QUIZ 1 (Sec1-2): MAP2406 Mathematical Analysis

TopicField axioms and Completeness axiomsScore10 pointsTimeThurday 30 Jan 2020, 3rd Week, Semester 2/2019TeacherAssistant Professor Thanatyod Jampawai, Ph.D., Division of Mathematics,
Faculty of Education, Suan Sunandha Rajabhat University

1. (3 points) Let $x, y \in \mathbb{R}$. Show that

$$x^2 + y^2 > xy$$

2. (3 points) Let $a, b, c \in \mathbb{R}$. Use Triangle inequality to prove that

$$|a-c| \le |a-b| + |b-c|$$

3. (4 points) Let $A = \left\{ 1 - \frac{1}{n} : n \in \mathbb{N} \right\}$. Find sup A and prove it.

Solution QUIZ 1 : MAP2406 Mathematical Analysis

Topic Field axioms and Completeness axioms Score 10 points

Time Thurday 30 Jan 2020, 3rd Week, Semester 2/2019

TeacherAssistant Professor Thanatyod Jampawai, Ph.D., Division of Mathematics,
Faculty of Education, Suan Sunandha Rajabhat University

1. (3 points) Let $x, y \in \mathbb{R}$. Show that

$$x^2 + y^2 \geq xy$$

Proof. Let $x, y \in \mathbb{R}$. Then

$$x^{2} + y^{2} - xy = x^{2} - xy + y^{2}$$

= $x^{2} - 2x \left(\frac{y}{2}\right) + \left(\frac{y}{2}\right)^{2} - \left(\frac{y}{2}\right)^{2} + y^{2}$
= $\left(x - \frac{y}{2}\right)^{2} + \frac{3y^{2}}{4} \ge 0$

Therefore, $x^2 + y^2 \ge xy$.

2. (3 points) Let $a, b, c \in \mathbb{R}$. Use Triangle inequality to prove that

$$|a - c| \le |a - b| + |b - c|.$$

Proof. Let $a, b, c \in \mathbb{R}$. By Triangle inequality,

$$|a - c| = |(a - b) + (b - c)| \le |a - c| + |b - c|$$

3. (4 points) Let $A = \left\{1 - \frac{1}{n} : n \in \mathbb{N}\right\}$. Find sup A and prove it. Solution. Consider

$$A = \left\{ 0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \dots \right\}$$

Claim that $\sup A = 1$.

Proof. Let $n \in \mathbb{N}$. Then n > 0. So, $\frac{1}{n} > 0$ or $-\frac{1}{n} < 0$. Thus,

$$1 - \frac{1}{n} \le 1$$

Thus, 1 is an upper bound of A.

Let u_0 be an upper bound of A such that $u_0 < 1$. Then $1 - u_0 > 0$. By Achimedean principle, there is $n_0 \in \mathbb{N}$ such that

$$\frac{1}{n_0} < 1 - u_0$$
$$u_0 < 1 - \frac{1}{n_0}$$

So, u_0 is not an upper bound of A. It is contradiction.

QUIZ 1 (Sec1-2): MAP2406 Mathematical Analysis

TopicField axioms and Completeness axiomsScore10 pointsTimeThurday 5 Feb 2020, 3rd Week, Semester 2/2019TeacherAssistant Professor Thanatyod Jampawai, Ph.D., Division of Mathematics,
Faculty of Education, Suan Sunandha Rajabhat University

NAME...... ID...... SECTION......

1. (3 points) Let $x, y \in \mathbb{R}$. Show that

$$x + y \ge \sqrt{xy}$$

2. (3 points) Let $a, b, c \in \mathbb{R}$. Use Triangle inequality to prove that

$$|a - b| - |b - c| \le |a - c|.$$

3. (4 points) Let $A = \left\{1 + \frac{1}{n} : n \in \mathbb{N}\right\}$. Find $\inf A$ and prove it.

QUIZ 2 (Sec1-2): MAP2406 Mathematical Analysis

TopicLimit of Sequences and Cauchy SequencesScore10 pointsTimeThursday 13 Feb 2020, 5rd Week, Semester 2/2019TeacherAssistant Professor Thanatyod Jampawai, Ph.D., Division of Mathematics,
Faculty of Education, Suan Sunandha Rajabhat University

1. (3 points) Use definition to prove that
$$\lim_{n \to \infty} \frac{2n^2 - 1}{n^2 + 1} = 2$$

2. (4 points) Assume that $x_n \to -1$ as $n \to \infty$. Show that $(x_n - 1)^2 \to 4$ as $n \to \infty$.

3. (3 points) Prove that
$$\left\{\frac{n^2-1}{n^2+1}\right\}$$
 is a Cauchy sequence.

Solution QUIZ 2: MAP2406 Mathematical Analysis

Горіс	Limit of Sequences and Cauchy Sequences Score 10 points
Гime	Thursday 13 Feb 2020, 5rd Week, Semester 2/2019
Feacher	Assistant Professor Thanatyod Jampawai, Ph.D., Division of Mathematics,
	Faculty of Education, Suan Sunandha Rajabhat University

1. (3 points) Use definition to prove that $\lim_{n \to \infty} \frac{2n^2 - 1}{n^2 + 1} = 2$

Proof. Let $\varepsilon > 0$. Then $\sqrt{\frac{\varepsilon}{3}} > 0$. By Archimedean principle, there is an $N \in \mathbb{N}$ such that $\frac{1}{N} < \sqrt{\frac{\varepsilon}{3}}$. Let $n \in \mathbb{N}$ such that $n \ge N$. So, $n^2 \ge N^2$. Then $\frac{1}{n^2} \le \frac{1}{N^2}$. We see that $n^2 + 1 > n^2$. It follows that $\frac{1}{n^2 + 1} \le \frac{1}{n^2}$. We obtain $\left|\frac{2n^2 - 1}{n^2 + 1} - 2\right| = \left|\frac{2n^2 - 1 - 2(n^2 + 1)}{n^2 + 1}\right| = \frac{3}{n^2 + 1}$ $< \frac{3}{n^2} \le \frac{3}{N^2} < \varepsilon.$

Thus, $\lim_{n \to \infty} \frac{2n^2 - 1}{n^2 + 1} = 2.$

2. (4 points) Assume that $x_n \to -1$ as $n \to \infty$. Show that $(x_n - 1)^2 \to 4$ as $n \to \infty$.

Proof. Assume that $x_n \to -1$ as $n \to \infty$. Given $\varepsilon = 1$. There is an $N_1 \in \mathbb{N}$ such that $n \ge N_1$ implying $|x_n + 1| < 1$. Then

$$|x_n| - 1 \le |x_n + 1| \le 1$$
$$|x_n| \le 2$$

Let $\varepsilon > 0$. There is an $N_2 \in \mathbb{N}$ such that $n \ge N_2$ implies $|x_n + 1| < \frac{\varepsilon}{5}$. Let $n \in \mathbb{N}$. Choose $N = \max\{N_1, N_2\}$. For each $n \ge N$. We obtain

$$|(x_n - 1)^2 - 4| = |(x_n + 1)(x_n - 3)| \le |x_n + 1|(|x_n| + 3) < \frac{\varepsilon}{5} \cdot (2 + 3) = \varepsilon$$

Thus, $(x_n)^2 \to 4$ as $n \to \infty$

3. (3 points) Prove that $\left\{\frac{n^2-1}{n^2+1}\right\}$ is a Cauchy sequence.

Proof. Let $\varepsilon > 0$. Then $\frac{\sqrt{\varepsilon}}{2} > 0$. By Archimedean principle, there is an $N \in \mathbb{N}$ such that $\frac{1}{N} < \frac{\sqrt{\varepsilon}}{2}$. Let $n \in \mathbb{N}$ such that $n \ge N$ and $m \ge N$. Then $n^2 \ge N^2$ and $m^2 \ge N^2$. So, $\frac{1}{n^2} \le \frac{1}{N^2}$ and $\frac{1}{m^2} \le \frac{1}{N^2}$. We obtain

$$\left|\frac{n^2 - 1}{n^2 + 1} - \frac{m^2 - 1}{m^2 + 1}\right| = \left|\frac{(n^2 - 1)(m^2 + 1) - (m^2 - 1)(n^2 + 1)}{(n^2 + 1)(m^2 + 1)}\right| = \left|\frac{2n^2 - 2m^2}{(n^2 + 1)(m^2 + 1)}\right|$$
$$= \left|\frac{2n^2}{(n^2 + 1)(m^2 + 1)} - \frac{2m^2}{(n^2 + 1)(m^2 + 1)}\right|$$
$$= \frac{2n^2}{(n^2 + 1)(m^2 + 1)} + \frac{2m^2}{(n^2 + 1)(m^2 + 1)}$$
$$\leq \frac{2n^2}{(n^2)(m^2)} + \frac{2m^2}{(n^2)(m^2)} = \frac{2}{m^2} + \frac{2}{n^2} \leq \frac{2}{N^2} + \frac{2}{N^2} = \frac{4}{N^2} < \varepsilon.$$

Thus, $\left\{\frac{n^2}{n^2+1}\right\}$ is Cauchy.