QUIZ 1 : MAC3309 Mathematical Analysis

Topic Field axioms and Completeness axioms Score 10 marks
Time Wendsday 15 Dec 2021, 3rd Week, Semester 2/2021
Teacher Assistant Professor Thanatyod Jampawai, Ph.D., Division of Mathematics,

Faculty of Education, Suan Sunandha Rajabhat University

No.1

1. (5 marks) Let z,y € R. Prove that
if |x+y|=|z|+|y|, then zy>0.
2. (5 marks) Let z,y € R. Prove that

if |z —y|=|z|+]y|, then xy <O0.

No.2

1
1. (5 marks) Let A= {1 +—:né€ N}. What are supremum and infimum of A ?
n

Verify (proof) your answers.

1
2. (5 marks) Let A= {2 +-—5:n¢€ N}. What are supremum and infimum of A 7
n

Verify (proof) your answers.

1
3. (5 marks) Let A= {3 +-—5:n¢€ N}. What are supremum and infimum of A ?
n

Verify (proof) your answers.

2
4. (5 marks) Let A= {1 +—:n¢€ N}. What are supremum and infimum of A ?
n

Verify (proof) your answers.

5. (5 marks) Let A= {1 + % ‘n e N}. What are supremum and infimum of A 7
n

Verify (proof) your answers.



Solution QUIZ 1 : MAC3309 Mathematical Analysis

Topic Field axioms and Completeness axioms Score 10 marks
Time Wendsday 15 Dec 2021, 3rd Week, Semester 2/2021
Teacher Assistant Professor Thanatyod Jampawai, Ph.D., Division of Mathematics,

Faculty of Education, Suan Sunandha Rajabhat University

No.1

1. (5 marks) Let z,y € R. Prove that
if |z+y|=|z[+|y[, then zy>0.
Proof. Let x,y € R. Assume that |z + y| = |z| + |y|. Then

|z +y* = (|2 + y])
(@ +y)* = |z* + 2[z||y| + |y|?
a? + 2xy +y° = 2% + 2wyl +y°
zy = |zyl

By definition of absolute value, it implies that xy > 0.
2. (5 marks) Let z,y € R. Prove that
if |z—y|=|z|+]y|, then zy <O0.
Proof. Let x,y € R. Assume that |z — y| = |z| + |y|. Then

z —y* = (|2 + |y|)
(x —y)* = |z* + 2|z||y| + |y|?
a? = 2xy +y° = 2% + 2wyl +y°
—xy = |zy|

By definition of absolute value, it implies that xy < 0.



No.2

1
1. (5 marks) Let A= {1 +—5:ne€ N}. What are supremum and infimum of A ?
n

Verify (proof) your answers.

Solution. Consider

Claim that inf A =1 and sup A = 2.

Proof. We will prove that inf A = 1.
1

Let n € N. Then n? > 0. So, — 2> 0. Thus,
n

1 <1+ L
Thus, 1 is a lower bound of A.

Let £y be a lower bound of A such that 1 < £3. Then /¢ — 1 > 0.
By Achimedean principle, there is ng € N such that

1. Vi —1
— <ly—1
1+ — </
So, £y is not a lower bound of A. It is contradiction.

Proof. We will prove that sup A = 2.
1

Let n € N. Then n? > 1. So, — < 1. Thus,
n

1+—=5<2

Thus, 2 is an upper bound of A.
Let uw be an upper bound of A. Then

1
1+—2§u foralln e N
n

1
SinceleN,2:1+?eA. Thus, 2 < u.



1
2. (5 marks) Let A= {2 +-—5:n¢€ N}. What are supremum and infimum of A 7
n

Verify (proof) your answers.

Solution. Consider
9 19 33
A= — e
{3’ 4’9716’ }
Claim that inf A = 2 and sup A = 3.

Proof. We will prove that inf A = 2.
1

Let n € N. Then n? > 0. So, — > 0. Thus,
n

1
2<2+ —
n

Thus, 2 is a lower bound of A.
Let ¢y be a lower bound of A such that 2 < ¢y. Then /¢y — 2 > 0.

By Achimedean principle, there is ng € N such that

i<\/£0—2

no
1
ng
1

24+ —5 < fo
ng

< fly—2

So, £y is not a lower bound of A. It is contradiction.

Proof. We will prove that sup A = 3.
1

Let n € N. Then n? > 1. So, — < 1. Thus,
n

[

24— <3

Thus, 3 is an upper bound of A.
Let u be an upper bound of A. Then

1
24 5 <u foralln € N
n

1
SincelEN,3:2—l—ﬁ€A. Thus, 3 < u.



1
3. (5 marks) Let A= {3 +-—5:n¢€ N}. What are supremum and infimum of A ?
n

Verify (proof) your answers.

Solution. Consider

LT
47916

Claim that inf A = 3 and sup A = 4.

Proof. We will prove that inf A = 3.
1

Let n € N. Then n? > 0. So, — > 0. Thus,
n

1
33+ —
n

Thus, 3 is a lower bound of A.
Let ¢y be a lower bound of A such that 3 < ¢y. Then /¢y — 3 > 0.

By Achimedean principle, there is ng € N such that

1
— < \ly—3
no
1
ng
1
3+72<€0
1y

<fly—3

So, £y is not a lower bound of A. It is contradiction.

Proof. We will prove that sup A = 4.
1

Let n € N. Then n® > 1. So, — < 1. Thus,
n

Thus, 4 is an upper bound of A.
Let u be an upper bound of A. Then

1
3—1——2§u foralln e N
n

1
SincelEN,4:3—l—ﬁ€A. Thus, 4 < u.



2
4. (5 marks) Let A= {1 +-—:n¢€ N}. What are supremum and infimum of A 7
n

Verify (proof) your answers.

Solution. Consider

Claim that inf A =1 and sup A = 3.

Proof. We will prove that infA = 1.
2

Let n € N. Then n? > 0. So, — > 0. Thus,
n

2
1<1+—
n

Thus, 1 is a lower bound of A.

Let £y be a lower bound of A such that 1 < 3. Then Q/EOT_]- > 0.
By Achimedean principle, there is ng € N such that

1 by —1
no 2
1 by —1
— <
n% 2
2
— < by —1
1o
2
1+ — < Lo
Ny
So, £y is not a lower bound of A. It is contradiction.
Proof. We will prove that sup A = 3.
1
Let n € N. Then n? > 1. So, — < 1. Thus,
n
2
— <2
n2 —
2
1+ ) <3
n

Thus, 3 is an upper bound of A.
Let u be an upper bound of A. Then

2
1+ <wu foralln €N
n

2
SinceleN,3:1+ﬁ€A. Thus, 3 < u.



3
5. (5 marks) Let A={1+ - :ne¢ N}. What are supremum and infimum of A ?
n

Verify (proof) your answers.

Solution. Consider

Claim that inf A =1 and sup A = 4.

Proof. We will prove that infA = 1.
3

Let n € N. Then n? > 0. So, — > 0. Thus,
n

3
1<1+ —
<l+ 2
Thus, 1 is a lower bound of A.

Let £y be a lower bound of A such that 1 < ¢3. Then \/%T_l > 0.
By Achimedean principle, there is ng € N such that

1 by —1
< 0

no 3

1 by —1
<

ng 3

— <fy—1

1+j<£0
g

So, £y is not a lower bound of A. It is contradiction.

Proof. We will prove that sup A = 4.
1

Let n € N. Then n? > 1. So, — < 1. Thus,
n

3
n?2 —
3

1+7§4
n

Thus, 4 is an upper bound of A.
Let u be an upper bound of A. Then

1+%§u for alln € N
n

3
SincelGN,4:1+ﬁ€A. Thus, 4 < u.



QUIZ 2 : MAC3309 Mathematical Analysis

Topic Limit of Sequences Score 10 marks
Time Thurday 6 Jan 2022, 5rd Week, Semester 2/2021
Teacher Assistant Professor Thanatyod Jampawai, Ph.D., Division of Mathematics,

Faculty of Education, Suan Sunandha Rajabhat University

No.1

1. (5 marks) Use definition to prove that

onf-1 :
lim — exists.
n—oo N4 + 1
2. (5 marks) Use definition to prove that
. n?-=2 .
lim ———  exists.
n—o0 N4 + 2
3. (5 marks) Use definition to prove that
i st
dm o exists.
4. (5 marks) Use definition to prove that
i 2 exist
dm g exists.
5. (5 marks) Use definition to prove that
. on?-1 .
lim ——— exists.

n—oo n2 + 5

No.2

1. (5 marks) Use definition to prove that

lim vn+1= +o0.

n—oo

2. (5 marks) Use definition to prove that

lim vn + 2 = +o0.

n—oo

3. (5 marks) Use definition to prove that

lim V2 —n = —oc.

n—o0

4. (5 marks) Use definition to prove that

lim V1 —n=—oc.

n—0o0



Solution QUIZ 2 : MAC3309 Mathematical Analysis

Topic Limit of Sequences Score 10 marks

Time

Thurday 6 Jan 2022, 5rd Week, Semester 2/2021

Teacher Assistant Professor Thanatyod Jampawai, Ph.D., Division of Mathematics,

Faculty of Education, Suan Sunandha Rajabhat University

No.

1.

1

(5 marks) Use definition to prove that

n- — .
lim — exists
n—oo n
1
Proof. Let € > 0. Then \/g > 0. By Archimedean principle, there is an N € N such that ~ < \/i
It is equivalent to
2
W < €.
9 9 2 2 . 9 9 2 2
Let n € N such that n > N. Then n* > N°. We obtain — < —. Since n*+1 > n*, ———— < —.
n2 — N2 n2+1  n?
Hence,
n?—1 | =1) = (n*+1)
n?+1 B n?+1
2 < 2 < 2 <
=< —5< —<e¢
n2+1 n?2 ~ N2
2
-1
Thus, lim n =

n—)oon2—|—1_

(5 marks) Use definition to prove that

lim == exist
Jim NCR exists.
1
Proof. Let € > 0. Then \/i > 0. By Archimedean principle, there is an N € N such that N < \/i .
It is equivalent to
4
m < €.
2 2 .4 4 : 2 2
Let n € N such that n > N. Then n“ > N<. We obtain — < —. Since n® +2 > n*, ——— < —.
n2 — N2 n2+2 n?
Hence,
n2—27 |(n?—=2) — (n* +2)
n2+2 N n2+2
4 < 4 < 4 -
= — < —=<e.
n2+2 n?2 = N2
2
-2
Thus, lim n

n—>oon2—|—2:



3. (5 marks) Use definition to prove that

1
Proof. Let € > 0. Then \/i > (0. By Archimedean principle, there is an N € N such that ~ < \/i .

It is equivalent to

4
ﬁ<€.
Let n € N such that n > N. Then n* > N“. We obtain — < —. Since n“ +3 > n*, ——— < —.
n2 — N2 n2+4+3  n?
Hence,
n?—1 = (n?—1) — (n®+3)
n?+3 B n?+3
4 < 4 < 4 <
T n24+3 " n2 - N2 &
2
-1
Thus, hmn

n—oo N —|—3

4. (5 marks) Use definition to prove that
n? —2 <t
g et

1
Proof. Let € > 0. Then \/g > 0. By Archimedean principle, there is an N € N such that N < \/E .

It is equivalent to

W<€.
2 2 6 6 : 2 2 6 6
Let n € N such that n > N. Then n® > N~=. Weobta1n—< Since n* +4 > n°, —— < —.
N2’ n?+4 =~ n?
Hence,
n?—2 J (n? —2) — (n?+4)
n2+4 N n2+4
e
T n2+44 n2 - N2
2 _
Thus, hmn 2 _

n—oo N2 —|—4

5. (5 marks) Use definition to prove that

1
Proof. Let € > 0. Then \/; > 0. By Archimedean principle, there is an N € N such that N < \/g .

It is equivalent to

6
m<€
9 9 . 6 6 6
Let n € N such that n > N. Then n* > N4. We obtain — Since n? +5 > n?, —— < —.
n2 N2 "n24+5  n?
Hence,
n2—1_1 | (n*—1) — (n® +5)
n2+5 N n2+5
—L< 6 <i<€
T n24+5 " n2 = N2
2
-1
Thus, th 1.

n—oon2 + 5



No.2

1. (5 marks) Use definition to prove that

lim vn+ 1= +o0.

n—oQ

Proof. Let M € R. By Arichimedean property, there is an N € N such that M? —1 < N.

It is equivalent to
VN +1> M.

Let n € N such that n > N. Thenn+1> N +1. So, vVn+1 > +/N + 1. We obtain

Vn+1>+vVN+1> M.

2. (5 marks) Use definition to prove that

lim vn+ 2 = +oo.

n—oo

Proof. Let M € R. By Arichimedean property, there is an N € N such that M? —2 < N.

It is equivalent to
VN +2> M.

Let n € N such that n > N. Then n+2 > N + 2. So, vn +2 > /N + 2. We obtain

Vn+2>+vVN+2> M.

3. (5 marks) Use definition to prove that

. 3
lim V2 —n = —o0.
n—oo

Proof. Let M € R. By Arichimedean property, there is an N € N such that 2 — M2 < N.

It is equivalent to
V2 - N < M.
Let n € N such that n > N. Then —n < —N. So, 2 —n <2 — N. We obtain

V2-—n<V2-—N< M.

4. (5 marks) Use definition to prove that

lim V1 —n=—oc.

n—o0

Proof. Let M € R. By Arichimedean property, there is an N € N such that 1 — M3 < N.

It is equivalent to
V1—N < M.
Let n € N such that n > N. Then —n < —N. So, 1 —n <1 — N. We obtain

J1-n<V1-N< M.



QUIZ 3-4 : MAC3309 Mathematical Analysis

Topic Continuity and Riemann Sum Score 20 marks
Time Thurday 10 Mar. 2022, 15rd Week, Semester 2/2021
Teacher Assistant Professor Thanatyod Jampawai, Ph.D., Division of Mathematics,

Faculty of Education, Suan Sunandha Rajabhat University

No.1

1
1. Use definition to prove that f(z) = — is continuous at x = 1.
x
o 1. .
2. Use definition to prove that f(z) = —; is continuousat z = —1.
x
o 2 . .
3. Use definition to prove that f(z) = — is continuous at z = 1.
x
o 2 . .
4. Use definition to prove that f(z) = —; is continuous at z = —1.
x
5. Use definition to prove that f(z) = 2.3 is continuous at = = 1.
x
o 1. .
6. Use definition to prove that f(x) = 5,7 18 continuous z = —1.
x

No.2

1. Let f(x) = 2% — 1 where 2 € [1,2] and P = {1 —I—% j= O,l,...,n} be a partition of [1,2]. Find I(f).
2. Let f(z) = 2% + 1 where z € [1,2] and P = {1 +% Jj= O,l,...,n} be a partition of [1,2]. Find I(f).
3. Let f(z) = 2? — 2 where x € [1,2] and P = {1 —i—% j O,l,...,n} be a partition of [1,2]. Find I(f).
4. Let f(z) =22 — 1 where € [2,3] and P = {2+7‘1 j= O,l,...,n} be a partition of [2,3]. Find I(f).
5. Let f(x) =22+ 1 where z € [2,3] and P = {2—1—2 j= O,l,...,n} be a partition of [2,3]. Find I(f).
6. Let f(z) =22 — 2 where x € [2,3] and P = {2—1—2 j= O,l,...,n} be a partition of [2,3]. Find I(f).



Solution QUIZ 3-4 : MAC3309 Mathematical Analysis

Topic Continuity and Riemann Sum Score 20 marks
Time Thurday 10 Mar. 2022, 15rd Week, Semester 2/2021
Teacher Assistant Professor Thanatyod Jampawai, Ph.D., Division of Mathematics,

Faculty of Education, Suan Sunandha Rajabhat University

No.1

1
1. Use definition to prove that f(z) = — is continuous at x = 1.
x

Proof. Let € > 0. Choose 6 = min{0.5, =} such that |[x — 1| < §. Then |z — 1| < 0.5. So,

£
» 10

—05<z—-1<0.5.

We obtain
0.b<z<lband 1b<z+1<25.
Thus,w<22 and |z + 1| < 2.5. We obtain
T
1 1— 22 (1—2)(1+2)
@) - 101 = |35 1] = [ | =[S
L -1 <4255 <10 S
=—- o — : = =e.
iz v 10

Therefore, f is continuous at = = 1.

1
2. Use definition to prove that f(z) = — is continuous at z = —1.
x

Proof. Let € > 0. Choose § = min{0.5, =} such that |z + 1| < §. Then |z + 1] < 0.5. So,

£
» 10
—05<x+1<0.5.

We obtain

—15<x<—-0band —25<zxz—-1<—1.5.

1
Thus, — < 22 and |z — 1| < 2.5. We obtain

|2
1 1 — 22 1—2)(1+
@)= 101 = | -1 = [ 157 = [
1
:W-|x—i—1|-[x—1\<4(5)2.5<10-%:€.

Therefore, f is continuous at z = —1.



2
3. Use definition to prove that f(z) = —; is continuous at z = 1.
x
Proof. Let € > 0. Choose § = min{0.5, 55} such that |z — 1| < §. Then |z — 1] < 0.5. So,
—05<z—-1<0.5.
We obtain
0.b5<zx<lband l.h<ax+1<25.

1
Thus, — < 22 and |z + 1| < 2.5. We obtain

|z
2 2 — 272 2(1 —x)(1+ x)
@) - 10l = |5 -2 =2 - P
1 3
=—5"2 1 |x—1<4(2.5)20 <20 — =«e.
e |z + 1] - | — 1| < 4(2.5)26 < 50 = ¢
Therefore, f is continuous at = = 1.
s 2 .
4. Use definition to prove that f(x) = — is continuous at x = —1.

22
Proof. Let € > 0. Choose § = min{0.5, 55} such that |z + 1| < §. Then |z + 1| < 0.5. So,
-05<z+1<0.5.
We obtain

—-15<x<-05and —25<x—1< —1.5.

Thus, < 2% and |z — 1] < 2.5. We obtain

a2
2 2 — 272 21— 2)(1+ )
f(@) = F(-1)] = x2—2H = =' 2
1 €
= — 2z +1]-|r—1] <4(26)25<20- — =¢.
o |z + 1] - |z \<()5<020 €

Therefore, f is continuous at z = —1.



1
5. Use definition to prove that f(z) = 5.3 is continuous at = = 1.
x

Proof. Let € > 0. Choose § = min{0.5, £} such that |z — 1| < d. Then |z — 1| < 0.5. So,
-05<z—-1<0.5.
We obtain

05<z<lbandlbh<axz+1<25.

1
Thus, — < 22 and |z + 1| < 2.5. We obtain

|z
11 1— 22 (1—2)(1+x)
—_ 1 = |— — — | = =
@) - 101 = |53z - 5| = | o | = |

£
= —0" - |le—1<2(25)0<b5- - =c¢.
a2 |z +1]- |z — 1] < 2(2.5)0 < F=€

Therefore, f is continuous at = = 1.
s 1. .
6. Use definition to prove that f(x) = 5,7 18 continuous at x = —1.
x

Proof. Let € > 0. Choose § = min{0.5, £} such that |z + 1| < J. Then |z + 1| < 0.5. So,
-05<z+1<0.5.
We obtain

—-15<x<-05and —25<x—1< —1.5.

Thus, FE <22 and |z — 1] < 2.5. We obtain
1 1 1—a? (1—2)(1+x)
— _1 = |— — —| = =
50) - 101 =02 - 3| = | 5| = |

1 €
= . 1|z —1 2(0)2.5 <5 - =«¢.
Jp e =1 <2925 <5 o =

Therefore, f is continuous at z = —1.



No.2
1. Let f(z) = 2% — 1 where 2 € [1,2] and P = {1 —i—% = O,l,...,n} be a partition of [1,2]. Find I(f).

Solution. Choose f(t;) = f(1+ %) on the subinterval [z;_1,2;] where z; =1+ % forall j =0,1,...,n.

Then
j j— 1 1
A:L‘] :;L'-] _:L'jfl = (]‘—I_J) - (1+J> - — fOl“ all] - 172737-.-,n.
n n n
We obtain
Jj=1 j=1 j=1
5N 2 | j 1 [2) | 52 N T
N [(EE RS R EE ol R B D wEr) of
=1 j=1 j=1 =
1 1 nn+1)2n+1)
— 1 -
3 {n(n—i— )+ G
n+1l (n+1)2n+1)
frmd + 3
n 6n
Thus,
n
L _..on+l (n+1)(2n+1)_ 1 4
I(f)—”}Dl"H_l)OZf(t])Am]—nh_>ngo p + 3 _1+§_§ 4

=1

2. Let f(z) = 2% + 1 where z € [1,2] and P = {1 +2 1y = O,l,...,n} be a partition of [1,2]. Find I(f).
n

Solution. Choose f(t;) = f(1+ Z) on the subinterval [z;_1,x;] where z; =1+ % for all j =0,1,...,n.

n

Then
] j— 1 1
Aa;j—wj—a:j_l—<1+‘7>—<l+‘7>— forall j =1,2,3,...,n.
n n n
We obtain
n n ] 1 1 n ] 2
Zf(tj)Aa:jZZf<1+n>n=nZ <1+n> +1
j=1 7j=1 7j=1
1 — 25 42 1 ~[2] 42 1|2 .
== 1+ 4+ L) 1| == 2+ L 4yl =2 |2 SN 2
n “ [< +n+n2>+} n < [n+n2+ nnld T 2,2‘] +Z
7j=1 7j=1 7=1 7j=1 7j=1
112 1 1 1)(2 1
_ 172 n(n+)+7‘n(n+ )(n+)+2n
n|n 2 n? 6
n+l (n+1)(2n+1) 5
on 6n?2
Thus,
n
L _.oon+1  (n+1)2n+1) B 1 10
I(f)_H}}HrgOZf(tJ)A:cj_ggo —+ o2 +2=1+o42=F #

Jj=1



3. Let f(z) = 22 — 2 where # € [1,2] and P = {1 +2 1y = O,l,...,n} be a partition of [1,2]. Find I(f).
n

Solution. Choose f(t;) = f(1+ %) on the subinterval [z;_1, z;] where z; =1+ % forall j =0,1,....,n
Then

. 1 1
Axj =z —xj_1 = <1+‘7> — <1+‘7> =— forall j=1,2,3,....,n
n n n

We obtain
2 i1 1 i\’
YAz = 1+2) === 1+2) -2
> stan=3s (1+2) =13 (1+2) ]
7j=1 7j=1
1 & 25 42 1 ~[2] 42 12 1 &<y
== 1+ 4 ) o == |2l o =2 2y S ~-Y1
n < [( Tt n < n  n? n nzj+ QZ] Z
7=l j=1 j=1 j=1 j=1
12 nn+1) 1 nn+1)(2n+1)
=—|= + = -n
n|n 2 n? 6
n+1 (n+1)(2n+1)_1
oon 6n?2
Thus,

n+1l (n+1)2n+1) 1 1
VAz; = lim S O D
”P”%2f T T, 612 *3 5 7

4. Let f(z) = 2? — 1 where x € [2,3] and P = {2 7 :j=0,1, ,n} be a partition of [2,3]. Find I(f).
n

Solution. Choose f(t;) = f(2+ %) on the subinterval [z;_1,x;] where z; =2+ % forall j =0,1,...,n
Then

‘ 1 1
Axj =xj —xj_1 = <2+‘7> — (2—{—‘7> =— forall j=1,2,3,....,n
n n n

We obtain
n n ,7 1 1 n ] 2
7=1 7=1 7j=1
1 « i 42 1 o[4] 42 1[4 1 e o w©
nz[< +n+n2> } n 4 [n+n2+3] n|n ‘7+n22] 2.3
j=1 j=1 j=1 Jj=1 Jj=1
1[4
_ 174 nn+1) 1 ‘n(n+1)(2n+1)+3n
nln 2 n?
2(n+1) (n+1)2n+1)
- +3
n 6n2
Thus,
2(n+1) (n+1)(2n+1) 1 16
DAz, = 1i 3=2+-+43=—
HPH—>OZf T e PRy sy A



5. Let f(z) = 2% + 1 where z € [2,3] and P = {2 +2 15 =0,1, ,n} be a partition of [2,3]. Find I(f).
n

Solution. Choose f(t;) = f(2+ %) on the subinterval [z;_1, x;] where z; =2+ % forall j =0,1,....,n
Then

. 1 1
Axj =z —xj_1 = <2+‘7> — <2+‘7> =— forall j=1,2,3,....,n
n n n

We obtain
" i1 1 i\?
Az, = JYI_ 2 J
Zf . Zf<1+n>n 'y <2+n>+1
7j=1 7j=1
1 j 42 1o [4] 42 1|4
== A+ 24l ) g1 == 2+ L 45 == |2 5
I RS S o] e e 1 E S pa ZHZ
7=1 7j=1 7=1
114 1 1 1)(2 1
14 ) 1 s D@EesD)
nln 2 n? 6
2(n+1) (n+1)2n+1)
= + 5
n 6m2
Thus,
2(n+1) (n+1)(2n+1) 1 22
)Az; = i 5=2+-+5=—=
HP\HOZf e T T 6n2 Fo=24g45=5 #

6. Let f(z) = 22 — 2 where x € [2,3] and P = {2 7 :j=0,1, ,n} be a partition of [2,3]. Find I(f).
n

Solution. Choose f(t;) = f(2+ %) on the subinterval [z;_1,x;] where z; =2+ % forall j =0,1,...,n
Then

‘ 1 1
Axj =xj —xj_1 = <2+‘7> — (2—{—‘7> =— forall j=1,2,3,....,n
n n n

We obtain
n n ,7 1 1 n ] 2
7=1 7=1 7j=1
1 « i 42 1 o[4] 42 1[4 1 e o w©
S A+ ) o = 2N o= |2 =5 2
n2[<+n+n2> } n 4 [n+n2+] n|n ‘7+n22]+
j=1 j=1 j=1 Jj=1 Jj=1
1[4
_ 174 nn+1) 1 ‘n(n+1)(2n+1)+2n
nln 2 n?
_2n+1)  (n4+1)2n+1) 5
N n 6n2
Thus,
2(n+1) (n+1)(2n+1) 1 13
VAz; = i 2=24 _42=—"
HPH—>OZf A A A Sk



