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No.1

1. (10 marks) Let a ∈ R. Prove that

a2 + 2√
a2 + 1

≥ 2.

2. (10 marks) Let a ∈ R. Prove that

a2 + 3√
a2 + 2

≥ 2.

3. (10 marks) Let a ∈ R. Prove that

a2 + 4√
a2 + 3

≥ 2.

4. (10 marks) Let a ∈ R. Prove that

a2 + 5√
a2 + 4

≥ 2.
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No.2

1. (10 marks) Let x, y ∈ R. Prove that

if |x + y| = |x− y|, then x|y| + y|x| = 0.

2. (10 marks) Let x, y ∈ R. Prove that

if |2x + y| = |x + 2y|, then |xy| = x2.

3. (10 marks) Let x, y ∈ R. Prove that

if |2x− y| = |x− 2y|, then |xy| = x2.

4. (10 marks) Let x, y ∈ R. Prove that

if |2x + y| = |x + 2y|, then |xy| = y2.
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No.3

1. (10 marks) Let A =

{
1− n

n2 + 1
: n ∈ N

}
.

What are supremum and infimum of A ? Verify (proof) your answers.

2. (10 marks) Let A =

{
1− n

n2 + 2
: n ∈ N

}
.

What are supremum and infimum of A ? Verify (proof) your answers.

3. (10 marks) Let A =

{
2− n

n2 + 1
: n ∈ N

}
.

What are supremum and infimum of A ? Verify (proof) your answers.

4. (10 marks) Let A =

{
2− n

n2 + 2
: n ∈ N

}
.

What are supremum and infimum of A ? Verify (proof) your answers.
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No.4

1. (10 marks) Use definition to prove that

lim
n→∞

n(n + 2)

n2 + 1
exists.

2. (10 marks) Use definition to prove that

lim
n→∞

n(n + 3)

n2 + 2
exists.

3. (10 marks) Use definition to prove that

lim
n→∞

n(n + 3)

n2 + 1
exists.

4. (10 marks) Use definition to prove that

lim
n→∞

n(n + 5)

n2 + 2
exists.
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No.5

1. (10 marks) Assume that {xn} is a convergent sequence in R. Prove that

lim
n→∞

(xn − xn+1) = 0.

2. (10 marks) Assume that {xn} is a convergent sequence in R. Prove that

lim
n→∞

(xn − xn+2) = 0.

3. (10 marks) Assume that {xn} is a convergent sequence in R. Prove that

lim
n→∞

(xn − xn+3) = 0.

4. (10 marks) Assume that {xn} is a convergent sequence in R. Prove that

lim
n→∞

(xn − xn+4) = 0.
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No.6

1. (10 marks) Let {an} be a sequence in R such that there is an N ∈ N
satisfying the statement :

if n,m ≥ N , then |xn − xm| <
1

k
for all k ∈ N.

Prove that {an} converges.
Hint: Show that {an} is Cauchy.

2. (10 marks) Let {an} be a sequence in R such that there is an N ∈ N
satisfying the statement :

if n,m ≥ N , then |xn − xm| <
1

k2
for all k ∈ N.

Prove that {an} converges.
Hint: Show that {an} is Cauchy.

3. (10 marks) Let {an} be a sequence in R such that there is an N ∈ N
satisfying the statement :

if n,m ≥ N , then |xn − xm| <
1

k3
for all k ∈ N.

Prove that {an} converges.
Hint: Show that {an} is Cauchy.

4. (10 marks) Let {an} be a sequence in R such that there is an N ∈ N
satisfying the statement :

if n,m ≥ N , then |xn − xm| <
1

k4
for all k ∈ N.

Prove that {an} converges.
Hint: Show that {an} is Cauchy.

7



No.7

1. (10 marks) Let F be a closed set. Assume that {xn} is a sequence in F

(it means that xn ∈ F for all n ∈ N). Prove that

if xn → a as n → ∞, then a ∈ F .

No.8

1. (10 marks) Use definition to prove that

lim
x→1

(
x +

1

x

)
= 2.

2. (10 marks) Use definition to prove that

lim
x→−1

(
x +

1

x

)
= 0.

3. (10 marks) Use definition to prove that

lim
x→2

(
x +

2

x

)
= 3.

4. (10 marks) Use definition to prove that

lim
x→−2

(
x +

2

x

)
= −3.
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No.9

1. (10 marks) Let f be a real value function. Assume that

lim
x→1+

(x + f (x)) = +∞.

Prove that f (x) → +∞ as x → 1+.

2. (10 marks) Let f be a real value function. Assume that

lim
x→1−

(x + f (x)) = +∞.

Prove that f (x) → +∞ as x → 1−.

3. (10 marks) Let f be a real value function. Assume that

lim
x→1+

(x + f (x)) = −∞.

Prove that f (x) → −∞ as x → 1+.

4. (10 marks) Let f be a real value function. Assume that

lim
x→1−

(x + f (x)) = −∞.

Prove that f (x) → −∞ as x → 1−.
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No.10

1. (10 marks) Use definition (sequence) to prove that

lim
n→∞

(
1−

√
n
)
= −∞.

2. (10 marks) Use definition (sequence) to prove that

lim
n→∞

(√
n− 1

)
= ∞.

3. (10 marks) Use definition (function) to prove that

lim
x→∞

(√
x2 + 1− x

)
= 0.

4. (10 marks) Use definition (function) to prove that

lim
x→−∞

(√
x2 + 1 + x

)
= 0.
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Solution Midterm : MAC3309 Mathematical Analysis

No.1
1. (10 marks) Let a ∈ R. Prove that

a2 + 2√
a2 + 1

≥ 2.

Proof. Let a ∈ R. By the fact that a2 ≥ 0, we obtain

[(a2 + 2)− 2]2 ≥ 0

(a2 + 2)2 − 4(a2 + 2) + 4 ≥ 0

(a2 + 2)2 ≥ 4(a2 + 2)− 4

(a2 + 2)2 ≥ 4(a2 + 2− 1)

(a2 + 2)2 ≥ 4(a2 + 1)√
(a2 + 2)2 ≥ 2

√
a2 + 1

|a2 + 2| ≥ 2
√

a2 + 1

a2 + 2√
a2 + 1

≥ 2

2. (10 marks) Let a ∈ R. Prove that
a2 + 3√
a2 + 2

≥ 2.

Proof. Let a ∈ R. By the fact that a2 ≥ 0, we obtain

[(a2 + 3)− 3]2 ≥ 0

(a2 + 3)2 − 4(a2 + 3) + 4 ≥ 0

(a2 + 3)2 ≥ 4(a2 + 3)− 4

(a2 + 3)2 ≥ 4(a2 + 3− 1)

(a2 + 3)2 ≥ 4(a2 + 2)√
(a2 + 3)2 ≥ 2

√
a2 + 2

|a2 + 3| ≥ 2
√

a2 + 2

a2 + 3√
a2 + 2

≥ 2
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3. (10 marks) Let a ∈ R. Prove that
a2 + 4√
a2 + 3

≥ 2.

Proof. Let a ∈ R. By the fact that a2 ≥ 0, we obtain

[(a2 + 4)− 4]2 ≥ 0

(a2 + 4)2 − 4(a2 + 4) + 4 ≥ 0

(a2 + 4)2 ≥ 4(a2 + 4)− 4

(a2 + 4)2 ≥ 4(a2 + 4− 1)

(a2 + 4)2 ≥ 4(a2 + 3)√
(a2 + 4)2 ≥ 2

√
a2 + 3

|a2 + 4| ≥ 2
√

a2 + 3

a2 + 4√
a2 + 3

≥ 2

4. (10 marks) Let a ∈ R. Prove that
a2 + 5√
a2 + 4

≥ 2.

Proof. Let a ∈ R. By the fact that a2 ≥ 0, we obtain

[(a2 + 5)− 5]2 ≥ 0

(a2 + 5)2 − 4(a2 + 5) + 4 ≥ 0

(a2 + 5)2 ≥ 4(a2 + 5)− 4

(a2 + 5)2 ≥ 4(a2 + 5− 1)

(a2 + 5)2 ≥ 4(a2 + 4)√
(a2 + 5)2 ≥ 2

√
a2 + 4

|a2 + 5| ≥ 2
√

a2 + 4

a2 + 5√
a2 + 4

≥ 2
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No.2
1. (10 marks) Let x, y ∈ R. Prove that

if |x+ y| = |x− y|, then x|y|+ y|x| = 0.

Proof. Let x, y ∈ R. Assume that |x+ y| = |x− y|. Then

|x+ y|2 = |x− y|2

(x+ y)2 = (x− y)2

x2 + 2xy + y2 = x2 − 2xy + y2

4xy = 0

xy = 0

So, x = 0 or y = 0. It implies that x|y| = 0 and |x|y = 0. Thus, x|y|+ y|x| = 0.

2. (10 marks) Let x, y ∈ R. Prove that

if |2x+ y| = |x+ 2y|, then |xy| = x2.

Proof. Let x, y ∈ R. Assume that |2x+ y| = |x+ 2y|. Then

|2x+ y|2 = |x+ 2y|2

(2x+ y)2 = (x+ 2y)2

4x2 + 4xy + y2 = x2 + 4xy + 4y2

3x2 = 3y2

x2 = y2
√
x2 =

√
y2

|x| = |y|

It implies that
|xy| = |x||y| = |x||x| = |x|2 = x2.
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3. (10 marks) Let x, y ∈ R. Prove that

if |2x− y| = |x− 2y|, then |xy| = x2.

Proof. Let x, y ∈ R. Assume that |2x− y| = |x− 2y|. Then

|2x− y|2 = |x− 2y|2

(2x− y)2 = (x− 2y)2

4x2 − 4xy + y2 = x2 − 4xy + 4y2

3x2 = 3y2

x2 = y2
√
x2 =

√
y2

|x| = |y|

It implies that
|xy| = |x||y| = |x||x| = |x|2 = x2.

4. (10 marks) Let x, y ∈ R. Prove that

if |2x+ y| = |x+ 2y|, then |xy| = x2.

Proof. Let x, y ∈ R. Assume that |2x+ y| = |x+ 2y|. Then

|2x+ y|2 = |x+ 2y|2

(2x+ y)2 = (x+ 2y)2

4x2 + 4xy + y2 = x2 + 4xy + 4y2

3x2 = 3y2

x2 = y2
√
x2 =

√
y2

|x| = |y|

It implies that
|xy| = |x||y| = |y||y| = |y|2 = y2.
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No.3
1. (10 marks) Let A =

{
1− n

n2 + 1
: n ∈ N

}
.

What are supremum and infimum of A ? Verify (proof) your answers.

Solution. Consider
A =

{
1

2
,
3

5
,
7

10
, ...

}
Claim that infA = 1

2 and supA = 1.

Proof. We will prove that infA = 1
2
.

Let n ∈ N. By the fact that (n− 1)2 ≥ 0,

n2 − 2n+ 1 ≥ 0

n2 + 1 ≥ 2n

1

2
≥ n

n2 + 1

−1

2
≤ − n

n2 + 1

1− 1

2
≤ 1− n

n2 + 1
1

2
≤ 1− n

n2 + 1

Thus, 1
2 is a lower bound of A.

Let ℓ0 be a lower bound of A. Then

ℓ0 ≤ 1− n

n2 + 1
for all n ∈ A

Since 1 ∈ N, 1
2 = 1− 1

12+1
. Thus, ℓ0 ≤ 1

2 .

Proof. We will prove that supA = 1.
Let n ∈ N. Then n

n2 + 1
≥ 0. So, − n

n2 + 1
≤ 0. Thus,

1− n

n2 + 1
≤ 1.

So, 1 is an upper bound of A.
Let u be an upper bound of A such that u < 1. So, 1− u > 0.
By Achimedean principle, there is n0 ∈ N such that 1

n0
< 1− u.

Since n2
0 + 1 ≥ n2

0,
1

n2
0 + 1

≤ 1

n2
0

. We ontain

n0

n2
0 + 1

≤ n0

n2
0

=
1

n0
< 1− u

Thus,
u < 1− n0

n2
0 + 1

.

So, u is not an upper bound of A. It is contradiction.
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2. (5 marks) Let A =

{
1− n

n2 + 2
: n ∈ N

}
.

What are supremum and infimum of A ? Verify (proof) your answers.

Solution. Consider
A =

{
2

3
,
8

11
,
7

9
, ...

}
Claim that infA = 2

3 and supA = 1.

Proof. We will prove that infA = 2
3
.

Let n ∈ N. Then n− 1 ≥ 0 > 1. So, (n− 1)2 ≥ (n− 1). We obtain

n2 − 2n+ 1 ≥ n− 1

n2 + 2 ≥ 3n

1

3
≥ n

n2 + 2

−1

3
≤ − n

n2 + 2

1− 1

3
≤ 1− n

n2 + 2
2

3
≤ 1− n

n2 + 2

Thus, 2
3 is a lower bound of A.

Let ℓ0 be a lower bound of A. Then

ℓ0 ≤ 1− n

n2 + 2
for all n ∈ A

Since 1 ∈ N, 1
2 = 1− 1

12+2
. Thus, ℓ0 ≤ 2

3 .

Proof. We will prove that supA = 1.
Let n ∈ N. Then n

n2 + 2
≥ 0. So, − n

n2 + 2
≤ 0. Thus,

1− n

n2 + 2
≤ 1.

So, 1 is an upper bound of A.
Let u be an upper bound of A such that u < 1. So, 1− u > 0.
By Achimedean principle, there is n0 ∈ N such that 1

n0
< 1− u.

Since n2
0 + 2 ≥ n2

0,
1

n2
0 + 2

≤ 1

n2
0

. We ontain

n0

n2
0 + 2

≤ n0

n2
0

=
1

n0
< 1− u

Thus,
u < 1− n0

n2
0 + 2

.

So, u is not an upper bound of A. It is contradiction.
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3. (5 marks) Let A =

{
2− n

n2 + 1
: n ∈ N

}
.

What are supremum and infimum of A ? Verify (proof) your answers.

Solution. Consider
A =

{
3

2
,
8

5
,
17

10
, ...

}
Claim that infA = 3

2 and supA = 2.

Proof. We will prove that infA = 3
2
.

Let n ∈ N. By the fact that (n− 1)2 ≥ 0,

n2 − 2n+ 1 ≥ 0

n2 + 1 ≥ 2n

1

2
≥ n

n2 + 1

−1

2
≤ − n

n2 + 1

2− 1

2
≤ 2− n

n2 + 1
3

2
≤ 2− n

n2 + 1

Thus, 3
2 is a lower bound of A.

Let ℓ0 be a lower bound of A. Then

ℓ0 ≤ 2− n

n2 + 1
for all n ∈ A

Since 1 ∈ N, 1
2 = 2− 1

12+1
. Thus, ℓ0 ≤ 3

2 .

Proof. We will prove that supA = 2.
Let n ∈ N. Then n

n2 + 1
≥ 0. So, − n

n2 + 1
≤ 0. Thus,

2− n

n2 + 1
≤ 2.

So, 2 is an upper bound of A.
Let u be an upper bound of A such that u < 2. So, 2− u > 0.
By Achimedean principle, there is n0 ∈ N such that 1

n0
< 2− u.

Since n2
0 + 1 ≥ n2

0,
1

n2
0 + 1

≤ 1

n2
0

. We ontain

n0

n2
0 + 1

≤ n0

n2
0

=
1

n0
< 2− u

Thus,
u < 2− n0

n2
0 + 1

.

So, u is not an upper bound of A. It is contradiction.
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4. (5 marks) Let A =

{
2− n

n2 + 2
: n ∈ N

}
.

What are supremum and infimum of A ? Verify (proof) your answers.

Solution. Consider
A =

{
5

3
,
19

11
,
16

9
, ...

}
Claim that infA = 5

3 and supA = 2.

Proof. We will prove that infA = 5
3
.

Let n ∈ N. Then n− 1 ≥ 0 > 1. So, (n− 1)2 ≥ (n− 1). We obtain

n2 − 2n+ 1 ≥ n− 1

n2 + 2 ≥ 3n

1

3
≥ n

n2 + 2

−1

3
≤ − n

n2 + 2

2− 1

3
≤ 2− n

n2 + 2
5

3
≤ 2− n

n2 + 2

Thus, 5
3 is a lower bound of A.

Let ℓ0 be a lower bound of A. Then

ℓ0 ≤ 2− n

n2 + 2
for all n ∈ A

Since 1 ∈ N, 1
2 = 2− 1

12+2
. Thus, ℓ0 ≤ 5

3 .

Proof. We will prove that supA = 2.
Let n ∈ N. Then n

n2 + 2
≥ 0. So, − n

n2 + 2
≤ 0. Thus,

2− n

n2 + 2
≤ 2.

So, 2 is an upper bound of A.
Let u be an upper bound of A such that u < 2. So, 2− u > 0.
By Achimedean principle, there is n0 ∈ N such that 1

n0
< 2− u.

Since n2
0 + 2 ≥ n2

0,
1

n2
0 + 2

≤ 1

n2
0

. We ontain

n0

n2
0 + 2

≤ n0

n2
0

=
1

n0
< 2− u

Thus,
u < 2− n0

n2
0 + 2

.

So, u is not an upper bound of A. It is contradiction.
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No.4
1. (10 marks) Use definition to prove that

lim
n→∞

n(n+ 2)

n2 + 1
exists.

Proof. Let ε > 0. Then ε

2
> 0 . By Archimedean principle, there is an N ∈ N such that 1

N
<

ε

2
.

Let n ∈ N such that n ≥ N . Then 1

n
≤ 1

N
. Since 0 < 2n− 1 < 2n and n2 + 1 > n2,

2n− 1

n2 + 1
<

2n− 1

n2
<

2n

n2
=

2

n
.

Hence, ∣∣∣∣n(n+ 2)

n2 + 1
− 1

∣∣∣∣ = ∣∣∣∣(n2 + 2n)− (n2 + 1)

n2 + 1

∣∣∣∣
=

2n− 1

n2 + 1
<

2

n
≤ 2

N
< ε.

Thus, lim
n→∞

n(n+ 2)

n2 + 1
= 1.

2. (10 marks) Use definition to prove that

lim
n→∞

n(n+ 3)

n2 + 2
exists.

Proof. Let ε > 0. Then ε

3
> 0 . By Archimedean principle, there is an N ∈ N such that 1

N
<

ε

3
.

Let n ∈ N such that n ≥ N . Then 1

n
≤ 1

N
. Since 0 < 3n− 2 < 3n and n2 + 2 > n2,

3n− 2

n2 + 2
<

3n− 2

n2
<

3n

n2
=

3

n
.

Hence, ∣∣∣∣n(n+ 3)

n2 + 2
− 1

∣∣∣∣ = ∣∣∣∣(n2 + 3n)− (n2 + 2)

n2 + 2

∣∣∣∣
=

3n− 2

n2 + 2
<

3

n
≤ 3

N
< ε.

Thus, lim
n→∞

n(n+ 3)

n2 + 2
= 1.
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3. (10 marks) Use definition to prove that

lim
n→∞

n(n+ 3)

n2 + 1
exists.

Proof. Let ε > 0. Then ε

3
> 0 . By Archimedean principle, there is an N ∈ N such that 1

N
<

ε

3
.

Let n ∈ N such that n ≥ N . Then 1

n
≤ 1

N
. Since 0 < 3n− 1 < 3n and n2 + 1 > n2,

3n− 1

n2 + 1
<

3n− 1

n2
<

3n

n2
=

3

n
.

Hence, ∣∣∣∣n(n+ 3)

n2 + 1
− 1

∣∣∣∣ = ∣∣∣∣(n2 + 3n)− (n2 + 1)

n2 + 1

∣∣∣∣
=

3n− 1

n2 + 1
<

3

n
≤ 3

N
< ε.

Thus, lim
n→∞

n(n+ 3)

n2 + 1
= 1.

4. (10 marks) Use definition to prove that

lim
n→∞

n(n+ 5)

n2 + 2
exists.

Proof. Let ε > 0. Then ε

2
> 0 . By Archimedean principle, there is an N ∈ N such that 1

N
<

ε

2
.

Let n ∈ N such that n ≥ N . Then 1

n
≤ 1

N
. Since 0 < 5n− 2 < 5n and n2 + 2 > n2,

5n− 2

n2 + 2
<

5n− 2

n2
<

5n

n2
=

5

n
.

Hence, ∣∣∣∣n(n+ 5)

n2 + 2
− 1

∣∣∣∣ = ∣∣∣∣(n2 + 5n)− (n2 + 2)

n2 + 2

∣∣∣∣
=

5n− 2

n2 + 2
<

5

n
≤ 5

N
< ε.

Thus, lim
n→∞

n(n+ 5)

n2 + 2
= 1.
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No.5
1. (10 marks) Assume that {xn} is a convergent sequence in R. Prove that

lim
n→∞

(xn − xn+1) = 0.

Proof. Assume that xn → a as n → ∞ for some a ∈ R.
Let ε > 0. Then there is an N ∈ N sucth that

for all n ≥ N , it implies that |xn − a| < ε

2
. ... (∗)

Let n ∈ N such that n ≥ N . Then n+ 1 > n ≥ N . So, n and n+ 1 satisfy (∗). We obtain

|xn − xn+1 − 0| = |(xn − a)− (xn+1 − a)|
≤ |xn − a|+ |xn+1 − a|

<
ε

2
+

ε

2
= ε.

2. (10 marks) Assume that {xn} is a convergent sequence in R. Prove that

lim
n→∞

(xn − xn+2) = 0.

Proof. Assume that xn → a as n → ∞ for some a ∈ R.
Let ε > 0. Then there is an N ∈ N sucth that

for all n ≥ N , it implies that |xn − a| < ε

2
. ... (∗)

Let n ∈ N such that n ≥ N . Then n+ 2 > n ≥ N . So, n and n+ 2 satisfy (∗). We obtain

|xn − xn+2 − 0| = |(xn − a)− (xn+2 − a)|
≤ |xn − a|+ |xn+2 − a|

<
ε

2
+

ε

2
= ε.
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3. (10 marks) Assume that {xn} is a convergent sequence in R. Prove that

lim
n→∞

(xn − xn+3) = 0.

Proof. Assume that xn → a as n → ∞ for some a ∈ R.
Let ε > 0. Then there is an N ∈ N sucth that

for all n ≥ N , it implies that |xn − a| < ε

2
. ... (∗)

Let n ∈ N such that n ≥ N . Then n+ 3 > n ≥ N . So, n and n+ 3 satisfy (∗). We obtain

|xn − xn+3 − 0| = |(xn − a)− (xn+3 − a)|
≤ |xn − a|+ |xn+3 − a|

<
ε

2
+

ε

2
= ε.

4. (10 marks) Assume that {xn} is a convergent sequence in R. Prove that

lim
n→∞

(xn − xn+4) = 0.

Proof. Assume that xn → a as n → ∞ for some a ∈ R.
Let ε > 0. Then there is an N ∈ N sucth that

for all n ≥ N , it implies that |xn − a| < ε

2
. ... (∗)

Let n ∈ N such that n ≥ N . Then n+ 4 > n ≥ N . So, n and n+ 4 satisfy (∗). We obtain

|xn − xn+4 − 0| = |(xn − a)− (xn+4 − a)|
≤ |xn − a|+ |xn+4 − a|

<
ε

2
+

ε

2
= ε.
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No.6
1. (10 marks) Let {an} be a sequence in R such that there is an N ∈ N satisfying the statement :

if n,m ≥ N , then |xn − xm| < 1

k
for all k ∈ N.

Prove that {an} converges.
Hint: Show that {an} is Cauchy.

Proof. Let {an} be a sequence in R such that there is an N ∈ N satisfying the statement :

if n,m ≥ N , then |xn − xm| < 1

k
for all k ∈ N. ... (∗)

Let ε > 0. Let n,m ∈ N such that n,m ≥ N . Then (∗) holds, i.e.,

|xn − xm| < 1

k
for all k ∈ N ... (∗∗)

Since ε > 0, by Archimedean property, there is d ∈ N such that 1

d
< ε. From (∗∗),

|xn − xm| < 1

d
< ε.

because d ∈ N. So, {xn} is Cauchy. We conclude that {an} converges.

23



2. (10 marks) Let {an} be a sequence in R such that there is an N ∈ N satisfying the statement :

if n,m ≥ N , then |xn − xm| < 1

k2
for all k ∈ N.

Prove that {an} converges.
Hint: Show that {an} is Cauchy.

Proof. Let {an} be a sequence in R such that there is an N ∈ N satisfying the statement :

if n,m ≥ N , then |xn − xm| < 1

k2
for all k ∈ N. ... (∗)

Let ε > 0. Let n,m ∈ N such that n,m ≥ N . Then (∗) holds, i.e.,

|xn − xm| < 1

k2
for all k ∈ N ... (∗∗)

Since
√
ε > 0, by Archimedean property, there is d ∈ N such that 1

d
<

√
ε. Then 1

d2
< ε.

From (∗∗),
|xn − xm| < 1

d2
< ε.

because d ∈ N. So, {xn} is Cauchy. We conclude that {an} converges.
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3. (10 marks) Let {an} be a sequence in R such that there is an N ∈ N satisfying the statement :

if n,m ≥ N , then |xn − xm| < 1

k3
for all k ∈ N.

Prove that {an} converges.
Hint: Show that {an} is Cauchy.

Proof. Let {an} be a sequence in R such that there is an N ∈ N satisfying the statement :

if n,m ≥ N , then |xn − xm| < 1

k3
for all k ∈ N. ... (∗)

Let ε > 0. Let n,m ∈ N such that n,m ≥ N . Then (∗) holds, i.e.,

|xn − xm| < 1

k3
for all k ∈ N ... (∗∗)

Since 3
√
ε > 0, by Archimedean property, there is d ∈ N such that 1

d
< 3

√
ε. Then 1

d3
< ε.

From (∗∗),
|xn − xm| < 1

d3
< ε.

because d ∈ N. So, {xn} is Cauchy. We conclude that {an} converges.
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4. (10 marks) Let {an} be a sequence in R such that there is an N ∈ N satisfying the statement :

if n,m ≥ N , then |xn − xm| < 1

k4
for all k ∈ N.

Prove that {an} converges.
Hint: Show that {an} is Cauchy.

Proof. Let {an} be a sequence in R such that there is an N ∈ N satisfying the statement :

if n,m ≥ N , then |xn − xm| < 1

k4
for all k ∈ N. ... (∗)

Let ε > 0. Let n,m ∈ N such that n,m ≥ N . Then (∗) holds, i.e.,

|xn − xm| < 1

k4
for all k ∈ N ... (∗∗)

Since 4
√
ε > 0, by Archimedean property, there is d ∈ N such that 1

d
< 4

√
ε. Then 1

d4
< ε.

From (∗∗),
|xn − xm| < 1

d4
< ε.

because d ∈ N. So, {xn} is Cauchy. We conclude that {an} converges.
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No.7
1. (10 marks) Let F be a closed set. Assume that {xn} is a sequence in F (it means that xn ∈ F for all

n ∈ N). Prove that

if xn → a as n → ∞, then a ∈ F .

Proof. Let F be a closed set. Assume that {xn} is a sequence in F . We will prove by contradiction.
Assume that xn → a as n → ∞ and a /∈ F . Then a ∈ F c.
Since F c is open, there δ > 0 such that (a− δ, a+ δ) ⊆ F c. So,

(a− δ, a+ δ) ∩ F = ∅. ... (∗)

From xn → a as n → ∞, (ε = δ) there is an N ∈ N such that n ≥ N

|xn − a| < δ.

Then xn ∈ (a− δ, a+ δ). But xn ∈ F , this is contradiction to (∗).
Thus, a ∈ F .
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No.8
1. (10 marks) Use definition to prove that

lim
x→1

(
x+

1

x

)
= 2.

Proof. Let ε > 0. Choose δ = min
{
0.5,

√
ε

2

}
. Suppose that 0 < |x− 1| < δ. Then 0 < |x− 1| < 0.5,

0.5 < x < 1 or 1 < x < 1.5. So,

0.5 < |x| < 1.

We obtain 1

|x|
< 2. Then,

∣∣∣∣x+
1

x
− 2

∣∣∣∣ = ∣∣∣∣x2 − 2x+ 1

x

∣∣∣∣ = ∣∣∣∣(x− 1)2

x

∣∣∣∣
=

1

|x|
· |x− 1|2

< 2 · δ2 < 2 · ε
2
= ε.

Therefore, lim
x→1

(
x+

1

x

)
= 2.

2. (10 marks) Use definition to prove that

lim
x→−1

(
x+

1

x

)
= 0.

Proof. Let ε > 0. Choose δ = min
{
0.5,

ε

2

}
. Suppose that 0 < |x+ 1| < δ. Then 0 < |x+ 1| < 0.5,

−1.5 < x < −1 or −1 < x < −0.5. So,

0.5 < |x| < 1.5.

We obtain 1

|x|
< 2. Then,

∣∣∣∣x+
1

x
− 0

∣∣∣∣ = ∣∣∣∣x+ 1

x

∣∣∣∣ = 1

|x|
· |x+ 1|

< 2 · δ < 2 · ε
2
= ε.

Therefore, lim
x→−1

(
x+

1

x

)
= 0.

28



3. (10 marks) Use definition to prove that

lim
x→2

(
x+

2

x

)
= 3.

Proof. Let ε > 0. Choose δ = min
{
1,

ε

4

}
. Suppose that 0 < |x− 2| < δ. Then 0 < |x− 2| < 1,

1 < x < 2 or 2 < x < 3. So,

1 < |x| < 3.

We obtain |x| < 3 and 1

|x|
< 1. Then,

∣∣∣∣x+
2

x
− 3

∣∣∣∣ = ∣∣∣∣x2 − 3x+ 2

x

∣∣∣∣ = ∣∣∣∣(x− 1)(x− 2)

x

∣∣∣∣
=

1

|x|
· |x− 1||x− 2|

= 1(|x|+ 1)δ < (3 + 1)δ

< 4 · ε
4
= ε.

Therefore, lim
x→2

(
x+

2

x

)
= 3.

4. (10 marks) Use definition to prove that

lim
x→−2

(
x+

2

x

)
= −3.

Proof. Let ε > 0. Choose δ = min
{
1,

ε

4

}
. Suppose that 0 < |x− 2| < δ. Then 0 < |x+ 2| < 1,

−3 < x < −2 or −2 < x < −1. So,

1 < |x| < 3.

We obtain |x| < 3 and 1

|x|
< 1. Then,

∣∣∣∣x+
2

x
+ 3

∣∣∣∣ = ∣∣∣∣x2 + 3x+ 2

x

∣∣∣∣ = ∣∣∣∣(x+ 1)(x+ 2)

x

∣∣∣∣
=

1

|x|
· |x+ 1||x+ 2|

= 1(|x|+ 1)δ < (3 + 1)δ

< 4 · ε
4
= ε.

Therefore, lim
x→−2

(
x+

2

x

)
= −3.
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No.9
1. (10 marks) Let f be a real value function. Assume that

lim
x→1+

(x+ f(x)) = +∞.

Prove that f(x) → +∞ as x → 1+.

Proof. Let f be a real value function. Assume that

lim
x→1+

(x+ f(x)) = +∞.

Let M > 0. There is a δ1 > 0 such that 0 < x− 1 < δ1. It implies that

x+ f(x) > M + 2. (∗)

Chose δ = min{1, δ1}. Let x ∈ R such that 0 < x− 1 < δ.
Then 0 < x− 1 < 1 or 1 < x < 2. So, −x > −2 and x satisfies (∗).
We obtain

f(x) = (x+ f(x))− x > (M + 2)− 2 = M.

Thus, f(x) → +∞ as x → 1+.

2. (10 marks) Let f be a real value function. Assume that

lim
x→1−

(x+ f(x)) = +∞.

Prove that f(x) → +∞ as x → 1−.

Proof. Let f be a real value function. Assume that

lim
x→1−

(x+ f(x)) = +∞.

Let M > 0. There is a δ1 > 0 such that −δ1 < x− 1 < 0. It implies that

x+ f(x) > M + 1. (∗)

Chose δ = min{1, δ1}. Let x ∈ R such that −δ < x− 1 < 0.
Then −1 < x− 1 < 0 or 0 < x < 1. So, −x > −1 and x satisfies (∗).
We obtain

f(x) = (x+ f(x))− x > (M + 1)− 1 = M.

Thus, f(x) → +∞ as x → 1−.
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3. (10 marks) Let f be a real value function. Assume that

lim
x→1+

(x+ f(x)) = −∞.

Prove that f(x) → −∞ as x → 1+.

Proof. Let f be a real value function. Assume that

lim
x→1+

(x+ f(x)) = −∞.

Let M < 0. There is a δ1 > 0 such that 0 < x− 1 < δ1. It implies that

x+ f(x) < M. (∗)

Chose δ = min{1, δ1}. Let x ∈ R such that 0 < x− 1 < δ.
Then 0 < x− 1 < 1 or 1 < x < 2. So, −x < −1 and x satisfies (∗).
We obtain

f(x) = (x+ f(x))− x < M − 1 < M.

Thus, f(x) → −∞ as x → 1+.

4. (10 marks) Let f be a real value function. Assume that

lim
x→1−

(x+ f(x)) = −∞.

Prove that f(x) → −∞ as x → 1−.

Proof. Let f be a real value function. Assume that

lim
x→1−

(x+ f(x)) = −∞.

Let M < 0. There is a δ1 > 0 such that −δ1 < x− 1 < 0. It implies that

x+ f(x) < M. (∗)

Chose δ = min{1, δ1}. Let x ∈ R such that −δ < x− 1 < 0.
Then −1 < x− 1 < 0 or 0 < x < 1. So, −x < 0 and x satisfies (∗).
We obtain

f(x) = (x+ f(x))− x < M + 0 = M.

Thus, f(x) → −∞ as x → 1−.
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No.10
1. (10 marks) Use definition (sequence) to prove that

lim
n→∞

(
1−

√
n
)
= −∞.

Proof. Let M ∈ R.
Case M ≥ 1. It is easy to see that

1−
√
n ≤ 0 < 1 ≤ M for all n ∈ N.

Case M < 1. Then 1−M > 0. By Arichimedean property, there is an N ∈ N such that (1−M)2 < N.
It is equivalent to

1−
√
N < M.

Let n ∈ N such that n ≥ N . Then
√
n ≥

√
N . So, −

√
n ≤ −

√
N . We obtain

1−
√
n ≤ 1−

√
N < M.

2. (10 marks) Use definition (sequence) to prove that

lim
n→∞

(√
n− 1

)
= ∞.

Proof. Let M ∈ R.
Case M ≤ −1. It is easy to see that

√
n− 1 ≥ 0 > −1 ≥ M for all n ∈ N.

Case M > −1. Then M + 1 > 0. By Arichimedean property, there is an N ∈ N such that (1 +M)2 < N.
It is equivalent to √

N − 1 > M.

Let n ∈ N such that n ≥ N . Then
√
n ≥

√
N . We obtain

√
n− 1 ≥

√
N − 1 > M.
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3. (10 marks) Use definition (function) to prove that

lim
x→∞

(√
x2 + 1− x

)
= 0.

Proof. Let ε > 0. Choose M =
1

ε
. Then M > 0.

Let x ∈ R such that x > M > 0. It follows that 1

x
<

1

M
. We obtain

∣∣∣√x2 + 1− x− 0
∣∣∣ = ∣∣∣∣∣(√x2 + 1− x) ·

√
x2 + 1 + x√
x2 + 1 + x

∣∣∣∣∣
=

∣∣∣∣ 1√
x2 + 1 + x

∣∣∣∣
<

1

x
∵
√

x2 + 1 + x > x

<
1

M
= ε

Thus, lim
x→∞

(√
x2 + 1− x

)
= 0.

4. (10 marks) Use definition (function) to prove that

lim
x→−∞

(√
x2 + 1 + x

)
= 0.

Proof. Let ε > 0. Choose M = −1

ε
. Then M < 0.

Let x ∈ R such that x < M < 0. Then −x > −M > 0. It follows that 1

−x
<

1

−M
. We obtain

∣∣∣√x2 + 1 + x− 0
∣∣∣ = ∣∣∣∣∣(√x2 + 1 + x) ·

√
x2 + 1− x√
x2 + 1− x

∣∣∣∣∣
=

∣∣∣∣ 1√
x2 + 1− x

∣∣∣∣
<

1

−x
∵
√

x2 + 1− x > −x

<
1

−M
= ε

Thus, lim
x→−∞

(√
x2 + 1 + x

)
= 0.
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