

Suan Sunandha Rajabhat University Faculty of Education, Division of Mathematics Midterm Examination, Semester 2/2017

ID Subject	Course Name	Test Time	Full Scores
MAT12305	Linear Algebra	1pm - 4pm	105 points
		Fri 2 Mar 2018	30%
Name		ID	Section

Direction

- 1. 10 questions and 11 pages.
- 2. Write obviously your name, id and section all pages.
- 3. Can use a calculator(s) but can not use communication tools.
- 4. Don't take text books and others come to the test room.
- 5. Cannot answer sheets out of test room.
- 6. Deliver to the staff if you make a mistake in the test room.

Signature

.....

Lecturer: Thanatyod Jampawai, Ph.D.

1	2	3	4	5	6	7	8	9	10	

ID..... Section.....

1. (10 points) Write answers in the right blanks

1.1 Let $\{(2t-1, 3s+1, 1-t+s) : t, s \in \mathbb{R}\}$ is the solution set of ax + by + cz = 1where $a, b, c \in \mathbb{Z}$. Find a + b + c

1.2 Let $\begin{bmatrix} 1 & 2 & | & 1 \\ 0 & 1 & | & 3 \end{bmatrix}$ be a augmented matrix with variables x, y. Find x + y

- 1.3 Let A be a mtrix obtained from B by R_{12} and $R_2 2R_1$, respectively. If $B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, find A
- 1.4 Let $A = \begin{bmatrix} 1 & 3 \\ a & k \end{bmatrix}$. If A is symmetric and is not invertible. What is k?
- 1.5 Let A be a 3×3 matrix such that $A + A^T = 0$. Compute **sum of all entries** in A.
- 1.6 Use Cramer's rule to sove a linear system with two variable, x_1, x_2 ,

when
$$x_1 = \frac{\begin{vmatrix} 1 & a \\ 5 & b \end{vmatrix}}{\begin{vmatrix} 1 & 2 \\ 1 & 4 \end{vmatrix}}$$
. Find x_2

1.7 If
$$A^{-2} = \begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix}$$
 and $B = \begin{bmatrix} \sin \theta & \cos \theta \\ \cos \theta & -\sin \theta \end{bmatrix}^{101}$ where $\theta \in \mathbb{R}$.

Compute $\det(7(A^2B^{-5})^{2018})$.

1.8 Let
$$\begin{vmatrix} a+2c & b+2d \\ 3c & 3d \end{vmatrix} = 15$$
. Compute $\begin{vmatrix} c & d \\ a & b \end{vmatrix}$.

1.9 Let $B = \{(1,1), (1,0)\}$ be a basis for \mathbb{R}^2 and v = (3,4). Find $(v)_B$.

1.10 Let A be 5×8 matrix. If rank(A) = 2, find nullity(A)

2.1 (6 points) Using Guss-Jardan elimination to solve linear system

 $\begin{cases} x_1 + x_2 + 2x_3 + 2x_4 = 1\\ -x_1 - 2x_2 + x_3 + x_4 = 2\\ - x_2 + 3x_3 + 3x_4 = 3\\ -3x_1 - 2x_2 - 3x_3 - 3x_4 = 0 \end{cases}$

2.2 (6 points) If the following linear system is consistent ?

,

$$\begin{cases} x + 2y + 3z = b \\ 2x + y + 3z = 3 - b \\ 7x + 11y + 18z = 15 \end{cases}$$

What is b ?

3.1 (6 points) Let
$$A = \begin{bmatrix} 3 & 4 & 3 \\ 2 & 0 & y \\ 1 & 1 & 2 \end{bmatrix}$$
, $\boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ and $\boldsymbol{b} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$. If
$$\begin{bmatrix} 3 & 4 & 3 & | & 1 & 0 & 0 \\ 2 & 0 & y & | & 0 & 1 & 0 \\ 1 & 1 & 2 & | & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & | & 9 & z & -36 \\ 0 & 1 & 0 & | & -5 & -3 & 21 \\ 0 & 0 & 1 & | & -2 & -1 & 8 \end{bmatrix}$$
,

- (a) (3 points) find y and z
- (b) (3 points) solve linear system Ax = b

3.2 (6 points) Let $A = \begin{bmatrix} 1 & a \\ 1 & b \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$. If $(A+B)^2 = A^2 + 2AB + B^2$. Find $(A^{-1} + A^T)^2$

4. (10 points) Solve the following linear system by *LU*-decomposition.

$$\begin{cases} x_1 - 3x_2 + 5x_3 = 2\\ 2x_1 - 5x_2 + x_3 = -3\\ -x_1 + x_2 + 2x_3 = 1 \end{cases}$$

5.1 (5 points) Use the determinant definition to evaluate	0 0 0 0	0 5 0 0	$ \begin{array}{c} 0 \\ 0 \\ 2 \\ 0 \\ 0 \\ 0 \end{array} $	$ \begin{array}{c} 3 \\ 0 \\ 0 \\ 6 \\ 0 \end{array} $	4 0 0 0
	$\left \begin{array}{c} 0\\ 7\end{array} \right $	0	0	0	0

5.2 (5 points) Let A be a 2×2 matrix such that det(A) = 3. If A - 3I is not invertible, find det(A+3I) where I is identity 2×2 matrix.

6.1 (6 points) Let
$$A = \begin{bmatrix} a+3d & b+3e & c+3f \\ 2d-a & 2e-b & 2f-c \\ 2x & 2y & 2z \end{bmatrix}$$
 and $B = \begin{bmatrix} a & d & x \\ b & e & y \\ c & f & z \end{bmatrix}$.
If det $(A) = 100$, find det $[3A^4(5B)^{-1}]$

6.2 (6 points) Let
$$adj(A) = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & 3 \\ 3 & 5 & 5 \end{bmatrix}$$
 and $det(A) > 0$.
(a) (2 points) Find $det(A)$
(b) (4 points) Find A

7.1 (5 points) Let
$$W = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : a + b + c = d \right\}$$
. Check that W is a subspace of $M_{22}(\mathbb{R})$ or NOT.

7.2 (4 points) Let A be an $n \times n$ matrix. Show that

 $W = \{ \boldsymbol{x} \in \mathbb{R}^n : A\boldsymbol{x} = \boldsymbol{0} \}$

is a subspace of \mathbb{R}^n .

- 8.1 (6 points) Let $\mathcal{B} = \{(1,1,1), (1,0,1), (1,1,0)\}$ and v = (2,1,8).
 - (a) (3 points) Show that \mathcal{B} is a basis for \mathbb{R}^3
 - (b) (3 points) Find $(v)_{\mathcal{B}}$

8.2 (5 points) Let $S = \{xe^x, \sin x, \cos x\}$. Determine whether S is linearly independent.

9.1 (5 points) Determine whether $p = 3x^2 + 2x + 1$ is in span $\{1 + x, 1 + x^2, 1 - x^2\}$

9.2 (5 points) Let $A = \begin{bmatrix} x & 1 & 0 \\ 0 & -x & 3 \\ 0 & 0 & -x \end{bmatrix}$ where x > 0. If $(I - A^{-1})$ is a singular matrix. Find det(A + I)

10.1 (5 points) Find bases for the row space and column space, rank and nullity of

$$A = \begin{bmatrix} 1 & 2 & 0 & 1 & 3 & 4 \\ 2 & 3 & 2 & 3 & -1 & 2 \\ 3 & 5 & 2 & 4 & 2 & 6 \\ 0 & -1 & 2 & 1 & -7 & -6 \\ 5 & 9 & 2 & 6 & 8 & 13 \end{bmatrix}$$

10.2 (5 points) In mathayom class room, there is a question from a student said that for any square matrices A and B,

if
$$AB = 0$$
, then $A = 0$ or $B = 0$

TRUE or FALSE. If you are a teacher in this class, how you will answer for the question.