Midterm Examination

SujectMathematical Analysis MAP2406Semester2/2018TeacherAssistant Professor Thanatyod Jampawai, Ph.D., Division of Mathematics,
Faculty of Education, Suan Sunandha Rajabhat University

Full Score100 marksTimeFriday 8 March 2019

1. Prove that

$$\frac{a}{a^2+1} \le \frac{1}{2} \quad \text{ for all } a \in \mathbb{R}.$$

2. Let $x, y, z, w \in \mathbb{R}$. Show that

$$(xy + zw)^2 \le (x^2 + z^2)(y^2 + w^2).$$

3. Use mathematical induction to prove that

$$\sum_{k=1}^{n} k \cdot 2^{k} = 2^{n+1}(n-1) + 2 \quad \text{for all } n \in \mathbb{N}.$$

4. Find $\inf A$ and prove it if

$$A = \left\{ \frac{1}{n^2 + 1} : n \in \mathbb{Z} \right\}.$$

5. Use definition to prove that $\lim_{n \to \infty} \frac{n^2 + 1}{n^2 - 1} = 1.$

6. Suppose that x_n is sequence of real numbers that converges to 1 as $n \to \infty$. Use definition to prove that

$$x_n^2 + 1 \to 2$$
 as $n \to \infty$.

- 7. Prove that every Cauchy sequence in \mathbb{R} is bounded.
- 8. Prove that a sequence $\left\{\frac{1}{n}\right\}$ is Cauchy.
- 9. Use definition to prove that

$$\lim_{x \to 1^+} \sqrt{x^2 - 1} = 0.$$

10. Let f and g be functions with continuous at a. Prove that f + g is continuous at a.

11. Use definition to prove that

$$\lim_{x \to 2} \frac{x^2 + 1}{x - 1} = 5$$

12. Prove that $f(x) = \cos x$ is uniformly continuous on \mathbb{R} .

Solution Midterm Examination

Suject	Mathematical Analysis MAP2406 Semester 2/2018
Teacher	Assistant Professor Thanatyod Jampawai, Ph.D., Division of Mathematics,
	Faculty of Education, Suan Sunandha Rajabhat University
Full Score	100 marks
Time	Friday 8 March 2019

1. Prove that

$$\frac{a}{a^2+1} \le \frac{1}{2} \quad \text{ for all } a \in \mathbb{R}.$$

Proof. Let $a \in \mathbb{R}$. Consider $(a-1)^2 \ge 0$. So,

$$\begin{aligned} &(a-1)^2 \ge 0 \\ &a^2 - 2a + 1 \ge 0 \\ &a^2 + 1 \ge 2a \\ &\frac{1}{2} \ge \frac{a}{a^2 + 1} \end{aligned} \qquad \because a^2 + 1 > 0 \end{aligned}$$

Thus, $\frac{a}{a^2+1} \leq \frac{1}{2}$.

2. Let $x, y, z, w \in \mathbb{R}$. Show that

$$(xy + zw)^2 \le (x^2 + z^2)(y^2 + w^2).$$

Proof. $x, y, z, w \in \mathbb{R}$. Then

$$(xy + zw)^{2} = x^{2}y^{2} + 2xyzw + z^{2}w^{2}$$

$$= x^{2}y^{2} + 2xyzw + z^{2}w^{2} + x^{2}w^{2} - x^{2}w^{2} + z^{2}y^{2} - z^{2}y^{2}$$

$$= (x^{2}y^{2} + x^{2}w^{2}) + (z^{2}w^{2} + z^{2}y^{2}) - (x^{2}w^{2} - 2xyzw + z^{2}y^{2})$$

$$= x^{2}(y^{2} + w^{2}) + z^{2}(w^{2} + y^{2}) - (xw - zy)^{2}$$

$$\leq (x^{2} + z^{2})(y^{2} + w^{2}) \qquad \because (xw - zy)^{2} \geq 0$$

3. Use mathematical induction to prove that

$$\sum_{k=1}^{n} k \cdot 2^{k} = 2^{n+1}(n-1) + 2 \quad \text{for all } n \in \mathbb{N}.$$

Proof. Let P(n) represent the statement

$$\sum_{k=1}^{n} k \cdot 2^{k} = 2^{n+1}(n-1) + 2 \quad \text{ for all } n \in \mathbb{N}.$$

Since $1 \cdot 2^1 = 2 = 0 + 2 = 4 \cdot 0 + 2 = 2^{1+1}(1-1) + 2$, P(1) is true. Let $n \in \mathbb{N}$. Assume that P(n) is true. Then $\sum_{k=1}^n k \cdot 2^k = 2^{n+1}(n-1) + 2$. We obtain

$$\sum_{k=1}^{n+1} k \cdot 2^k = \sum_{k=1}^n k \cdot 2^k + (n+1)2^{n+1}$$

= 2ⁿ⁺¹(n-1) + 2 + (n+1)2ⁿ⁺¹
= 2ⁿ⁺¹(n-1+n+1) + 2
= 2ⁿ⁺¹(2n) + 2
= 2ⁿ⁺²(n) + 2

So, P(n+1) is true. We conclude by induction that P(n) holds for all $n \in \mathbb{N}$.

4. Find $\inf A$ and prove it if

$$A = \left\{ \frac{1}{n^2 + 1} : n \in \mathbb{Z} \right\}.$$

Consider

$$A = \left\{1, \frac{1}{2}, \frac{1}{5}, \frac{1}{10}, \frac{1}{17}, \dots\right\}$$

Claim that $\inf A = 0$.

Proof. It is easy to see that

$$0 \le \frac{1}{n^2 + 1}$$
 for all $n \in \mathbb{Z}$.

So, 0 is a lower bound of A.

Suppose that there a lower bound ℓ of A such that $0 < \ell$. Then $\sqrt{\ell} > 0$. By Archimidean priciple, $\exists N \in \mathbb{N}$ such that

$$\frac{1}{N} < \sqrt{\ell}$$

We obtain

$$\frac{1}{N^2 + 1} < \frac{1}{N^2} < \ell$$

So, ℓ is not lower bound of A. It is contradiction.

5. Use definition to prove that $\lim_{n \to \infty} \frac{n^2 + 1}{n^2 - 1} = 1.$

Proof. Let $\varepsilon > 0$. Then $\frac{1}{\sqrt{\frac{2}{\varepsilon} + 1}} > 0$. By Archimidean priciple, $\exists N \in \mathbb{N}$ such that

$$\frac{1}{N} < \frac{1}{\sqrt{\frac{2}{\varepsilon} + 1}}$$

Then $N > \sqrt{\frac{2}{\varepsilon} + 1} > 1$ and

$$\begin{split} N^2 &> \frac{2}{\varepsilon} + 1 \\ N^2 - 1 &> \frac{2}{\varepsilon} > 0 \\ \frac{1}{N^2 - 1} &< \frac{\varepsilon}{2} \end{split}$$

For each $n \ge N > 1$, i.e., $n^2 - 1 \ge N^2 - 1 > 0$. So, $\frac{1}{n^2 - 1} \le \frac{1}{N^2 - 1}$. Then $\left| \frac{n^2 + 1}{n^2 - 1} - 1 \right| = \left| \frac{2}{n^2 - 1} \right|$ $\le \frac{2}{N^2 - 1} < \varepsilon$.

6. Suppose that x_n is sequence of real numbers that converges to 1 as $n \to \infty$. Use definition to prove that

$$x_n^2 + 1 \to 2$$
 as $n \to \infty$.

Proof. Suppose that x_n converges to 1 as $n \to \infty$. Since x_n is convergent, x_n is bounded. Then $\exists M > 0$ such that

$$|x_n| < M$$
 for all $n \in \mathbb{N}$.

Let $\varepsilon > 0$. Then $\exists N \in \mathbb{N}, n \ge N$

$$|x_n - 1| < \frac{\varepsilon}{M+1}$$

For each $n \geq N$, we obtain

$$\begin{aligned} |x_n^2 - 1| &= |(x_n - 1)(x_n + 1)| \\ &= |x_n - 1||x_n + 1| \\ &< \frac{\varepsilon}{M+1}(|x_n| + 1) \\ &< \frac{\varepsilon}{M+1}(M+1) = \varepsilon \end{aligned}$$

7. Prove that every Cauchy sequence in \mathbb{R} is bounded.

Proof. Suppose that $\{x_n\}$ is Cuachy. Then

 $\forall \varepsilon > 0 \exists N \in \mathbb{N}, n, m \ge N \text{ implies } |x_n - x_m| < \varepsilon$

Choose $\varepsilon = 1$. Then $\exists N \in \mathbb{N} \ m, n \ge 2N$ implies $|x_n - x_m| < 1$. Choose m = N. Then $|x_n - x_N| < 1$, i.e.,

$$|x_n| < 1 + |x_N| \quad \text{for all } n \ge N$$

In case n = 1, 2, 3, ..., N - 1, we can choose the maximum value of $|x_1|, |x_2|, |x_3|, ..., |x_{N-1}|$. Thus, set

 $M = \max\{|x_1|, |x_2|, |x_3|, ..., |x_{N-1}|, 1+|x_N|\}.$

So,

 $|x_n| \le M$ for all $n \in \mathbb{N}$.

Hence, $\{x_n\}$ is bounded.

8. Prove that a sequence $\left\{\frac{1}{n}\right\}$ is Cauchy.

Proof. Let $\varepsilon > 0$. By Archimedean principle, $\exists N \in \mathbb{N}$ such that $\frac{1}{N} < \frac{\varepsilon}{2}$. For each $m, n \ge N$, we have $\frac{1}{n} < \frac{1}{N}$ and $\frac{1}{m} < \frac{1}{N}$. Then

$$|x_n - x_m| = \left|\frac{1}{n} - \frac{1}{m}\right|$$

$$\leq \frac{1}{n} + \frac{1}{m}$$

$$\leq \frac{1}{N} + \frac{1}{N}$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Thus, $\left\{\frac{1}{n}\right\}$ is Cauchy.

9. Use definition to prove that

$$\lim_{x \to 1^+} \sqrt{x^2 - 1} = 0.$$

Proof. Let $\varepsilon > 0$. Choose $\delta = \min\left\{\frac{\varepsilon^2}{4}, 2\right\}$. Suppose $0 < x - 1 < \delta$. Then 0 < x - 1 < 2, i.e., 2 < x + 1 < 4. We obtain

$$\begin{aligned} |\sqrt{x^2 - 1} - 0| &= \sqrt{(x - 1)(x + 1)} \\ &= \sqrt{(x - 1)} \cdot \sqrt{(x + 1)} \\ &< \sqrt{\delta} \cdot \sqrt{4} \\ &< \sqrt{\frac{\varepsilon^2}{4}} \cdot 2 = \varepsilon \end{aligned}$$

10. Let f and g be functions with continuous at a. Prove that f + g is continuous at a.

Proof. Suppose f and g be functions with continuous at a. Let $\varepsilon > 0$. there are positive numbers δ_1 and δ_2 such that

$$|x-a| < \delta_1$$
 imples $|f(x) - f(a)| < \frac{\varepsilon}{2}$
 $|x-a| < \delta_2$ imples $|g(x) - g(a)| < \frac{\varepsilon}{2}$

Choose $\delta = \min{\{\delta_1, \delta_2\}}$. If $|x - a| < \delta$, it implies that

$$\begin{split} |(f+g)(x) - (f+g)(a)| &= |(f(x) - f(a)) + (g(x) - g(a))| \\ &\leq |f(x) - f(a)| + |g(x) - g(a)| \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \end{split}$$

Therefore, f + g is continuous at a.

11. Use definition to prove that

$$\lim_{x \to 2} \frac{x^2 + 1}{x - 1} = 5.$$

Proof. Let $\varepsilon > 0$. Choose $\delta = \min\left\{\frac{\varepsilon}{6}, 1\right\}$. Suppose $0 < |x - 2| < \delta$. Then

$$|x-2| < 1$$

 $|x|-2 < 1$
 $|x| < 3$

and

$$0 < |x - 2| < 1$$

-1 < x - 2 < 1
1 < x - 1 < 3
$$\frac{1}{3} < \frac{1}{x - 1} < 1$$
 when $x \neq 2$
when $x \neq 2$
when $x \neq 2$

0 < x - < 1, i.e., 2 < x + 1 < 4. We obtain

$$\begin{aligned} \frac{x^2+1}{x-1} - 5 &| = \left| \frac{x^2 - 5x + 6}{x-1} \right| \\ &= \left| \frac{(x-2)(x-3)}{x-1} \right| \\ &= |x-2| \cdot |x-3| \cdot \frac{1}{|x-1|} \\ &< \delta \cdot (|x|+3) \cdot 1 \\ &< \delta \cdot (3+3) \\ &< \frac{\varepsilon}{6} \cdot 6 = \varepsilon \end{aligned}$$

12. Prove that $f(x) = \cos x$ is uniformly continuous on \mathbb{R} .

Proof. Let $\varepsilon > 0$. Choose $\delta = \varepsilon$. Let $x, a \in \mathbb{R}$ such that $|x - a| < \delta$. Then

$$|\cos x - \cos a| = \left| 2\sin\left(\frac{x+a}{2}\right)\sin\left(\frac{x-a}{2}\right) \right|$$
$$\leq 2 \cdot 1 \cdot \left|\sin\left(\frac{x-a}{2}\right)\right|$$
$$\leq 2 \cdot 1 \cdot \left|\frac{x-a}{2}\right|$$
$$\leq |x-a| < \varepsilon$$

Thus, f is uniformly continuous on $\mathbb R.$

Г		