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1. Prove that

a

a2 + 1
≤ 1

2
for all a ∈ R.

2. Let x, y, z, w ∈ R. Show that
(xy + zw)2 ≤ (x2 + z2)(y2 + w2).

3. Use mathematical induction to prove that

n∑
k=1

k · 2k = 2n+1(n− 1) + 2 for all n ∈ N.

4. Find infA and prove it if
A =

{
1

n2 + 1
: n ∈ Z

}
.

5. Use definition to prove that lim
n→∞

n2 + 1

n2 − 1
= 1.

6. Suppose that xn is sequence of real numbers that converges to 1 as n → ∞. Use definition to prove that

x2n + 1 → 2 as n → ∞.

7. Prove that every Cauchy sequence in R is bounded.

8. Prove that a sequence
{
1

n

}
is Cauchy.

9. Use definition to prove that

lim
x→1+

√
x2 − 1 = 0.

10. Let f and g be functions with continuous at a. Prove that f + g is continuous at a.

11. Use definition to prove that

lim
x→2

x2 + 1

x− 1
= 5.

12. Prove that f(x) = cosx is uniformly continuous on R.
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1. Prove that

a

a2 + 1
≤ 1

2
for all a ∈ R.

Proof. Let a ∈ R. Consider (a− 1)2 ≥ 0. So,

(a− 1)2 ≥ 0

a2 − 2a+ 1 ≥ 0

a2 + 1 ≥ 2a

1

2
≥ a

a2 + 1
∵ a2 + 1 > 0

Thus, a

a2 + 1
≤ 1

2
.

2. Let x, y, z, w ∈ R. Show that
(xy + zw)2 ≤ (x2 + z2)(y2 + w2).

Proof. x, y, z, w ∈ R. Then

(xy + zw)2 = x2y2 + 2xyzw + z2w2

= x2y2 + 2xyzw + z2w2 + x2w2 − x2w2 + z2y2 − z2y2

= (x2y2 + x2w2) + (z2w2 + z2y2)− (x2w2 − 2xyzw + z2y2)

= x2(y2 + w2) + z2(w2 + y2)− (xw − zy)2

≤ (x2 + z2)(y2 + w2) ∵ (xw − zy)2 ≥ 0
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3. Use mathematical induction to prove that

n∑
k=1

k · 2k = 2n+1(n− 1) + 2 for all n ∈ N.

Proof. Let P (n) represent the statement
n∑

k=1

k · 2k = 2n+1(n− 1) + 2 for all n ∈ N.

Since 1 · 21 = 2 = 0 + 2 = 4 · 0 + 2 = 21+1(1− 1) + 2, P (1) is true.

Let n ∈ N. Assume that P (n) is true. Then
n∑

k=1

k · 2k = 2n+1(n− 1) + 2. We obtain

n+1∑
k=1

k · 2k =

n∑
k=1

k · 2k + (n+ 1)2n+1

= 2n+1(n− 1) + 2 + (n+ 1)2n+1

= 2n+1(n− 1 + n+ 1) + 2

= 2n+1(2n) + 2

= 2n+2(n) + 2

So, P (n+ 1) is true. We conclue by inductuion that P (n) holds for all n ∈ N.

4. Find infA and prove it if
A =

{
1

n2 + 1
: n ∈ Z

}
.

Consider
A =

{
1,

1

2
,
1

5
,
1

10
,
1

17
, ...

}
Claim that infA = 0.

Proof. It is easy to see that

0 ≤ 1

n2 + 1
for all n ∈ Z.

So, 0 is a lower bound of A.
Suppose that there a lower bound ℓ of A such that 0 < ℓ. Then

√
ℓ > 0. By Archimidean priciple, ∃N ∈ N

such that
1

N
<

√
ℓ

We obtain
1

N2 + 1
<

1

N2
< ℓ

So, ℓ is not lower bound of A. It is contradiction.

3



5. Use definition to prove that lim
n→∞

n2 + 1

n2 − 1
= 1.

Proof. Let ε > 0. Then 1√
2
ε + 1

> 0. By Archimidean priciple, ∃N ∈ N such that

1

N
<

1√
2
ε + 1

Then N >

√
2

ε
+ 1 > 1 and

N2 >
2

ε
+ 1

N2 − 1 >
2

ε
> 0

1

N2 − 1
<

ε

2

For each n ≥ N > 1, i.e., n2 − 1 ≥ N2 − 1 > 0. So, 1

n2 − 1
≤ 1

N2 − 1
. Then

∣∣∣∣n2 + 1

n2 − 1
− 1

∣∣∣∣ = ∣∣∣∣ 2

n2 − 1

∣∣∣∣
≤ 2

N2 − 1
< ε.

6. Suppose that xn is sequence of real numbers that converges to 1 as n → ∞. Use definition to prove that

x2n + 1 → 2 as n → ∞.

Proof. Suppose that xn converges to 1 as n → ∞. Since xn is convergent, xn is bounded. Then ∃M > 0
such that

|xn| < M for all n ∈ N.

Let ε > 0. Then ∃N ∈ N, n ≥ N

|xn − 1| < ε

M + 1

For each n ≥ N , we obtain

|x2n − 1| = |(xn − 1)(xn + 1)|
= |xn − 1||xn + 1|

<
ε

M + 1
(|xn|+ 1)

<
ε

M + 1
(M + 1) = ε
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7. Prove that every Cauchy sequence in R is bounded.

Proof. Suppose that {xn} is Cuachy. Then

∀ε > 0 ∃N ∈ N, n,m ≥ N implies |xn − xm| < ε

Choose ε = 1. Then ∃N ∈ N m,n ≥ 2N implies |xn − xm| < 1.
Choose m = N . Then |xn − xN | < 1, i.e.,

|xn| < 1 + |xN | for all n ≥ N.

In case n = 1, 2, 3, ..., N − 1, we can choose the maximum value of |x1|, |x2|, |x3|, ..., |xN−1|.
Thus, set

M = max{|x1|, |x2|, |x3|, ..., |xN−1|, 1 + |xN |}.

So,

|xn| ≤ M for all n ∈ N.

Hence, {xn} is bounded.

8. Prove that a sequence
{
1

n

}
is Cauchy.

Proof. Let ε > 0. By Archimedean principle, ∃N ∈ N such that 1

N
<

ε

2
.

For each m,n ≥ N , we have 1

n
<

1

N
and 1

m
<

1

N
. Then

|xn − xm| =
∣∣∣∣ 1n − 1

m

∣∣∣∣
≤ 1

n
+

1

m

≤ 1

N
+

1

N

<
ε

2
+

ε

2
= ε

Thus,
{
1

n

}
is Cauchy.

9. Use definition to prove that

lim
x→1+

√
x2 − 1 = 0.

Proof. Let ε > 0. Choose δ = min
{
ε2

4
, 2

}
. Suppose 0 < x− 1 < δ.

Then 0 < x− 1 < 2, i.e., 2 < x+ 1 < 4. We obtain

|
√

x2 − 1− 0| =
√

(x− 1)(x+ 1)

=
√

(x− 1) ·
√

(x+ 1)

<
√
δ ·

√
4

<

√
ε2

4
· 2 = ε
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10. Let f and g be functions with continuous at a. Prove that f + g is continuous at a.

Proof. Suppose f and g be functions with continuous at a.
Let ε > 0. there are positive numbers δ1 and δ2 such that

|x− a| < δ1 imples |f(x)− f(a)| < ε

2

|x− a| < δ2 imples |g(x)− g(a)| < ε

2

Choose δ = min{δ1, δ2}. If |x− a| < δ, it implies that

|(f + g)(x)− (f + g)(a)| = |(f(x)− f(a)) + (g(x)− g(a))|
≤ |f(x)− f(a)|+ |g(x)− g(a)|

<
ε

2
+

ε

2
= ε

Therefore, f + g is continuous at a.

11. Use definition to prove that

lim
x→2

x2 + 1

x− 1
= 5.

Proof. Let ε > 0. Choose δ = min
{ε

6
, 1
}

. Suppose 0 < |x− 2| < δ. Then

|x− 2| < 1

|x| − 2 < 1

|x| < 3

and

0 < |x− 2| < 1

−1 < x− 2 < 1 when x ̸= 2

1 < x− 1 < 3 when x ̸= 2

1

3
<

1

x− 1
< 1 when x ̸= 2

0 < x− < 1, i.e., 2 < x+ 1 < 4. We obtain∣∣∣∣x2 + 1

x− 1
− 5

∣∣∣∣ = ∣∣∣∣x2 − 5x+ 6

x− 1

∣∣∣∣
=

∣∣∣∣(x− 2)(x− 3)

x− 1

∣∣∣∣
= |x− 2| · |x− 3| · 1

|x− 1|
< δ · (|x|+ 3) · 1
< δ · (3 + 3)

<
ε

6
· 6 = ε
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12. Prove that f(x) = cosx is uniformly continuous on R.

Proof. Let ε > 0. Choose δ = ε. Let x, a ∈∈ R such that |x− a| < δ. Then

| cosx− cos a| =
∣∣∣∣2 sin

(
x+ a

2

)
sin

(
x− a

2

)∣∣∣∣
≤ 2 · 1 ·

∣∣∣∣sin(
x− a

2

)∣∣∣∣
≤ 2 · 1 ·

∣∣∣∣x− a

2

∣∣∣∣
≤ |x− a| < ε

Thus, f is uniformly continuous on R.
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