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1. 10 questions and 10 pages.

2. Write obviously your name, id and section all pages.

3. Can use a calculator(s) but can not use communication tools.
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5. Cannot answer sheets out of test room.
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1. (10 points) Write answers in the right blanks

1.1 Find a linear equation in the variables x, y and z that has the general
solution x = s+ t, y = 2t and z = s− 1.

1.2 Let
[
1 a
b 2

]
R2−2R1−−−−−→

[
1 3
1 c

]
. Compute a+ b+ c.

1.3 If A

[
2 4
6 10

]
= 2I, what is A−1.

1.4 Let A =

−1 2 3
2 −3 1
0 1 2

 and LU -decomposition be A = LU . Find L.

1.5 Compute

∣∣∣∣∣∣∣∣
1 0 0 0
0 0 2 0
0 3 0 0
0 0 0 4

∣∣∣∣∣∣∣∣.

1.6 Let A and B be an 2× 2 matrices. If det(A) = −2 and det(B) ̸= 0,
find det(3BTA2B−1)

1.7 If adj(A) =
[
1 2
3 5

]
, what is A−1.

1.8 Let B = {(1, 1), (−1, 0)} be a basis for R2 and v = (2, 3). Find (v)B.

1.9 Let A =

[
1 2
1 0

]
. Compute A2560.

1.10 Let A =


1 2 3 4
0 2 1 0
0 0 1 2
0 0 2 4

. Find nullity(A).
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2. Explain your answers

2.1 (6 points) Using Gussian elimination to solve linear system
x1 + x2 + 2x3 = 1

2x1 + 3x2 − x3 = 2

−x1 − 3x2 + 8x3 = −1

2.2 (6 points) Let A and B be an 2× 2 matrices satisfying

2A+B =

[
1 2
3 4

]
and A−B =

[
2 4
−3 2

]

Compute (AB)−1
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3. (10 points) Using Gussian elimination to solve the non-linear system by substitution and verify your
answers. 

lnx − ln y + ln z = 3

3 lnx − 4 ln y + ln z = 1

lnx + 2 ln y − ln z = 3

4. (6 points) Let

A =

 8 x+ y x− y + 2z
−1 9 −5
3 y − 2z 8


be a symmetric matrix. What are x, y and z ?
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5. Let A =


1 0 1 0
2 1 0 1
0 3 −5 1
1 4 2 −13

.

5.1 (7 points) Compute A−1.
5.2 (3 points) Use (4.1) to solve linear system in form Ax = b

x1 + x3 = 1

2x1 + x2 + x4 = 1

3x2 − 5x3 + x4 = 1

x1 + 4x2 + 2x3 − 13x4 = 1
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6. (10 points) Solve the folowing linear system by LU -decomposition.
2x1 + x2 + 3x3 = −6

4x1 + 3x2 + 5x3 = −8

−6x1 + 7x2 + x3 = 18
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7. Explain your answers

7.1 (6 points) Compute determinant of A =


1 0 1 2
−1 1 0 3
2 0 1 1
0 1 2 3

 by EROs or Cofactor expansion.

7.2 (6 points) Let A =

[
a11 a12
a21 a22

]
and B =

[
2a11 a21
2a12 a22

]
. If det(B) = −4, find

(a) det(A)
(b) det(3A2B)

(c) det(−BT (2A2)−1)
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8. Explain your answers

8.1 (6 points) Let A =


1 −1 1 3
0 1 −3 3
1 0 0 3
1 −1 2 3

. If A−1 = [a∗ij ], find a∗31 + a∗42.

8.2 (6 points) Let Ax = b be a linear system where A = [aij ]3×3, x =

x1x2
x3

 and b =

23
1

. If we can

compute x1 and x2 by Cramer’s rule,

x1 =

∣∣∣∣∣∣
2 −1 1
3 0 2
1 1 0

∣∣∣∣∣∣
|A|

and x2 =

∣∣∣∣∣∣
1 2 1
1 3 2
0 1 0

∣∣∣∣∣∣
|A|

,

find x3.
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9. Explain your answers

9.1 (6 points) Let W = {(x, y, z) : xyz = 0}. Check that W is a subspace of R3 or NOT.

9.2 (6 points) Show that B = {(1,−1, 1), (1, 1, 0), (0, 1, 1)} is a basis for R3. If v = (1, 2, 3), find (v)B
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10. Explain your answers

10.1 (6 points) Find bases for the row space and column space of

A =


1 2 0 2
−2 −5 5 6
0 −3 15 18
0 −2 10 8
3 6 0 6


consisting entirely of row vector from A.

10.2 (6 points) Let

A =


1 2 −3 0 1 0
1 3 0 0 −1 3
−2 −4 6 0 −2 0
0 0 2 2 0 2


Find Rank(A) and a basis of Null(A).
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