \sqrt{m}) \right| &= \left| (\sqrt{n+1} - \sqrt{n}) \cdot \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{n+1} + \sqrt{n}} - (\sqrt{m+1} - \sqrt{m}) \cdot \frac{\sqrt{m+1} + \sqrt{m}}{\sqrt{m+1} + \sqrt{m}} \right| \\ &= \left| \frac{1}{\sqrt{n+1} + \sqrt{n}} - \frac{1}{\sqrt{m+1} + \sqrt{m}} \right| \\ &\leq \left| \frac{1}{\sqrt{n+1} + \sqrt{n}} \right| + \left| \frac{1}{\sqrt{m+1} + \sqrt{m}} \right| \\ &\leq \frac{1}{\sqrt{n}} + \frac{1}{\sqrt{m}} \\ &\leq \frac{1}{\sqrt{N}} + \frac{1}{\sqrt{N}} = \frac{2}{\sqrt{N}} < \varepsilon. \end{split}$$

Thus, $\{\sqrt{n+1} - \sqrt{n}\}\$ is Cauchy.

7. (10 marks) Define a set

$$E = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}.$$

Determine whether 0 is a **limit point** of E. Verify your answer.

Answer : 0 is a limit point of E.

Proof. Let $\varepsilon > 0$. By Arichimedean property, there is an $N \in \mathbb{N}$ such that $\frac{1}{N} < \varepsilon$. So, $0 < \frac{1}{N} < \varepsilon$. We see that

$$\frac{1}{N} \in (0, \varepsilon)$$
 and $\frac{1}{N} \in E$.

It implies that

$$[(-\varepsilon,0)\cup(0,\varepsilon)]\cap E\neq\varnothing.$$

Therefore, 0 is a limit point of E.

$$\lim_{x \to 2} \frac{2x}{x - 3} = -4.$$

Proof. Let $\varepsilon > 0$. Choose $\delta = \min \left\{ 0.5, \frac{\varepsilon}{12} \right\}$. Suppose that $0 < |x - 2| < \delta$. Then 0 < |x - 2| < 0.5. We have

$$-0.5 < x - 2 < 0.5$$

 $-1.5 < x - 3 < -0.5$
 $0.5 < |x - 3| < 1.5$.

We get $\frac{1}{|x-3|} < 2$. Then,

$$\left| \frac{2x}{x-3} + 4 \right| = \left| \frac{6x-12}{x-3} \right| = \left| \frac{6(x-2)}{x-3} \right| = 6 \cdot |x-2| \cdot \frac{1}{|x-3|} < 6\delta \cdot 2 < \varepsilon.$$

Therefore, $\lim_{x\to 2} \frac{2x}{x-3} = -4$.

9. (10 marks) Use definition to prove that

$$\lim_{x \to 1^{-}} \frac{1}{x^2 - 1} = -\infty.$$

Proof. Let M < 0. Choose $\delta = \min \left\{ 1, -\frac{1}{M} \right\}$. Then $\delta > 0$, $\delta \le 1$ and $\delta \le -\frac{1}{M}$. Let $x \in \mathbb{R}$ such that $-\delta < x - 1 < 0$. Then -1 < x - 1 < 0. So, 1 < x + 1 < 2. We obtain

$$\frac{1}{x-1} < -\frac{1}{\delta}$$
 and $\frac{1}{2} < \frac{1}{x+1} < 1$

$$\frac{1}{x^2 - 1} = \frac{1}{(x - 1)(x + 1)} < -\frac{1}{\delta} \cdot 1 < M$$

Thus, $\lim_{x \to 1^{-}} \frac{1}{x^2 - 1} = -\infty$.

10. (10 marks) Let f and g be real functions from a set E to \mathbb{R} . Assume that there are $\delta_0 > 0$ and K > 0 such that

$$|g(x)| \le K$$
 for all $x \in (a - \delta_0, a + \delta_0) \subseteq E$.

Let a be a limit point of E and f(x) > 0 on E. Prove that if $f(x) \to \infty$ as $x \to a$, then

$$\frac{g(x)}{f(x)} \to 0 \text{ as } x \to a.$$

Proof. Assume that there are $\delta_0 > 0$ and K > 0 such that

$$|g(x)| \le K$$
 for all $x \in (a - \delta_0, a + \delta_0) \subseteq E$.

Let a be a limit point of E and f(x) > 0 on E. Suppose that $f(x) \to \infty$ as $x \to a$. Let $\varepsilon > 0$. Then $M := \frac{K}{\varepsilon} > 0$. There is a $\delta_1 > 0$ such that

$$0 < |x - a| < \delta_1$$
 implies $f(x) > M = \frac{K}{\varepsilon}$.

Choose $\delta = \min\{\delta_0, \delta_1\}$. Let $x \in E$ such that $0 < |x - a| < \delta$. We obtain $x \in (a - \delta_0, a + \delta_0)$ and $0 < |x - a| < \delta_1$. So,

$$|g(x)| \le K$$
 and $\frac{1}{f(x)} < \frac{\varepsilon}{K}$.

It follows that

$$\left| \frac{g(x)}{f(x)} - 0 \right| = |g(x)| \cdot \frac{1}{f(x)} < K \cdot \frac{\varepsilon}{K} = \varepsilon.$$

Thus, $\frac{g(x)}{f(x)} \to 0$ as $x \to a$.