

Suan Sunandha Rajabhat University Faculty of Education, Branch of Mathematics Midterm Examination, Semester 2/2016

ID Subject	Course Name	Test Time	Full Scores	
MAT1202	Set Theory	5pm - 8pm	105 points	
		Mon 7 Mar 2017	30%	
Name		ID	Section	

Direction

- 1. 10 questions and 10 pages.
- 2. Write obviously your name, id and section all pages.
- 3. Without calculators and communication tools.
- 4. Don't take text books and others come to the test room.
- 5. Cannot answer sheets out of test room.
- 6. Deliver to the staff if you make a mistake in the test room.

Signature

.....

Lecturer: Thanatyod Jampawai, Ph.D.

1	2	3	4	5	6	7	8	9	10	

- 1. (10 points) Write answers in the right blanks
 - 1.1 Let $A \cup B = \{1, 2, 3, 4, 5, 6, 7, 8\}$, $A B = \{1, 2, 3\}$ and $B A = \{4, 5\}$. Find $A \cap B$
 - 1.2 Let $A = \{\emptyset, \{\emptyset\}\}$. Find $\mathcal{P}(A) A$.
 - 1.3 Find $(A \times B) (B \times A)$. If $A = \{1, 2, 3\}$ and $B = \{2, 3, 4\}$.
 - 1.4 Let $r = \{(x, y) \in \mathbb{R} \times \mathbb{R} : |x| + |y| = 1\}$. Compute $Dom(r) \cap Ran(r)$.
 - 1.5 Let r and s be relations on $A = \{1, 2, 3\}$. Suppose $r = \{(1, 2), (2, 2), (3, 3)\}$ and $s = \{(a, b)\}$. If $r \cup s$ is reflexive, what is (a, b).
 - 1.6 Define $f(x) = \frac{x+1}{x-1}$. If $a \in f^{-1}(\{2\})$, what is a.

1.7 Let
$$f\left(\frac{x-1}{x+1}\right) = x$$
. Estimate $f(f^{-1}(-2) + f(2))$

- 1.8 Define f(x+1) = x 1 and $g = \{(1,2), (2,3), (3,4)\}$. Find $g(f^{-1}(0))$
- 1.9 Define $f(x) = \begin{cases} 3x & \text{if } x^2 < 1 \\ -3x & \text{if } x^2 \ge 1 \end{cases}$. Compute $f^{-1}(\{-1, 0, 1\})$
- 1.10 Let $A = \{a, b\}$. Find a choice functions of A.

ID..... Section.....

2. Explain your answers

- 2.1 (8 points)
 - (a) Write out set A in builder form (only notation).

 $A = \{0.1, 0.04, 0.009, 0.0016, \ldots\}$

(b) Let $S = \{1, 2, 3, 4, 5\}$. List elements of set

$$B = \{(x, y) \in S \times S : x \mid (x+y)\}$$

2.2 (7 points) Let A and B be sets. Prove that

A - B = B - A if and only if A = B

3. Explain your answers

3.1 (5 points) Draw Haase diagram of $\{1\}, \{2\}, \{3\}, \{5\}, \{1,2\}, \{2,4\}, \{1,2,3\}, \{1,2,4,5\}$

3.2 (5 points) Let $B = \{1, 2, 3, 4\}$ and $A \in \mathcal{P}(B)$. If $A \cap \{3\} = \emptyset$, list all possible sets A.

3.3 (5 points) Let A and B be sets. Show that

if $\mathcal{P}(A) = \mathcal{P}(B)$, then A = B.

4. Explain your answers

4.1 (5 points) Let A and B be sets. Prove that

$$(B \times A) \cap (C \times A) = (B \cap C) \times A$$

4.2 (6 points) Let

 $r = \{(x,y) \in \mathbb{R} \times \mathbb{R} : y \ge x^2\} \quad \text{ and } \quad s = \{(x,y) \in \mathbb{R} \times \mathbb{R} : x^2 + y^2 = 1\}.$ Find $Dom(r \cap s)$ and $Ran(r \cap s)$.

5. Let r be a relation on a set A.

- 5.1 (5 points) Write definitions of five properties of r.
 - 1. Reflexive:
 - 2. Symmetric:
 - 3. Transitive:
 - 4. Antisymmetric:
 - 5. Total:
- 5.2 (6 points) Show that

if r is symmetric on A, then $r \cup r^{-1}$ is symmetric on A.

- 6. Let $A=\{1,2,3,...,20\}$ and (A,|) be a poset. Let $B=\{2,4,5\}$
 - 6.1 (4 points) Draw diagram of the poset (A, |)

6.2 (2 points) Compute minimal and maximal elements of B.

6.3 (3 points) Find B_L and B_U

6.4 (2 points) Compute $\inf B$ and $\sup B$

7. (8 points) Let f(x) = x|x|. Show that f is injective and find $f^{-1}(x)$.

8. (8 points) Let $f : A \to B$ be a function and U and V be subsets of B. Prove or disprove the statement

$$f^{-1}(U - V) = f^{-1}(U) - f^{-1}(V)$$

ID..... Section.....

9. Let
$$g(x) = \begin{cases} 1-x & \text{if } x \le 1 \\ x-1 & \text{if } x > 1 \end{cases}$$
 and $f(x) = \begin{cases} g(x) & \text{if } x > 0 \\ g(-x) & \text{if } x \le 0 \end{cases}$ Find
9.1 (1 points) $g \circ f(-1)$

9.2 (2 points)
$$f_*(\{-1, -\frac{1}{2}, 0, \frac{1}{2}, 1\})$$

9.3 (2 points)
$$f^*(\{1,2\})$$

9.4 (3 points) $(f \circ g)(x)$

10. Explain your answers

10.1 (4 points) Let
$$f(x) = \frac{1}{1 + \frac{1}{x}}$$
 and $g(x) = \frac{x}{1 + x}$. Are f and g equal ? Verify your answer.

10.2 (4 points) If a student does not understand about word SET, how do you explain.