
QUIZ 1 : MAC3309 Mathematical Analysis
Topic Field axioms and Completeness axioms Score 10 marks
Time Wendsday 15 Dec 2021, 3rd Week, Semester 2/2021
Teacher Assistant Professor Thanatyod Jampawai, Ph.D., Division of Mathematics,

Faculty of Education, Suan Sunandha Rajabhat University

No.1
1. (5 marks) Let x, y ∈ R. Prove that

if |x+ y| = |x|+ |y|, then xy ≥ 0.

2. (5 marks) Let x, y ∈ R. Prove that

if |x− y| = |x|+ |y|, then xy ≤ 0.

No.2
1. (5 marks) Let A =

{
1 +

1

n2
: n ∈ N

}
. What are supremum and infimum of A ?

Verify (proof) your answers.

2. (5 marks) Let A =

{
2 +

1

n2
: n ∈ N

}
. What are supremum and infimum of A ?

Verify (proof) your answers.

3. (5 marks) Let A =

{
3 +

1

n2
: n ∈ N

}
. What are supremum and infimum of A ?

Verify (proof) your answers.

4. (5 marks) Let A =

{
1 +

2

n2
: n ∈ N

}
. What are supremum and infimum of A ?

Verify (proof) your answers.

5. (5 marks) Let A =

{
1 +

3

n2
: n ∈ N

}
. What are supremum and infimum of A ?

Verify (proof) your answers.
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Solution QUIZ 1 : MAC3309 Mathematical Analysis
Topic Field axioms and Completeness axioms Score 10 marks
Time Wendsday 15 Dec 2021, 3rd Week, Semester 2/2021
Teacher Assistant Professor Thanatyod Jampawai, Ph.D., Division of Mathematics,

Faculty of Education, Suan Sunandha Rajabhat University

No.1
1. (5 marks) Let x, y ∈ R. Prove that

if |x+ y| = |x|+ |y|, then xy ≥ 0.

Proof. Let x, y ∈ R. Assume that |x+ y| = |x|+ |y|. Then

|x+ y|2 = (|x|+ |y|)2

(x+ y)2 = |x|2 + 2|x||y|+ |y|2

x2 + 2xy + y2 = x2 + 2|xy|+ y2

xy = |xy|

By definition of absolute value, it implies that xy ≥ 0.

2. (5 marks) Let x, y ∈ R. Prove that

if |x− y| = |x|+ |y|, then xy ≤ 0.

Proof. Let x, y ∈ R. Assume that |x− y| = |x|+ |y|. Then

|x− y|2 = (|x|+ |y|)2

(x− y)2 = |x|2 + 2|x||y|+ |y|2

x2 − 2xy + y2 = x2 + 2|xy|+ y2

−xy = |xy|

By definition of absolute value, it implies that xy ≤ 0.
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No.2
1. (5 marks) Let A =

{
1 +

1

n2
: n ∈ N

}
. What are supremum and infimum of A ?

Verify (proof) your answers.

Solution. Consider
A =

{
2,

5

4
,
10

9
,
17

16
, ...

}
Claim that infA = 1 and supA = 2.

Proof. We will prove that infA = 1.
Let n ∈ N. Then n2 ≥ 0. So, 1

n2
≥ 0. Thus,

1 ≤1 +
1

n2

Thus, 1 is a lower bound of A.
Let ℓ0 be a lower bound of A such that 1 < ℓ0. Then

√
ℓ0 − 1 > 0.

By Achimedean principle, there is n0 ∈ N such that

1

n0
<

√
ℓ0 − 1

1

n2
0

< ℓ0 − 1

1 +
1

n2
0

< ℓ0

So, ℓ0 is not a lower bound of A. It is contradiction.

Proof. We will prove that supA = 2.
Let n ∈ N. Then n2 ≥ 1. So, 1

n2
≤ 1. Thus,

1 +
1

n2
≤ 2

Thus, 2 is an upper bound of A.
Let u be an upper bound of A. Then

1 +
1

n2
≤ u for all n ∈ N

Since 1 ∈ N, 2 = 1 +
1

12
∈ A. Thus, 2 ≤ u.
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2. (5 marks) Let A =

{
2 +

1

n2
: n ∈ N

}
. What are supremum and infimum of A ?

Verify (proof) your answers.

Solution. Consider
A =

{
3,

9

4
,
19

9
,
33

16
, ...

}
Claim that infA = 2 and supA = 3.

Proof. We will prove that infA = 2.
Let n ∈ N. Then n2 ≥ 0. So, 1

n2
≥ 0. Thus,

2 ≤2 +
1

n2

Thus, 2 is a lower bound of A.
Let ℓ0 be a lower bound of A such that 2 < ℓ0. Then

√
ℓ0 − 2 > 0.

By Achimedean principle, there is n0 ∈ N such that

1

n0
<

√
ℓ0 − 2

1

n2
0

< ℓ0 − 2

2 +
1

n2
0

< ℓ0

So, ℓ0 is not a lower bound of A. It is contradiction.

Proof. We will prove that supA = 3.
Let n ∈ N. Then n2 ≥ 1. So, 1

n2
≤ 1. Thus,

2 +
1

n2
≤ 3

Thus, 3 is an upper bound of A.
Let u be an upper bound of A. Then

2 +
1

n2
≤ u for all n ∈ N

Since 1 ∈ N, 3 = 2 +
1

12
∈ A. Thus, 3 ≤ u.
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3. (5 marks) Let A =

{
3 +

1

n2
: n ∈ N

}
. What are supremum and infimum of A ?

Verify (proof) your answers.

Solution. Consider
A =

{
4,

13

4
,
28

9
,
49

16
, ...

}
Claim that infA = 3 and supA = 4.

Proof. We will prove that infA = 3.
Let n ∈ N. Then n2 ≥ 0. So, 1

n2
≥ 0. Thus,

3 ≤3 +
1

n2

Thus, 3 is a lower bound of A.
Let ℓ0 be a lower bound of A such that 3 < ℓ0. Then

√
ℓ0 − 3 > 0.

By Achimedean principle, there is n0 ∈ N such that

1

n0
<

√
ℓ0 − 3

1

n2
0

< ℓ0 − 3

3 +
1

n2
0

< ℓ0

So, ℓ0 is not a lower bound of A. It is contradiction.

Proof. We will prove that supA = 4.
Let n ∈ N. Then n2 ≥ 1. So, 1

n2
≤ 1. Thus,

3 +
1

n2
≤ 4

Thus, 4 is an upper bound of A.
Let u be an upper bound of A. Then

3 +
1

n2
≤ u for all n ∈ N

Since 1 ∈ N, 4 = 3 +
1

12
∈ A. Thus, 4 ≤ u.
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4. (5 marks) Let A =

{
1 +

2

n2
: n ∈ N

}
. What are supremum and infimum of A ?

Verify (proof) your answers.

Solution. Consider
A =

{
3,

3

2
,
11

9
,
9

8
, ...

}
Claim that infA = 1 and supA = 3.

Proof. We will prove that infA = 1.
Let n ∈ N. Then n2 ≥ 0. So, 2

n2
≥ 0. Thus,

1 ≤1 +
2

n2

Thus, 1 is a lower bound of A.
Let ℓ0 be a lower bound of A such that 1 < ℓ0. Then

√
ℓ0−1
2 > 0.

By Achimedean principle, there is n0 ∈ N such that

1

n0
<

√
ℓ0 − 1

2
1

n2
0

<
ℓ0 − 1

2

2

n2
0

< ℓ0 − 1

1 +
2

n2
0

< ℓ0

So, ℓ0 is not a lower bound of A. It is contradiction.

Proof. We will prove that supA = 3.
Let n ∈ N. Then n2 ≥ 1. So, 1

n2
≤ 1. Thus,

2

n2
≤ 2

1 +
2

n2
≤ 3

Thus, 3 is an upper bound of A.
Let u be an upper bound of A. Then

1 +
2

n2
≤ u for all n ∈ N

Since 1 ∈ N, 3 = 1 +
2

12
∈ A. Thus, 3 ≤ u.
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5. (5 marks) Let A =

{
1 +

3

n2
: n ∈ N

}
. What are supremum and infimum of A ?

Verify (proof) your answers.
Solution. Consider

A =

{
4,

7

4
,
4

3
,
19

16
, ...

}
Claim that infA = 1 and supA = 4.

Proof. We will prove that infA = 1.
Let n ∈ N. Then n2 ≥ 0. So, 3

n2
≥ 0. Thus,

1 ≤1 +
3

n2

Thus, 1 is a lower bound of A.
Let ℓ0 be a lower bound of A such that 1 < ℓ0. Then

√
ℓ0−1
3 > 0.

By Achimedean principle, there is n0 ∈ N such that

1

n0
<

√
ℓ0 − 1

3
1

n2
0

<
ℓ0 − 1

3

3

n2
0

< ℓ0 − 1

1 +
3

n2
0

< ℓ0

So, ℓ0 is not a lower bound of A. It is contradiction.

Proof. We will prove that supA = 4.
Let n ∈ N. Then n2 ≥ 1. So, 1

n2
≤ 1. Thus,

3

n2
≤ 3

1 +
3

n2
≤ 4

Thus, 4 is an upper bound of A.
Let u be an upper bound of A. Then

1 +
3

n2
≤ u for all n ∈ N

Since 1 ∈ N, 4 = 1 +
3

12
∈ A. Thus, 4 ≤ u.
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QUIZ 2 : MAC3309 Mathematical Analysis
Topic Limit of Sequences Score 10 marks
Time Thurday 6 Jan 2022, 5rd Week, Semester 2/2021
Teacher Assistant Professor Thanatyod Jampawai, Ph.D., Division of Mathematics,

Faculty of Education, Suan Sunandha Rajabhat University

No.1
1. (5 marks) Use definition to prove that

lim
n→∞

n2 − 1

n2 + 1
exists.

2. (5 marks) Use definition to prove that

lim
n→∞

n2 − 2

n2 + 2
exists.

3. (5 marks) Use definition to prove that

lim
n→∞

n2 − 1

n2 + 3
exists.

4. (5 marks) Use definition to prove that

lim
n→∞

n2 − 2

n2 + 4
exists.

5. (5 marks) Use definition to prove that

lim
n→∞

n2 − 1

n2 + 5
exists.

No.2
1. (5 marks) Use definition to prove that

lim
n→∞

√
n+ 1 = +∞.

2. (5 marks) Use definition to prove that

lim
n→∞

√
n+ 2 = +∞.

3. (5 marks) Use definition to prove that

lim
n→∞

3
√
2− n = −∞.

4. (5 marks) Use definition to prove that

lim
n→∞

3
√
1− n = −∞.
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Solution QUIZ 2 : MAC3309 Mathematical Analysis
Topic Limit of Sequences Score 10 marks
Time Thurday 6 Jan 2022, 5rd Week, Semester 2/2021
Teacher Assistant Professor Thanatyod Jampawai, Ph.D., Division of Mathematics,

Faculty of Education, Suan Sunandha Rajabhat University

No.1
1. (5 marks) Use definition to prove that

lim
n→∞

n2 − 1

n2 + 1
exists.

Proof. Let ε > 0. Then
√

ε

2
> 0. By Archimedean principle, there is an N ∈ N such that 1

N
<

√
ε

2
.

It is equivalent to
2

N2
< ε.

Let n ∈ N such that n ≥ N . Then n2 ≥ N2. We obtain 2

n2
≤ 2

N2
. Since n2 + 1 > n2, 2

n2 + 1
<

2

n2
.

Hence, ∣∣∣∣n2 − 1

n2 + 1
− 1

∣∣∣∣ = ∣∣∣∣(n2 − 1)− (n2 + 1)

n2 + 1

∣∣∣∣
=

2

n2 + 1
<

2

n2
≤ 2

N2
< ε.

Thus, lim
n→∞

n2 − 1

n2 + 1
= 1.

2. (5 marks) Use definition to prove that

lim
n→∞

n2 − 2

n2 + 2
exists.

Proof. Let ε > 0. Then
√

ε

4
> 0. By Archimedean principle, there is an N ∈ N such that 1

N
<

√
ε

4
.

It is equivalent to
4

N2
< ε.

Let n ∈ N such that n ≥ N . Then n2 ≥ N2. We obtain 4

n2
≤ 4

N2
. Since n2 + 2 > n2, 4

n2 + 2
<

4

n2
.

Hence, ∣∣∣∣n2 − 2

n2 + 2
− 1

∣∣∣∣ = ∣∣∣∣(n2 − 2)− (n2 + 2)

n2 + 2

∣∣∣∣
=

4

n2 + 2
<

4

n2
≤ 4

N2
< ε.

Thus, lim
n→∞

n2 − 2

n2 + 2
= 1.
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3. (5 marks) Use definition to prove that

lim
n→∞

n2 − 1

n2 + 3
exists.

Proof. Let ε > 0. Then
√

ε

4
> 0. By Archimedean principle, there is an N ∈ N such that 1

N
<

√
ε

4
.

It is equivalent to
4

N2
< ε.

Let n ∈ N such that n ≥ N . Then n2 ≥ N2. We obtain 4

n2
≤ 4

N2
. Since n2 + 3 > n2, 4

n2 + 3
<

4

n2
.

Hence, ∣∣∣∣n2 − 1

n2 + 3
− 1

∣∣∣∣ = ∣∣∣∣(n2 − 1)− (n2 + 3)

n2 + 3

∣∣∣∣
=

4

n2 + 3
<

4

n2
≤ 4

N2
< ε.

Thus, lim
n→∞

n2 − 1

n2 + 3
= 1.

4. (5 marks) Use definition to prove that

lim
n→∞

n2 − 2

n2 + 4
exists.

Proof. Let ε > 0. Then
√

ε

6
> 0. By Archimedean principle, there is an N ∈ N such that 1

N
<

√
ε

6
.

It is equivalent to
6

N2
< ε.

Let n ∈ N such that n ≥ N . Then n2 ≥ N2. We obtain 6

n2
≤ 6

N2
. Since n2 + 4 > n2, 6

n2 + 4
<

6

n2
.

Hence, ∣∣∣∣n2 − 2

n2 + 4
− 1

∣∣∣∣ = ∣∣∣∣(n2 − 2)− (n2 + 4)

n2 + 4

∣∣∣∣
=

6

n2 + 4
<

6

n2
≤ 6

N2
< ε.

Thus, lim
n→∞

n2 − 2

n2 + 4
= 1.

5. (5 marks) Use definition to prove that

lim
n→∞

n2 − 1

n2 + 5
exists.

Proof. Let ε > 0. Then
√

ε

6
> 0. By Archimedean principle, there is an N ∈ N such that 1

N
<

√
ε

6
.

It is equivalent to
6

N2
< ε.

Let n ∈ N such that n ≥ N . Then n2 ≥ N2. We obtain 6

n2
≤ 6

N2
. Since n2 + 5 > n2, 6

n2 + 5
<

6

n2
.

Hence, ∣∣∣∣n2 − 1

n2 + 5
− 1

∣∣∣∣ = ∣∣∣∣(n2 − 1)− (n2 + 5)

n2 + 5

∣∣∣∣
=

6

n2 + 5
<

6

n2
≤ 6

N2
< ε.

Thus, lim
n→∞

n2 − 1

n2 + 5
= 1.
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No.2
1. (5 marks) Use definition to prove that

lim
n→∞

√
n+ 1 = +∞.

Proof. Let M ∈ R. By Arichimedean property, there is an N ∈ N such that M2 − 1 < N.
It is equivalent to √

N + 1 > M.

Let n ∈ N such that n ≥ N . Then n+ 1 ≥ N + 1. So,
√
n+ 1 ≥

√
N + 1. We obtain

√
n+ 1 ≥

√
N + 1 > M.

2. (5 marks) Use definition to prove that

lim
n→∞

√
n+ 2 = +∞.

Proof. Let M ∈ R. By Arichimedean property, there is an N ∈ N such that M2 − 2 < N.
It is equivalent to √

N + 2 > M.

Let n ∈ N such that n ≥ N . Then n+ 2 ≥ N + 2. So,
√
n+ 2 >

√
N + 2. We obtain

√
n+ 2 ≥

√
N + 2 > M.

3. (5 marks) Use definition to prove that

lim
n→∞

3
√
2− n = −∞.

Proof. Let M ∈ R. By Arichimedean property, there is an N ∈ N such that 2−M3 < N.
It is equivalent to

3
√
2−N < M.

Let n ∈ N such that n ≥ N . Then −n ≤ −N . So, 2− n ≤ 2−N . We obtain

3
√
2− n ≤ 3

√
2−N < M.

4. (5 marks) Use definition to prove that

lim
n→∞

3
√
1− n = −∞.

Proof. Let M ∈ R. By Arichimedean property, there is an N ∈ N such that 1−M3 < N.
It is equivalent to

3
√
1−N < M.

Let n ∈ N such that n ≥ N . Then −n ≤ −N . So, 1− n ≤ 1−N . We obtain

3
√
1− n ≤ 3

√
1−N < M.
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QUIZ 3-4 : MAC3309 Mathematical Analysis
Topic Continuity and Riemann Sum Score 20 marks
Time Thurday 10 Mar. 2022, 15rd Week, Semester 2/2021
Teacher Assistant Professor Thanatyod Jampawai, Ph.D., Division of Mathematics,

Faculty of Education, Suan Sunandha Rajabhat University

No.1
1. Use definition to prove that f(x) =

1

x2
is continuous at x = 1.

2. Use definition to prove that f(x) =
1

x2
is continuousat x = −1.

3. Use definition to prove that f(x) =
2

x2
is continuous at x = 1.

4. Use definition to prove that f(x) =
2

x2
is continuous at x = −1.

5. Use definition to prove that f(x) =
1

2x2
is continuous at x = 1.

6. Use definition to prove that f(x) =
1

2x2
is continuous x = −1.

No.2
1. Let f(x) = x2 − 1 where x ∈ [1, 2] and P =

{
1 +

j

n
: j = 0, 1, ..., n

}
be a partition of [1, 2]. Find I(f).

2. Let f(x) = x2 + 1 where x ∈ [1, 2] and P =

{
1 +

j

n
: j = 0, 1, ..., n

}
be a partition of [1, 2]. Find I(f).

3. Let f(x) = x2 − 2 where x ∈ [1, 2] and P =

{
1 +

j

n
: j = 0, 1, ..., n

}
be a partition of [1, 2]. Find I(f).

4. Let f(x) = x2 − 1 where x ∈ [2, 3] and P =

{
2 +

j

n
: j = 0, 1, ..., n

}
be a partition of [2, 3]. Find I(f).

5. Let f(x) = x2 + 1 where x ∈ [2, 3] and P =

{
2 +

j

n
: j = 0, 1, ..., n

}
be a partition of [2, 3]. Find I(f).

6. Let f(x) = x2 − 2 where x ∈ [2, 3] and P =

{
2 +

j

n
: j = 0, 1, ..., n

}
be a partition of [2, 3]. Find I(f).
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Solution QUIZ 3-4 : MAC3309 Mathematical Analysis
Topic Continuity and Riemann Sum Score 20 marks
Time Thurday 10 Mar. 2022, 15rd Week, Semester 2/2021
Teacher Assistant Professor Thanatyod Jampawai, Ph.D., Division of Mathematics,

Faculty of Education, Suan Sunandha Rajabhat University

No.1
1. Use definition to prove that f(x) =

1

x2
is continuous at x = 1.

Proof. Let ε > 0. Choose δ = min{0.5, ε
10} such that |x− 1| < δ. Then |x− 1| < 0.5. So,

−0.5 < x− 1 < 0.5.

We obtain

0.5 < x < 1.5 and 1.5 < x+ 1 < 2.5.

Thus, 1

|x|2
< 22 and |x+ 1| < 2.5. We obtain

|f(x)− f(1)| =
∣∣∣∣ 1x2 − 1

∣∣∣∣ = ∣∣∣∣1− x2

x2

∣∣∣∣ = ∣∣∣∣(1− x)(1 + x)

x2

∣∣∣∣
=

1

|x|2
· |x+ 1| · |x− 1| < 4(2.5)δ < 10 · ε

10
= ε.

Therefore, f is continuous at x = 1.

2. Use definition to prove that f(x) =
1

x2
is continuous at x = −1.

Proof. Let ε > 0. Choose δ = min{0.5, ε
10} such that |x+ 1| < δ. Then |x+ 1| < 0.5. So,

−0.5 < x+ 1 < 0.5.

We obtain

−1.5 < x < −0.5 and −2.5 < x− 1 < −1.5.

Thus, 1

|x|2
< 22 and |x− 1| < 2.5. We obtain

|f(x)− f(−1)| =
∣∣∣∣ 1x2 − 1

∣∣∣∣ = ∣∣∣∣1− x2

x2

∣∣∣∣ = ∣∣∣∣(1− x)(1 + x)

x2

∣∣∣∣
=

1

|x|2
· |x+ 1| · |x− 1| < 4(δ)2.5 < 10 · ε

10
= ε.

Therefore, f is continuous at x = −1.
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3. Use definition to prove that f(x) =
2

x2
is continuous at x = 1.

Proof. Let ε > 0. Choose δ = min{0.5, ε
20} such that |x− 1| < δ. Then |x− 1| < 0.5. So,

−0.5 < x− 1 < 0.5.

We obtain

0.5 < x < 1.5 and 1.5 < x+ 1 < 2.5.

Thus, 1

|x|2
< 22 and |x+ 1| < 2.5. We obtain

|f(x)− f(1)| =
∣∣∣∣ 2x2 − 2

∣∣∣∣ = ∣∣∣∣2− 2x2

x2

∣∣∣∣ = ∣∣∣∣2(1− x)(1 + x)

x2

∣∣∣∣
=

1

|x|2
· 2|x+ 1| · |x− 1| < 4(2.5)2δ < 20 · ε

20
= ε.

Therefore, f is continuous at x = 1.

4. Use definition to prove that f(x) =
2

x2
is continuous at x = −1.

Proof. Let ε > 0. Choose δ = min{0.5, ε
20} such that |x+ 1| < δ. Then |x+ 1| < 0.5. So,

−0.5 < x+ 1 < 0.5.

We obtain

−1.5 < x < −0.5 and −2.5 < x− 1 < −1.5.

Thus, 1

|x|2
< 22 and |x− 1| < 2.5. We obtain

|f(x)− f(−1)| =
∣∣∣∣ 2x2 − 2

∣∣∣∣ = ∣∣∣∣2− 2x2

x2

∣∣∣∣ = ∣∣∣∣2(1− x)(1 + x)

x2

∣∣∣∣
=

1

|x|2
· 2|x+ 1| · |x− 1| < 4(2δ)2.5 < 20 · ε

20
= ε.

Therefore, f is continuous at x = −1.
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5. Use definition to prove that f(x) =
1

2x2
is continuous at x = 1.

Proof. Let ε > 0. Choose δ = min{0.5, ε5} such that |x− 1| < δ. Then |x− 1| < 0.5. So,

−0.5 < x− 1 < 0.5.

We obtain

0.5 < x < 1.5 and 1.5 < x+ 1 < 2.5.

Thus, 1

|x|2
< 22 and |x+ 1| < 2.5. We obtain

|f(x)− f(1)| =
∣∣∣∣ 1

2x2
− 1

2

∣∣∣∣ = ∣∣∣∣1− x2

2x2

∣∣∣∣ = ∣∣∣∣(1− x)(1 + x)

2x2

∣∣∣∣
=

1

2|x|2
· |x+ 1| · |x− 1| < 2(2.5)δ < 5 · ε

5
= ε.

Therefore, f is continuous at x = 1.

6. Use definition to prove that f(x) =
1

2x2
is continuous at x = −1.

Proof. Let ε > 0. Choose δ = min{0.5, ε5} such that |x+ 1| < δ. Then |x+ 1| < 0.5. So,

−0.5 < x+ 1 < 0.5.

We obtain

−1.5 < x < −0.5 and −2.5 < x− 1 < −1.5.

Thus, 1

|x|2
< 22 and |x− 1| < 2.5. We obtain

|f(x)− f(−1)| =
∣∣∣∣ 1

2x2
− 1

2

∣∣∣∣ = ∣∣∣∣1− x2

2x2

∣∣∣∣ = ∣∣∣∣(1− x)(1 + x)

2x2

∣∣∣∣
=

1

2|x|2
· |x+ 1| · |x− 1| < 2(δ)2.5 < 5 · ε

5
= ε.

Therefore, f is continuous at x = −1.
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No.2
1. Let f(x) = x2 − 1 where x ∈ [1, 2] and P =

{
1 +

j

n
: j = 0, 1, ..., n

}
be a partition of [1, 2]. Find I(f).

Solution. Choose f(tj) = f(1 + j
n) on the subinterval [xj−1, xj ] where xj = 1 + j

n for all j = 0, 1, ..., n.
Then

∆xj = xj − xj−1 =

(
1 +

j

n

)
−

(
1 +

j − 1

n

)
=

1

n
for all j = 1, 2, 3, ..., n.

We obtain
n∑

j=1

f(tj)∆xj =
n∑

j=1

f

(
1 +

j

n

)
1

n
=

1

n

n∑
j=1

[(
1 +

j

n

)2

− 1

]

=
1

n

n∑
j=1

[(
1 +

2j

n
+

j2

n2

)
− 1

]
=

1

n

n∑
j=1

[
2j

n
+

j2

n2

]
=

1

n2

2 n∑
j=1

j +
1

n

n∑
j=1

j2


=

1

n2

[
n(n+ 1) +

1

n
· n(n+ 1)(2n+ 1)

6

]
=

n+ 1

n
+

(n+ 1)(2n+ 1)

6n2

Thus,

I(f) = lim
∥P∥→0

n∑
j=1

f(tj)∆xj = lim
n→∞

n+ 1

n
+

(n+ 1)(2n+ 1)

6n2
= 1 +

1

3
=

4

3
#

2. Let f(x) = x2 + 1 where x ∈ [1, 2] and P =

{
1 +

j

n
: j = 0, 1, ..., n

}
be a partition of [1, 2]. Find I(f).

Solution. Choose f(tj) = f(1 + j
n) on the subinterval [xj−1, xj ] where xj = 1 + j

n for all j = 0, 1, ..., n.
Then

∆xj = xj − xj−1 =

(
1 +

j

n

)
−

(
1 +

j − 1

n

)
=

1

n
for all j = 1, 2, 3, ..., n.

We obtain
n∑

j=1

f(tj)∆xj =

n∑
j=1

f

(
1 +

j

n

)
1

n
=

1

n

n∑
j=1

[(
1 +

j

n

)2

+ 1

]

=
1

n

n∑
j=1

[(
1 +

2j

n
+

j2

n2

)
+ 1

]
=

1

n

n∑
j=1

[
2j

n
+

j2

n2
+ 2

]
=

1

n

 2

n

n∑
j=1

j +
1

n2

n∑
j=1

j2 +

n∑
j=1

2


=

1

n

[
2

n
· n(n+ 1)

2
+

1

n2
· n(n+ 1)(2n+ 1)

6
+ 2n

]
=

n+ 1

n
+

(n+ 1)(2n+ 1)

6n2
+ 2

Thus,

I(f) = lim
∥P∥→0

n∑
j=1

f(tj)∆xj = lim
n→∞

n+ 1

n
+

(n+ 1)(2n+ 1)

6n2
+ 2 = 1 +

1

3
+ 2 =

10

3
#
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3. Let f(x) = x2 − 2 where x ∈ [1, 2] and P =

{
1 +

j

n
: j = 0, 1, ..., n

}
be a partition of [1, 2]. Find I(f).

Solution. Choose f(tj) = f(1 + j
n) on the subinterval [xj−1, xj ] where xj = 1 + j

n for all j = 0, 1, ..., n.
Then

∆xj = xj − xj−1 =

(
1 +

j

n

)
−

(
1 +

j − 1

n

)
=

1

n
for all j = 1, 2, 3, ..., n.

We obtain
n∑

j=1

f(tj)∆xj =

n∑
j=1

f

(
1 +

j

n

)
1

n
=

1

n

n∑
j=1

[(
1 +

j

n

)2

− 2

]

=
1

n

n∑
j=1

[(
1 +

2j

n
+

j2

n2

)
− 2

]
=

1

n

n∑
j=1

[
2j

n
+

j2

n2
− 1

]
=

1

n

 2

n

n∑
j=1

j +
1

n2

n∑
j=1

j2 −
n∑

j=1

1


=

1

n

[
2

n
· n(n+ 1)

2
+

1

n2
· n(n+ 1)(2n+ 1)

6
− n

]
=

n+ 1

n
+

(n+ 1)(2n+ 1)

6n2
− 1

Thus,

I(f) = lim
∥P∥→0

n∑
j=1

f(tj)∆xj = lim
n→∞

n+ 1

n
+

(n+ 1)(2n+ 1)

6n2
− 1 = 1 +

1

3
− 1 =

1

3
#

4. Let f(x) = x2 − 1 where x ∈ [2, 3] and P =

{
2 +

j

n
: j = 0, 1, ..., n

}
be a partition of [2, 3]. Find I(f).

Solution. Choose f(tj) = f(2 + j
n) on the subinterval [xj−1, xj ] where xj = 2 + j

n for all j = 0, 1, ..., n.
Then

∆xj = xj − xj−1 =

(
2 +

j

n

)
−

(
2 +

j − 1

n

)
=

1

n
for all j = 1, 2, 3, ..., n.

We obtain
n∑

j=1

f(tj)∆xj =
n∑

j=1

f

(
1 +

j

n

)
1

n
=

1

n

n∑
j=1

[(
2 +

j

n

)2

− 1

]

=
1

n

n∑
j=1

[(
4 +

4j

n
+

j2

n2

)
− 1

]
=

1

n

n∑
j=1

[
4j

n
+

j2

n2
+ 3

]
=

1

n

 4

n

n∑
j=1

j +
1

n2

n∑
j=1

j2 +

n∑
j=1

3


=

1

n

[
4

n
· n(n+ 1)

2
+

1

n2
· n(n+ 1)(2n+ 1)

6
+ 3n

]
=

2(n+ 1)

n
+

(n+ 1)(2n+ 1)

6n2
+ 3

Thus,

I(f) = lim
∥P∥→0

n∑
j=1

f(tj)∆xj = lim
n→∞

2(n+ 1)

n
+

(n+ 1)(2n+ 1)

6n2
+ 3 = 2 +

1

3
+ 3 =

16

3
#
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5. Let f(x) = x2 + 1 where x ∈ [2, 3] and P =

{
2 +

j

n
: j = 0, 1, ..., n

}
be a partition of [2, 3]. Find I(f).

Solution. Choose f(tj) = f(2 + j
n) on the subinterval [xj−1, xj ] where xj = 2 + j

n for all j = 0, 1, ..., n.
Then

∆xj = xj − xj−1 =

(
2 +

j

n

)
−

(
2 +

j − 1

n

)
=

1

n
for all j = 1, 2, 3, ..., n.

We obtain
n∑

j=1

f(tj)∆xj =

n∑
j=1

f

(
1 +

j

n

)
1

n
=

1

n

n∑
j=1

[(
2 +

j

n

)2

+ 1

]

=
1

n

n∑
j=1

[(
4 +

4j

n
+

j2

n2

)
+ 1

]
=

1

n

n∑
j=1

[
4j

n
+

j2

n2
+ 5

]
=

1

n

 4

n

n∑
j=1

j +
1

n2

n∑
j=1

j2 +
n∑

j=1

5


=

1

n

[
4

n
· n(n+ 1)

2
+

1

n2
· n(n+ 1)(2n+ 1)

6
+ 5n

]
=

2(n+ 1)

n
+

(n+ 1)(2n+ 1)

6n2
+ 5

Thus,

I(f) = lim
∥P∥→0

n∑
j=1

f(tj)∆xj = lim
n→∞

2(n+ 1)

n
+

(n+ 1)(2n+ 1)

6n2
+ 5 = 2 +

1

3
+ 5 =

22

3
#

6. Let f(x) = x2 − 2 where x ∈ [2, 3] and P =

{
2 +

j

n
: j = 0, 1, ..., n

}
be a partition of [2, 3]. Find I(f).

Solution. Choose f(tj) = f(2 + j
n) on the subinterval [xj−1, xj ] where xj = 2 + j

n for all j = 0, 1, ..., n.
Then

∆xj = xj − xj−1 =

(
2 +

j

n

)
−

(
2 +

j − 1

n

)
=

1

n
for all j = 1, 2, 3, ..., n.

We obtain
n∑

j=1

f(tj)∆xj =
n∑

j=1

f

(
1 +

j

n

)
1

n
=

1

n

n∑
j=1

[(
2 +

j

n

)2

− 2

]

=
1

n

n∑
j=1

[(
4 +

4j

n
+

j2

n2

)
− 2

]
=

1

n

n∑
j=1

[
4j

n
+

j2

n2
+ 2

]
=

1

n

 4

n

n∑
j=1

j +
1

n2

n∑
j=1

j2 +

n∑
j=1

2


=

1

n

[
4

n
· n(n+ 1)

2
+

1

n2
· n(n+ 1)(2n+ 1)

6
+ 2n

]
=

2(n+ 1)

n
+

(n+ 1)(2n+ 1)

6n2
+ 2

Thus,

I(f) = lim
∥P∥→0

n∑
j=1

f(tj)∆xj = lim
n→∞

2(n+ 1)

n
+

(n+ 1)(2n+ 1)

6n2
+ 2 = 2 +

1

3
+ 2 =

13

3
#
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