Midterm Examination

Suject Mathematical Analysis MAP2406 **Semester** 2/2018 **Teacher** Assistant Professor Thanatyod Jampawai, Ph.D., Division of Mathematics, Faculty of Education, Suan Sunandha Rajabhat University **Full Score** 100 marks

Time Friday 8 March 2019

1. Prove that

$$
\frac{a}{a^2+1} \le \frac{1}{2} \quad \text{ for all } a \in \mathbb{R}.
$$

2. Let $x, y, z, w \in \mathbb{R}$. Show that

$$
(xy + zw)^{2} \leq (x^{2} + z^{2})(y^{2} + w^{2}).
$$

3. Use mathematical induction to prove that

$$
\sum_{k=1}^{n} k \cdot 2^{k} = 2^{n+1}(n-1) + 2 \quad \text{for all } n \in \mathbb{N}.
$$

4. Find inf *A* and prove it if

$$
A = \left\{ \frac{1}{n^2 + 1} : n \in \mathbb{Z} \right\}.
$$

5. Use definition to prove that $n^2 + 1$ $\frac{n+1}{n^2-1} = 1.$

6. Suppose that x_n is sequence of real numbers that converges to 1 as $n \to \infty$. Use definition to prove that

$$
x_n^2 + 1 \to 2
$$
 as $n \to \infty$.

- 7. Prove that every Cauchy sequence in $\mathbb R$ is bounded.
- 8. Prove that a sequence $\begin{cases} 1 \end{cases}$ *n* λ is Cauchy.
- 9. Use definition to prove that

$$
\lim_{x \to 1^+} \sqrt{x^2 - 1} = 0.
$$

10. Let f and g be functions with continuous at a. Prove that $f + g$ is continuous at a.

11. Use definition to prove that

$$
\lim_{x \to 2} \frac{x^2 + 1}{x - 1} = 5.
$$

12. Prove that $f(x) = \cos x$ is uniformly continuous on R.

Solution Midterm Examination

1. Prove that

$$
\frac{a}{a^2 + 1} \le \frac{1}{2} \quad \text{for all } a \in \mathbb{R}.
$$

Proof. Let $a \in \mathbb{R}$. Consider $(a-1)^2 \geq 0$. So,

$$
(a-1)^2 \ge 0
$$

\n
$$
a^2 - 2a + 1 \ge 0
$$

\n
$$
a^2 + 1 \ge 2a
$$

\n
$$
\frac{1}{2} \ge \frac{a}{a^2 + 1}
$$

\n
$$
\therefore a^2 + 1 > 0
$$

Thus, $\frac{a}{a^2+1} \leq \frac{1}{2}$ $\frac{1}{2}$.

2. Let $x, y, z, w \in \mathbb{R}$. Show that

$$
(xy + zw)^{2} \leq (x^{2} + z^{2})(y^{2} + w^{2}).
$$

Proof. x, *y*, *z*, *w* ∈ **R**. Then

$$
(xy + zw)2 = x2y2 + 2xyzw + z2w2
$$

= x²y² + 2xyzw + z²w² + x²w² - x²w² + z²y² - z²y²
= (x²y² + x²w²) + (z²w² + z²y²) - (x²w² - 2xyzw + z²y²)
= x²(y² + w²) + z²(w² + y²) - (xw - zy)²
 $\leq (x2 + z2)(y2 + w2)$ $\therefore (xw - zy)2 \geq 0$

3. Use mathematical induction to prove that

$$
\sum_{k=1}^{n} k \cdot 2^{k} = 2^{n+1}(n-1) + 2 \quad \text{for all } n \in \mathbb{N}.
$$

Proof. Let *P*(*n*) represent the statement

$$
\sum_{k=1}^{n} k \cdot 2^{k} = 2^{n+1}(n-1) + 2 \quad \text{for all } n \in \mathbb{N}.
$$

Since $1 \cdot 2^1 = 2 = 0 + 2 = 4 \cdot 0 + 2 = 2^{1+1}(1-1) + 2$, $P(1)$ is true. Let *n* \in N. Assume that *P*(*n*) is true. Then $\sum_{n=1}^n$ *k*=1 $k \cdot 2^k = 2^{n+1}(n-1) + 2$. We obtain

$$
\sum_{k=1}^{n+1} k \cdot 2^k = \sum_{k=1}^n k \cdot 2^k + (n+1)2^{n+1}
$$

= $2^{n+1}(n-1) + 2 + (n+1)2^{n+1}$
= $2^{n+1}(n-1+n+1) + 2$
= $2^{n+1}(2n) + 2$
= $2^{n+2}(n) + 2$

So, $P(n+1)$ is true. We conclue by inductuion that $P(n)$ holds for all $n \in \mathbb{N}$.

4. Find inf *A* and prove it if

$$
A = \left\{ \frac{1}{n^2 + 1} : n \in \mathbb{Z} \right\}.
$$

Consider

$$
A = \left\{1, \frac{1}{2}, \frac{1}{5}, \frac{1}{10}, \frac{1}{17}, \dots\right\}
$$

Claim that inf $A = 0$.

Proof. It is easy to see that

$$
0 \le \frac{1}{n^2 + 1} \quad \text{ for all } n \in \mathbb{Z}.
$$

So, 0 is a lower bound of *A*.

Suppose that there a lower bound *^ℓ* of *^A* such that ⁰ *< ℓ*. Then *[√] ℓ >* 0. By Archimidean priciple, *∃N ∈* N such that

$$
\frac{1}{N}<\sqrt{\ell}
$$

We obtain

$$
\frac{1}{N^2+1} < \frac{1}{N^2} < \ell
$$

So, ℓ is not lower bound of A . It is contradiction.

 \Box

5. Use definition to prove that $n^2 + 1$ $\frac{n+1}{n^2-1} = 1.$

Proof. Let $\varepsilon > 0$. Then $\frac{1}{\sqrt{\frac{2}{\varepsilon} + 1}}$ *>* 0. By Archimidean priciple, *∃N ∈* N such that

$$
\frac{1}{N} < \frac{1}{\sqrt{\frac{2}{\varepsilon}+1}}
$$

Then $N > \sqrt{\frac{2}{r}}$ $\frac{2}{\varepsilon} + 1 > 1$ and

$$
N^2 > \frac{2}{\varepsilon} + 1
$$

$$
N^2 - 1 > \frac{2}{\varepsilon} > 0
$$

$$
\frac{1}{N^2 - 1} < \frac{\varepsilon}{2}
$$

For each $n \ge N > 1$, i.e., $n^2 - 1 \ge N^2 - 1 > 0$. So, $\frac{1}{n^2 - 1} \le \frac{1}{N^2}$. $\frac{1}{N^2-1}$. Then $n^2 + 1$ $\frac{n+1}{n^2-1}-1$ $\Big| =$ 2 *n*² *−* 1 *≤* 2 $\frac{2}{N^2-1} < \varepsilon$.

6. Suppose that x_n is sequence of real numbers that converges to 1 as $n \to \infty$. Use definition to prove that

$$
x_n^2 + 1 \to 2 \quad \text{as} \quad n \to \infty.
$$

Proof. Suppose that x_n converges to 1 as $n \to \infty$. Since x_n is convergent, x_n is bounded. Then $\exists M > 0$ such that

$$
|x_n| < M \quad \text{ for all } n \in \mathbb{N}.
$$

Let $\varepsilon > 0$. Then $\exists N \in \mathbb{N}, n \geq N$

$$
|x_n - 1| < \frac{\varepsilon}{M + 1}
$$

For each $n \geq N$, we obtain

$$
|x_n^2 - 1| = |(x_n - 1)(x_n + 1)|
$$

= $|x_n - 1||x_n + 1|$
< $\le \frac{\varepsilon}{M + 1} (|x_n| + 1)$
< $\le \frac{\varepsilon}{M + 1} (M + 1) = \varepsilon$

7. Prove that every Cauchy sequence in R is bounded.

Proof. Suppose that $\{x_n\}$ is Cuachy. Then

∀ε > 0 $\exists N \in \mathbb{N}, n, m \ge N$ implies $|x_n - x_m| < \varepsilon$

Choose $\varepsilon = 1$. Then $\exists N \in \mathbb{N}$ $m, n \geq 2N$ implies $|x_n - x_m| < 1$. Choose $m = N$. Then $|x_n - x_N| < 1$, i.e.,

$$
|x_n| < 1 + |x_N| \quad \text{for all } n \ge N
$$

In case $n = 1, 2, 3, ..., N - 1$, we can choose the maximum value of $|x_1|, |x_2|, |x_3|, ..., |x_{N-1}|$. Thus, set

 $M = \max\{|x_1|, |x_2|, |x_3|, ..., |x_{N-1}|, 1 + |x_N|\}.$

So,

 $|x_n| \leq M$ for all $n \in \mathbb{N}$.

Hence, $\{x_n\}$ is bounded.

8. Prove that a sequence $\begin{cases} 1 \end{cases}$ *n* λ is Cauchy.

Proof. Let $\varepsilon > 0$. By Archimedean principle, $\exists N \in \mathbb{N}$ such that $\frac{1}{N} < \frac{\varepsilon}{2}$ $\frac{1}{2}$. For each $m, n \geq N$, we have $\frac{1}{n} < \frac{1}{N}$ $\frac{1}{N}$ and $\frac{1}{m} < \frac{1}{N}$ $\frac{1}{N}$. Then

$$
|x_n - x_m| = \left| \frac{1}{n} - \frac{1}{m} \right|
$$

\n
$$
\leq \frac{1}{n} + \frac{1}{m}
$$

\n
$$
\leq \frac{1}{N} + \frac{1}{N}
$$

\n
$$
< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon
$$

Thus, $\left\{\frac{1}{2}\right\}$ *n* λ is Cauchy.

9. Use definition to prove that

$$
\lim_{x \to 1^+} \sqrt{x^2 - 1} = 0.
$$

Proof. Let $\varepsilon > 0$. Choose $\delta = \min \left\{ \frac{\varepsilon^2}{4} \right\}$ $\frac{1}{4}$, 2 λ . Suppose 0 *< x −* 1 *< δ*. Then $0 < x - 1 < 2$, i.e., $2 < x + 1 < 4$. We obtain

$$
|\sqrt{x^2 - 1} - 0| = \sqrt{(x - 1)(x + 1)}
$$

= $\sqrt{(x - 1)} \cdot \sqrt{(x + 1)}$
< $\sqrt{\delta} \cdot \sqrt{4}$
< $\sqrt{\frac{\varepsilon^2}{4}} \cdot 2 = \varepsilon$

 \Box

10. Let *f* and *g* be functions with continuous at *a*. Prove that $f + g$ is continuous at *a*.

Proof. Suppose *f* and *g* be functions with continuous at *a*. Let $\varepsilon > 0$. there are positive numbers δ_1 and δ_2 such that

$$
|x - a| < \delta_1 \quad \text{imples } |f(x) - f(a)| < \frac{\varepsilon}{2}
$$
\n
$$
|x - a| < \delta_2 \quad \text{imples } |g(x) - g(a)| < \frac{\varepsilon}{2}
$$

Choose $\delta = \min\{\delta_1, \delta_2\}$. If $|x - a| < \delta$, it implies that

$$
|(f+g)(x) - (f+g)(a)| = |(f(x) - f(a)) + (g(x) - g(a))|
$$

\n
$$
\leq |f(x) - f(a)| + |g(x) - g(a)|
$$

\n
$$
< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon
$$

Therefore, $f + g$ is continuous at a .

11. Use definition to prove that

$$
\lim_{x \to 2} \frac{x^2 + 1}{x - 1} = 5.
$$

Proof. Let $\varepsilon > 0$. Choose $\delta = \min\left\{\frac{\varepsilon}{6}, 1\right\}$. Suppose $0 < |x - 2| < \delta$. Then

 $\overline{}$ $\overline{}$ I $\overline{}$

$$
|x - 2| < 1
$$
\n
$$
|x| - 2 < 1
$$
\n
$$
|x| < 3
$$

and

$$
0 < |x - 2| < 1
$$
\n
$$
-1 < x - 2 < 1
$$
\n
$$
1 < x - 1 < 3
$$
\n
$$
\frac{1}{3} < \frac{1}{x - 1} < 1
$$
\nwhen $x \neq 2$

\nwhen $x \neq 2$

\nwhen $x \neq 2$

0 *< x− <* 1, i.e., 2 *< x* + 1 *<* 4. We obtain

$$
\begin{aligned}\n\frac{x^2+1}{x-1} - 5 &= \left| \frac{x^2 - 5x + 6}{x - 1} \right| \\
&= \left| \frac{(x-2)(x-3)}{x - 1} \right| \\
&= |x - 2| \cdot |x - 3| \cdot \frac{1}{|x - 1|} \\
&< \delta \cdot (|x| + 3) \cdot 1 \\
&< \delta \cdot (3 + 3) \\
&< \frac{\varepsilon}{6} \cdot 6 = \varepsilon\n\end{aligned}
$$

 \Box

12. Prove that $f(x) = \cos x$ is uniformly continuous on R.

Proof. Let $\varepsilon > 0$. Choose $\delta = \varepsilon$. Let $x, a \in \in \mathbb{R}$ such that $|x - a| < \delta$. Then

$$
|\cos x - \cos a| = \left| 2\sin\left(\frac{x+a}{2}\right)\sin\left(\frac{x-a}{2}\right) \right|
$$

$$
\leq 2 \cdot 1 \cdot \left| \sin\left(\frac{x-a}{2}\right) \right|
$$

$$
\leq 2 \cdot 1 \cdot \left| \frac{x-a}{2} \right|
$$

$$
\leq |x-a| < \varepsilon
$$

Thus, f is uniformly continuous on $\mathbb R.$

