

Suan Sunandha Rajabhat University Faculty of Education, Branch of Mathematics Midterm Examination, Semester 2/2016

ID Subject	Course Name	Test Time	Full Scores
MAT12305	Linear Algebra	5pm - 8pm	106 points
		Wed 8 Mar 2017	30%
Name		ID	Section

Direction

- 1. 10 questions and 10 pages.
- 2. Write obviously your name, id and section all pages.
- 3. Can use a calculator(s) but can not use communication tools.
- 4. Don't take text books and others come to the test room.
- 5. Cannot answer sheets out of test room.
- 6. Deliver to the staff if you make a mistake in the test room.

Signature

.....

Lecturer: Thanatyod Jampawai, Ph.D.

1	2	3	4	5	6	7	8	9	10	

1. (10 points) Write answers in the right blanks

1.1 Find a **linear equation** in the variables x, y and z that has the general solution x = s + t, y = 2t and z = s - 1.

.

1.2 Let
$$\begin{bmatrix} 1 & a \\ b & 2 \end{bmatrix} \xrightarrow{R_2 - 2R_1} \begin{bmatrix} 1 & 3 \\ 1 & c \end{bmatrix}$$
. Compute $a + b + c$.

1.3 If
$$A\begin{bmatrix} 2 & 4\\ 6 & 10 \end{bmatrix} = 2I$$
, what is A^{-1}

1.4 Let
$$A = \begin{bmatrix} -1 & 2 & 3 \\ 2 & -3 & 1 \\ 0 & 1 & 2 \end{bmatrix}$$
 and *LU*-decomposition be $A = LU$. Find *L*.

1.5 Compute
$$\begin{vmatrix} 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 4 \end{vmatrix}$$

1.6 Let A and B be an 2×2 matrices. If $\det(A) = -2$ and $\det(B) \neq 0$, find $\det(3B^T A^2 B^{-1})$

1.7 If
$$\operatorname{adj}(A) = \begin{bmatrix} 1 & 2 \\ 3 & 5 \end{bmatrix}$$
, what is A^{-1} .

1.8 Let $B = \{(1,1), (-1,0)\}$ be a basis for \mathbb{R}^2 and v = (2,3). Find $(v)_B$.

1.9 Let
$$A = \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix}$$
. Compute A^{2560} .

1.10 Let
$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 4 \end{bmatrix}$$
. Find nullity(A).

2.1 (6 points) Using Gussian elimination to solve linear system

$$\begin{cases} x_1 + x_2 + 2x_3 = 1\\ 2x_1 + 3x_2 - x_3 = 2\\ -x_1 - 3x_2 + 8x_3 = -1 \end{cases}$$

2.2 (6 points) Let A and B be an 2×2 matrices satisfying

$$2A + B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 and $A - B = \begin{bmatrix} 2 & 4 \\ -3 & 2 \end{bmatrix}$

Compute $(AB)^{-1}$

3. (10 points) Using Gussian elimination to solve the non-linear system by substitution and verify your answers.

$$\begin{cases} \ln x & - \ln y + \ln z = 3\\ 3\ln x & - 4\ln y + \ln z = 1\\ \ln x & + 2\ln y - \ln z = 3 \end{cases}$$

4. (6 points) Let

$$A = \begin{bmatrix} 8 & x+y & x-y+2z \\ -1 & 9 & -5 \\ 3 & y-2z & 8 \end{bmatrix}$$

be a symmetric matrix. What are x, y and z ?

5. Let
$$A = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 2 & 1 & 0 & 1 \\ 0 & 3 & -5 & 1 \\ 1 & 4 & 2 & -13 \end{bmatrix}$$
.

- 5.1 (7 points) Compute A^{-1} .
- 5.2 (3 points) Use (4.1) to solve linear system in form Ax = b

ſ	x_1			+	x_3			=	1
J	$2x_1$	+	x_2			+	x_4	=	1
			$3x_2$	_	$5x_3$	+	x_4	=	1
l	x_1	+	$4x_2$	+	$2x_3$	—	$13x_4$	=	1

6. (10 points) Solve the following linear system by LU-decomposition.

$$\begin{cases} 2x_1 + x_2 + 3x_3 = -6\\ 4x_1 + 3x_2 + 5x_3 = -8\\ -6x_1 + 7x_2 + x_3 = 18 \end{cases}$$

ID..... Section....

7. Explain your answers

7.1 (6 points) Compute determinant of
$$A = \begin{bmatrix} 1 & 0 & 1 & 2 \\ -1 & 1 & 0 & 3 \\ 2 & 0 & 1 & 1 \\ 0 & 1 & 2 & 3 \end{bmatrix}$$
 by EROs or Cofactor expansion.

7.2 (6 points) Let
$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$
 and $B = \begin{bmatrix} 2a_{11} & a_{21} \\ 2a_{12} & a_{22} \end{bmatrix}$. If det $(B) = -4$, find
(a) det (A)
(b) det $(3A^2B)$
(c) det $(-B^T(2A^2)^{-1})$

8.1 (6 points) Let
$$A = \begin{bmatrix} 1 & -1 & 1 & 3 \\ 0 & 1 & -3 & 3 \\ 1 & 0 & 0 & 3 \\ 1 & -1 & 2 & 3 \end{bmatrix}$$
. If $A^{-1} = [a_{ij}^*]$, find $a_{31}^* + a_{42}^*$.

8.2 (6 points) Let $A\mathbf{x} = \mathbf{b}$ be a linear system where $A = [a_{ij}]_{3\times 3}$, $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$. If we can compute x_1 and x_2 by Cramer's rule,

$$x_1 = \frac{\begin{vmatrix} 2 & -1 & 1 \\ 3 & 0 & 2 \\ 1 & 1 & 0 \end{vmatrix}}{|A|} \quad \text{and} \quad x_2 = \frac{\begin{vmatrix} 1 & 2 & 1 \\ 1 & 3 & 2 \\ 0 & 1 & 0 \end{vmatrix}}{|A|}$$

find x_3 .

9.1 (6 points) Let $W = \{(x, y, z) : xyz = 0\}$. Check that W is a subspace of \mathbb{R}^3 or NOT.

9.2 (6 points) Show that $B = \{(1, -1, 1), (1, 1, 0), (0, 1, 1)\}$ is a basis for \mathbb{R}^3 . If v = (1, 2, 3), find $(v)_B$

10.1 (6 points) Find bases for the row space and column space of

$$A = \begin{bmatrix} 1 & 2 & 0 & 2 \\ -2 & -5 & 5 & 6 \\ 0 & -3 & 15 & 18 \\ 0 & -2 & 10 & 8 \\ 3 & 6 & 0 & 6 \end{bmatrix}$$

consisting entirely of row vector from A.

10.2 (6 points) Let

$$A = \begin{bmatrix} 1 & 2 & -3 & 0 & 1 & 0 \\ 1 & 3 & 0 & 0 & -1 & 3 \\ -2 & -4 & 6 & 0 & -2 & 0 \\ 0 & 0 & 2 & 2 & 0 & 2 \end{bmatrix}$$

Find $\operatorname{Rank}(A)$ and a basis of $\operatorname{Null}(A)$.