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1. 10 questions and 11 pages.
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1. (10 points) Write answers in the right blanks

1.1 Let {(2t− 1, 3s+ 1, 1− t+ s) : t, s ∈ R} is the solution set of ax+ by + cz = 1
where a, b, c ∈ Z . Find a+ b+ c

1.2 Let
[
1 2 1
0 1 3

]
be a augmented matrix with variables x, y. Find x+ y

1.3 Let A be a mtrix obtained from B by R12 and R2 − 2R1, respectively.

If B =

[
1 2
3 4

]
, find A

1.4 Let A =

[
1 3
a k

]
. If A is symmetric and is not invertible. What is k ?

1.5 Let A be a 3× 3 matrix such that A+AT = 0.
Compute sum of all entries in A.

1.6 Use Cramer’s rule to sove a linear system with two variable, x1, x2,

when x1 =

∣∣∣∣∣∣1 a
5 b

∣∣∣∣∣∣∣∣∣∣∣∣1 2
1 4

∣∣∣∣∣∣
. Find x2

1.7 If A−2 =

[
2 3
5 7

]
and B =

[
sin θ cos θ
cos θ − sin θ

]101
where θ ∈ R.

Compute det(7(A2B−5)2018).

1.8 Let
∣∣∣∣a+ 2c b+ 2d

3c 3d

∣∣∣∣ = 15. Compute
∣∣∣∣c d
a b

∣∣∣∣.
1.9 Let B = {(1, 1), (1, 0)} be a basis for R2 and v = (3, 4). Find (v)B.

1.10 Let A be 5× 8 matrix. If rank(A) = 2, find nullity(A)
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2. Explain your answers

2.1 (6 points) Using Guss-Jardan elimination to solve linear system
x1 + x2 + 2x3 + 2x4 = 1

−x1 − 2x2 + x3 + x4 = 2

− x2 + 3x3 + 3x4 = 3

−3x1 − 2x2 − 3x3 − 3x4 = 0

2.2 (6 points) If the following linear system is consistent ?
x + 2y + 3z = b

2x + y + 3z = 3− b

7x + 11y + 18z = 15

What is b ?
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3. Explain your answers

3.1 (6 points) Let A =

3 4 3
2 0 y
1 1 2

, x =

x1x2
x3

 and b =

11
1

. If

 3 4 3 1 0 0
2 0 y 0 1 0
1 1 2 0 0 1

 ∼

 1 0 0 9 z −36
0 1 0 −5 −3 21
0 0 1 −2 −1 8

 ,

(a) (3 points) find y and z

(b) (3 points) solve linear system Ax = b

3.2 (6 points) Let A =

[
1 a
1 b

]
and B =

[
1 2
2 3

]
. If (A+B)2 = A2 + 2AB +B2. Find (A−1 +AT )2
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4. (10 points) Solve the folowing linear system by LU -decomposition.
x1 − 3x2 + 5x3 = 2

2x1 − 5x2 + x3 = −3

−x1 + x2 + 2x3 = 1
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5. Explain your answers

5.1 (5 points) Use the determinant definition to evaluate

∣∣∣∣∣∣∣∣∣∣
0 0 0 3 4
0 5 0 0 0
0 0 2 0 0
0 0 0 6 0
7 0 0 0 0

∣∣∣∣∣∣∣∣∣∣

5.2 (5 points) Let A be a 2×2 matrix such that det(A) = 3. If A−3I is not invertible, find det(A+3I)
where I is identity 2× 2 matrix.
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6. Explain your answers

6.1 (6 points) Let A =

a+ 3d b+ 3e c+ 3f
2d− a 2e− b 2f − c
2x 2y 2z

 and B =

a d x
b e y
c f z

.

If det(A) = 100, find det[3A4(5B)−1]

6.2 (6 points) Let adj(A) =

1 2 1
2 3 3
3 5 5

 and det(A) > 0.

(a) (2 points) Find det(A)
(b) (4 points) Find A
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7. Explain your answers

7.1 (5 points) Let W =

{[
a b
c d

]
: a+ b+ c = d

}
. Check that W is a subspace of M22(R) or NOT.

7.2 (4 points) Let A be an n× n matrix. Show that
W = {x ∈ Rn : Ax = 0}

is a subspace of Rn.
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8. Explain your answers

8.1 (6 points) Let B = {(1, 1, 1), (1, 0, 1), (1, 1, 0)} and v = (2, 1, 8).
(a) (3 points) Show that B is a basis for R3

(b) (3 points) Find (v)B

8.2 (5 points) Let S = {xex, sinx, cosx}. Determine whether S is linearly independent.
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9. Explain your answers

9.1 (5 points) Determine whether p = 3x2 + 2x+ 1 is in span{1 + x, 1 + x2, 1− x2}

9.2 (5 points) Let A =

x 1 0
0 −x 3
0 0 −x

 where x > 0. If (I −A−1) is a singular matrix. Find det(A+ I)
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10. Explain your answers

10.1 (5 points) Find bases for the row space and column space, rank and nullity of

A =


1 2 0 1 3 4
2 3 2 3 −1 2
3 5 2 4 2 6
0 −1 2 1 −7 −6
5 9 2 6 8 13



10.2 (5 points) In mathayom class room, there is a question from a student said that for any square
matrices A and B,

if AB = 0, then A = 0 or B = 0

TRUE or FALSE. If you are a teacher in this class, how you will answer for the question.
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