QUIZ 1 : MAP2406 Mathematical Analysis

TopicField axioms, Well-Ordering Principle and Completeness axiomsScore10 pointsTimeFriday 25 Jan 2019, 3rd Week, Semester 2/2018Assistant Professor Thanatyod Jampawai, Ph.D., Division of Mathematics,
Faculty of Education, Suan Sunandha Rajabhat UniversityScore10 points

NAME...... ID...... SECTION......

1. (3 points) Let $x, y \in \mathbb{R}$. Show that

- if 0 < x < y, then $0 < x^3 < y^3$.
- 2. (3 points) Prove that $|x-1| \le 2$ implies $|x^2 5x + 6| \le 4|x-2|$
- 3. (4 points) Let $A = \left\{ \frac{3n}{n+1} : n \in \mathbb{N} \right\}$. Find sup A and prove it.

Solution QUIZ 1 : MAP2406 Mathematical Analysis

Topic	Field axioms, Well-Ordering Principle and Completeness axioms	Score	10 points
Time	Friday 25 Jan 2019, 3rd Week, Semester $2/2018$		
Teacher	Assistant Professor Thanatyod Jampawai, Ph.D., Division of Mathema	atics,	
	Faculty of Education, Suan Sunandha Rajabhat University		

1. (3 points) Let $x, y \in \mathbb{R}$. Show that

if 0 < x < y, then $0 < x^3 < y^3$.

Proof. Let $x, y \in \mathbb{R}$. Assume that 0 < x < y. Then

 $0 < x^3 < x^2y$ and $0 < xy^2 < y^3$.

Since xy is positive, 0 < x(xy) < y(xy). That is $x^2y < xy^2$. By transitive law,

 $0 < x^3 < y^3.$

2. (3 points) Prove that $|x-1| \le 2$ implies $|x^2 - 5x + 6| \le 4|x-2|$

Proof. Assume that $|x - 1| \leq 2$. Then

$$|x^{2} - 5x + 6| = |(x - 2)(x - 3)|$$

= $|x - 2||x - 3|$
= $|x - 2||(x - 1) - 2|$
 $\leq |x - 2|(|x - 1| + 2)$ Triangle iequaity
 $\leq |x - 2|(2 + 2)$ Assumption
= $4|x - 2|$

3. (4 points) Let $A = \left\{ \frac{3n}{n+1} : n \in \mathbb{N} \right\}$. Find sup A and prove it. Solution. Consider

$$A = \left\{\frac{3}{2}, \frac{6}{2}, \frac{9}{4}, \frac{15}{6}, \dots\right\}$$

Claim that $\sup A = 3$.

Proof. Since n < n+1 for all $n \in \mathbb{N}$, $\frac{n}{n+1} < 1$. Then $\frac{3n}{n+1} < 3$

Thus, 3 is an upper bound of A.

Let u_0 be upper bound of A such that $u_0 < 3$. Then $\frac{3-u_0}{3} > 0$. By Achimedean principle, there is $n_0 \in \mathbb{N}$ such that

$$\frac{1}{n_0} < \frac{3 - u_0}{3}$$
$$u_0 < 3 - \frac{3}{n_0} = \frac{3(n_0 - 1)}{n_0}$$

If $n_0 = 1$, then $u_0 < 0$ imposible. So, $n_0 > 1$. Choose $n = n_0 - 1 > 1$. It implies that

$$u_0 < \frac{3n}{n+1}$$

Thus, u_0 is not upper bound of A. It is contradiction.

QUIZ 2 : MAP2406 Mathematical Analysis

Topic	Sequence in \mathbb{R} Score 10 points
\mathbf{Time}	Tuesday 12 Feb 2019, 5th Week, Semester $2/2018$
Teacher	Assistant Professor Thanatyod Jampawai, Ph.D., Division of Mathematics,
	Faculty of Education, Suan Sunandha Rajabhat University

NAME...... ID...... SECTION......

- 1. (3 marks) Prove that $\frac{n^2}{n^2+1} \to 1$ as $n \to \infty$ by Definition.
- 2. (4 marks) Suppose that $x_n \to 1$ as $n \to \infty$. Use Definition to prove that

 $x_n^2 \to 1 \text{ as } n \to \infty.$

3. (3 marks) Let K > 0 and $x_n \to \infty$ as $n \to \infty$. Prove that

 $Kx_n \to \infty$ as $n \to \infty$

Solution QUIZ 2 : MAP2406 Mathematical Analysis

TopicSequence in \mathbb{R} Score 10 pointsTimeTuesday 12 Feb 2019, 5th Week, Semester 2/2018TeacherAssistant Professor Thanatyod Jampawai, Ph.D., Division of Mathematics,
Faculty of Education, Suan Sunandha Rajabhat University

1. (3 marks) Prove that $\frac{n^2}{n^2+1} \to 1$ as $n \to \infty$ by Definition.

Proof. Let $\varepsilon > 0$. By Archimedean Principle, there $N \in \mathbb{N}$ such that $\frac{1}{N} < \sqrt{\varepsilon}$. For each $n \ge N$, i.e., $\frac{1}{n^2} \le \frac{1}{N^2} < \varepsilon$, we obtain

$$\left| \frac{n^2}{n^2 + 1} - 1 \right| = \left| \frac{-1}{n^2 + 1} \right|$$
$$= \frac{1}{n^2 + 1} < \frac{1}{n^2} \le \frac{1}{N^2} < \varepsilon$$

2. (4 marks) Suppose that $x_n \to 1$ as $n \to \infty$. Use Definition to prove that

$$x_n^2 \to 1 \text{ as } n \to \infty.$$

Proof. Suppose that $x_n \to 1$ as $n \to \infty$. Since $\{x_n\}$ is convergent, $\{x_n\}$ is bounded, i.e., there is M > 0 such that

$$|x_n| \leq M.$$

Let $\varepsilon > 0$. There is an $N \in \mathbb{N}$ such that

$$|x_n - 1| < \frac{\varepsilon}{M+1}$$

Since $\{x_n\}$ is convergent, $\{x_n\}$ is bounded, i.e., there is $M \in \mathbb{R}$ such that

$$|x_n| \leq M.$$

For each $n \geq N$,

$$|x^{2} + 1 - 1| = |(x_{n} - 1)(x_{n} + 1)|$$
$$= |x_{n} - 1||x_{n} + 1|$$
$$< \frac{\varepsilon}{M+1} \cdot (|x_{n}| + 1)$$
$$< \frac{\varepsilon}{M+1} \cdot (M+1) = \varepsilon$$

3. (3 marks) Let K > 0 and $x_n \to \infty$ as $n \to \infty$. Prove that

$$Kx_n \to \infty$$
 as $n \to \infty$

Proof. Let K > 0 and $x_n \to \infty$ as $n \to \infty$. Let $M \in \mathbb{R}$. Set $M_1 = \frac{M}{K}$. There is an $N \in \mathbb{N}$, $n \ge N$ implies $x_n > M_1$. For each $n \ge N$, it implies

$$Kx_n > KM_1 = M.$$

QUIZ 3 : MAP2406 Mathematical Analysis

TopicDiferentiationScore10 pointsTimeFriday 22 Mar 2019, 12th Week, Semester 2/2018TeacherAssistant Professor Thanatyod Jampawai, Ph.D., Division of Mathematics,
Faculty of Education, Suan Sunandha Rajabhat University

NAME...... ID...... SECTION......

1. (4 marks) If $\lim_{x\to 0} \frac{x}{\sin x} = 1$, use L'Hospital's rule to find

$$\lim_{x \to 0} \left(\frac{x}{\sin x}\right)^{\frac{1}{x^2}}.$$

2. (3 marks) Use the Mean Value Theorem to prove that

$$\sqrt{x+1} \le x+1$$
 for all $x \ge 0$.

3. (3 marks) Use the Inverse Function Theorem to find $(f^{-1})'(e)$ when

$$f(x) = x^2 e^{x^2}.$$

Solution QUIZ 3 : MAP2406 Mathematical Analysis

Topic Time Diferentiation Score 10 points

Friday 22 Mar 2019, 12th Week, Semester 2/2018

TeacherAssistant Professor Thanatyod Jampawai, Ph.D., Division of Mathematics,
Faculty of Education, Suan Sunandha Rajabhat University

If $\lim_{x \to 0} \frac{x}{\sin x} = 1$, use L'Hospital's rule to find 1. (4 marks) $\lim_{x \to 0} \left(\frac{x}{\sin x}\right)^{\frac{1}{x^2}}.$ **Solution.** Set $L = \lim_{x \to 0} \left(\frac{x}{\sin x}\right)^{\frac{1}{x^2}}$. Then $\ln L = \ln \lim_{x \to 0} \left(\frac{x}{\sin x}\right)^{\frac{1}{x^2}}$ $=\lim_{x\to 0}\frac{\ln\left(\frac{x}{\sin x}\right)}{x^2}$ $I.F.\frac{0}{0}$ $= \lim_{x \to 0} \frac{\frac{\sin x}{x} \cdot \frac{\sin x - x \cos x}{\sin^2 x}}{2x}$ L'Hospital's rule $= \lim_{x \to 0} \frac{\sin x - x \cos x}{2x^2 \sin x}$ $I.F.\frac{0}{0}$ $\cos x - \cos x + x \sin x$ $= \lim_{x \to 0} \frac{\cos x}{4x \sin x + 2x^2 \cos x}$ L'Hospital's rule $\sin x$ $I.F.\frac{0}{0}$ $= \lim_{x \to 0} \frac{\sin x}{4\sin x + 2x\cos x}$ $\cos x$ $=\lim_{x\to 0}\frac{\cos x}{4\cos x + 2\cos x - 2x\sin x}$ L'Hospital's rule $=\frac{1}{6}$ $L = e^{\frac{1}{6}} \#$

2. (3 marks) Use the Mean Value Theorem to prove that

$$\sqrt{x+1} \le x+1$$
 for all $x \ge 0$.

Proof. Let $f(x) = \sqrt{x+1} - x - 1$ for $x \ge 0$. Then $f'(x) = \frac{1}{2\sqrt{x+1}} - 1$. By the Mean Value Theorem, there is $c \in [0, x]$ such that

$$f(x) - f(0) = f'(c)(x - 0)$$
$$\sqrt{x + 1} - x - 1 = \left(\frac{1}{2\sqrt{c + 1}} - 1\right) \cdot x$$

Since c > 0, c + 1 > 1. So, $2\sqrt{c+1} > 2$. Then

$$\frac{1}{2\sqrt{c+1}} < \frac{1}{2}$$
$$\frac{1}{2\sqrt{c+1}} - 1 < \frac{1}{2} - 1 < 0$$

Therefore,

3. (3 marks) Use the Inverse Function Theorem to find $(f^{-1})'(e)$ when

$$f(x) = x^2 e^{x^2}.$$

Solution. Then $f'(x) = 4x^3e^{x^2} + 2xe^{x^2}$. Since f(1) = e, $f^{-1}(e) = 1$. By the Inverse Function Theorem,

$$(f^{-1})'(e) = \frac{1}{f'(f^{-1}(e))} = \frac{1}{f'(1)} = \frac{1}{4e + 2e} = \frac{1}{6e} \quad \#$$

QUIZ 4 : MAP2406 Mathematical Analysis

TopicIntegrabilityScore10 pointsTimeFriday 29 Mar 2019, 13th Week, Semester 2/2018TeacherAssistant Professor Thanatyod Jampawai, Ph.D., Division of Mathematics,
Faculty of Education, Suan Sunandha Rajabhat University

1. (4 marks) Let $f(x) = 1 - ax^2$ on [-1, 1] where 0 < a < 1.

If
$$L(f, P) = \frac{11}{8}$$
, find a and $U(f, P)$ when $P = \left\{-1, -\frac{1}{2}, 0, \frac{1}{2}, 1\right\}$

2. (3 marks) If $f(x) = \int_0^{x^2} \cos(t^2) dt$, show that

$$3\int_0^1 \cos(x^2) \, dx - 6\int_0^1 x f(x) \, dx = 2\sin 1.$$

3. (3 marks) Define

$$f(x) = \begin{cases} x - 1 & \text{if } 0 \le x \le 1\\ x - 2 & \text{if } 1 < x \le 2\\ x - 3 & \text{if } 2 < x \le 3\\ \vdots\\ x - n & \text{if } n - 1 < x \le n \end{cases}$$

Suppose that $\int_0^n f(x) dx = 2019$. What is a number *n* ?

Solution QUIZ 4 : MAP2406 Mathematical Analysis

TopicIntegrabilityScore10 pointsTimeFriday 29 Mar 2019, 13th Week, Semester 2/2018TeacherAssistant Professor Thanatyod Jampawai, Ph.D., Division of Mathematics,
Faculty of Education, Suan Sunandha Rajabhat University

1. (4 marks) Let $f(x) = 1 - ax^2$ on [-1, 1] where 0 < a < 1.

If
$$L(f, P) = \frac{11}{8}$$
, find a and $U(f, P)$ when $P = \left\{-1, -\frac{1}{2}, 0, \frac{1}{2}, 1\right\}$

Solution.

$$\begin{split} L(f,P) &= \frac{1}{2}f(-1) + \frac{1}{2}f\left(-\frac{1}{2}\right) + \frac{1}{2}f\left(-\frac{1}{2}\right) + \frac{1}{2}f(1) \\ &\frac{11}{8} = \frac{1}{2}\left[\left(1-a\right) + \left(1-\frac{1}{4}a\right) + \left(1-\frac{1}{4}a\right) + \left(1-a\right)\right] \\ &\frac{11}{4} = 4 - \frac{5}{2}a \\ &11 = 16 - 10a \\ \therefore \quad a = \frac{1}{2} \end{split}$$

Thus,

$$U(f,P) = \frac{1}{2}f\left(-\frac{1}{2}\right) + \frac{1}{2}f(0) + \frac{1}{2}f(0) + \frac{1}{2}f\left(\frac{1}{2}\right)$$
$$= \frac{1}{2}\left[\frac{7}{8} + 1 + 1 + \frac{7}{8}\right]$$
$$= \frac{15}{8} \quad \#$$

2. (3 marks) If $f(x) = \int_0^{x^2} \cos(t^2) dt$, show that

$$2\int_0^1 \cos(x^2) \, dx - 4\int_0^1 x f(x) \, dx = \sin 1.$$

Solution. Then $f'(x) = 2x \cos(x^4)$ and $f(1) = \int_0^1 \cos(x^2) dx$. Apply integration by part,

$$\int_{0}^{1} x^{2} f'(x) dx = [x^{2} f(x)]_{0}^{1} - \int_{0}^{1} (2x) f(x) dx$$
$$\int_{0}^{1} x^{2} 2x \cos(x^{4}) dx = f(1) - \int_{0}^{1} (2x) f(x) dx$$
$$\frac{1}{2} [\sin(x^{4})]_{0}^{1} = \int_{0}^{1} \cos(x^{2}) dx - 2 \int_{0}^{1} x f(x) dx$$
$$\frac{1}{2} \sin 1 = \int_{0}^{1} \cos(x^{2}) dx - 2 \int_{0}^{1} x f(x) dx$$
$$\sin 1 = 2 \int_{0}^{1} \cos(x^{2}) dx - 4 \int_{0}^{1} x f(x) dx$$

3. (3 marks) Define

$$f(x) = \begin{cases} x - 1 & \text{if } 0 \le x \le 1 \\ x - 2 & \text{if } 1 < x \le 2 \\ x - 3 & \text{if } 2 < x \le 3 \\ \vdots \\ x - n & \text{if } n - 1 < x \le n \end{cases}$$

Suppose that $\int_0^n f(x) dx = -2019$. What is a number n ? Solution.

$$\begin{aligned} -2019 &= \int_0^n f(x) \, dx \\ &= \int_0^1 (x-1) dx + \int_1^2 (x-2) dx + \int_2^3 (x-3) dx + \dots + \int_{n-1}^n (x-n) dx \\ &= \left[\frac{(x-1)^2}{2} \right]_0^1 + \left[\frac{(x-2)^2}{2} \right]_1^2 + \left[\frac{(x-3)^2}{2} \right]_2^3 + \dots + \left[\frac{(x-n)^2}{2} \right]_{n-1}^n \\ &= -\frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \dots - \frac{1}{2} \\ &= -\frac{1}{2}n \\ \therefore \quad n = 2019 \cdot 2 = 4038 \quad \# \end{aligned}$$