

Suan Sunandha Rajabhat University Faculty of Education, Branch of Mathematics Midterm Examination, Semester 1/2016

ID Subject MAT2303	Course Name Abstract Albegra	Test Time5pm - 8pmWed 5 Oct 2016	Full Scores 105 points 30%
Name		ID	Section

Direction

- 1. 12 questions and 11 pages.
- 2. Write obviously your name, id and section all pages.
- 3. Without calculators and communication tools.
- 4. Don't take text books and others come to the test room.
- 5. Cannot answer sheets out of test room.
- 6. Deliver to the staff if you make a mistake in the test room.

Signature

.....

Lecturer: Thanatyod Jampawai, Ph.D.

No.	1	2	3	4	5	6	7	8	9	10	11	12	Total
Score													

1. (10 p	points) Write answers in the right blanks	
1.1	What is the inverse of $\bar{3}$ in \mathbb{Z}_7 ?	
1.2	What is the inverse of $(135)(42)$ in S_5 ?	
1.3	Compute the order of $(132)(31)(24)$ in S_4	
1.4	Compute the order of $\overline{17}$ in \mathbb{Z}_{20}^{\times}	
1.5	Find a generator of \mathbb{Z}_5^{\times}	
1.6	Write out elements of $\langle \bar{4} \rangle$ in \mathbb{Z}_{16}	
1.7	Find the number of all generators for \mathbb{Z}_{1000}	
1.8	Write out elements of the left coset (12) $\langle (31) \rangle$ in S_3 .	
1.9	Compute the index $[\mathbb{Z}_{25}^{\times} : \langle \overline{7} \rangle]$	
1.10	What is the inverse of $\langle \bar{5} \rangle + \bar{2}$ in a quotient group $\mathbb{Z}_{13}/\langle \bar{5} \rangle$?	

2. (6 points) Define a * b = a + b - 7 for all $a, b \in \mathbb{Z}$. Prove that $(\mathbb{Z}, *)$ is a group.

- 3. Let G be a group. Prove that
 - 3.1 (4 points) if $x^2 = e$ for all $x \in G$, then G is abelian.

3.2 (3 points) $(ab)^{-1} = b^{-1}a^{-1}$ for all $a, b \in G$.

4. In symmetric groups

- 4.1 (4 points) Write the cycle decomposition of each element
 - (a) of order 4 in S_4

(b) of order 2 in S_6

4.2 (4 points) Compute the orders of
(a) (1 2 3)(4 3)(4 5)(6 7) in S₈

(b) $(1\ 7\ 9)(2\ 10\ 3)(7\ 8)$ in S_{10}

5. (10 points) Let
$$H = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : ad - bc = 1 \right\}$$
. Prove that H is a subgroup of $GL_2(\mathbb{R})$.

6. (5 points) Let G be a group. Prove or disprove that

 $\text{if} \ \ H \leq G \ \ \text{and} \ \ K \leq G, \ \text{then} \ \ H \cup K \leq G.$

7. In \mathbb{Z}_{18}^{\times} with multiplication

7.1 (5 points) Find all generators

7.2 (5 points) Find all subgroups by Lagrance's theorem

8. (8 points) Write the Lattice diagram of \mathbb{Z}_{36} (Write each subgroup by $\langle a \rangle$)

9. Explain your answers

9.1 (8 points) Find all normal subgroups of S_3

9.2 (5 points) Let M and N be subgroups of a group G. Prove that

 $M\trianglelefteq G$ and $N\trianglelefteq G\longrightarrow M\cap N\trianglelefteq G$

10. Explain your answers

10.1 (3 points) Write out elements of $\mathbb{Z}/5\mathbb{Z}$

10.2 (5 points) Write inverses of each element in quoteint group $\mathbb{Z}_{25}^{\times}/\langle \bar{7} \rangle$

11. Let $G_1 = \mathbb{Z} \times \mathbb{Z}$ be a group with addition and $G_2 = \mathbb{Q}^+$ a group with multiplication. Define

 $\varphi: G_1 \to G_2$ by $\varphi(a, b) = 2^{a+b}$ for all $a, b \in \mathbb{Z}$

11.1 (4 points) Prove that φ is homormorphism

11.2 (4 points) Is φ isomorphism ? Verfy your answer.

11.3 (4 points) Find $Ker(\varphi)$ and $Im(\varphi)$

12. Explain your answers

12.1 (4 points) Show that $\mathbb{Z}_2 \times \mathbb{Z}_3$ is isomorphic to \mathbb{Z}_6

12.2 (4 points) In \mathbb{Z}_4 , find T_0 , T_1 , T_2 and T_3 and a subgroup H of S_4 such that $\mathbb{Z}_4 \cong H$ by Cayley's theorem.