TOPIC	Groups & Subgroups SCORE 10 points
QUIZ TIME	Wed 7 Sep 2016, 4th Week, Semester $1/2016$
TEACHER	Thanatyod Jampawai, Ph.D., Faculty of Education,
	Suan Sunandha Rajabhat University
NAME	

- 1. Define a * b = 13ab for all $a, b \in \mathbb{Q}^+$. Prove that $(\mathbb{Q}^+, *)$ is a group. (3 points)
- 2. Compute inverses and orders for each element in the following groups. (4 points)

2.1
$$\bar{4}$$
 in $(\mathbb{Z}_{6}, +)$
2.3 $\begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$ in $(GL_{2}(\mathbb{R}), \cdot)$
2.2 $\bar{7}$ in $(\mathbb{Z}_{15}^{\times}, \cdot)$
2.4 $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{pmatrix}$ in S_{4}

3. Find all subgroups of $(\mathbb{Z}_7^{\times}, \cdot)$ and verify your answers. (3 points)

ANSWERS QUIZ 1 : MAT2303 ABSTRACT ALGEBRA

TOPIC	
QUIZ TIME	
TEACHER	

Groups & Subgroups **SCORE** 10 points Wed 7 Sep 2016, 4th Week, Semester 1/2016 Thanatyod Jampawai, Ph.D., Faculty of Education, Suan Sunandha Rajabhat University

1. Define a * b = 13ab for all $a, b \in \mathbb{Q}^+$. Prove that $(\mathbb{Q}^+, *)$ is a group. (3 points)

Proof. First, let $a, b, c \in \mathbb{Q}^+$. Then

<u>a</u> 1

$$(a * b) * c = (13ab) * c = 13(13ab)c = 13(a)(13bc) = a * (13bc) = a * (b * c)$$

So, * is associative on \mathbb{Q}^+ . Next, let $a \in \mathbb{Q}^+$. We obtain

$$a * \frac{1}{13} = 13a(\frac{1}{13}) = a = 13(\frac{1}{13})a = \frac{1}{13} * a$$

Thus, $\frac{1}{13}$ is an identity. Finally, we will prove that all elements in \mathbb{Q}^+ have inverses. Let $a \in \mathbb{Q}^+$. Since a in a nonzero rational number, $\frac{1}{169a}$ is a positive rational number. We get

$$a * (\frac{1}{169a}) = 13a(\frac{1}{169a}) = \frac{1}{13} = 13(\frac{1}{169a})a = \frac{1}{169a} * a.$$

Hence, $\frac{1}{169a}$ ia an inverses of *a*. Therefore, $(\mathbb{Q}^+, *)$ is a group.

2. Compute **inverses** and **orders** for each element in the following groups. (4 points)

Elements	Inverses	Reasons	Orders	Reason
4	$\overline{2}$	$\bar{4} + \bar{2} = \bar{0}$	3	$\bar{4} + \bar{4} + \bar{4} = \bar{0}$
$\overline{7}$	13	$\bar{7} \cdot \bar{13} = \bar{1}$	4	$\overline{7} \cdot \overline{7} \cdot \overline{7} \cdot \overline{7} = \overline{1}$
$\begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$	$\begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$	$\begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	2	$\begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{pmatrix}$	$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{pmatrix}$	$\begin{pmatrix} 2 & 3 & 1 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}$	3	$ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{pmatrix}^3 = (1) $

3. Find all subgroups of $(\mathbb{Z}_7^{\times}, \cdot)$ and verify your answers. (3 points)

D

Subsets	Subgroups	Reasons	Subsets	Subgroups	Reasons
$\{\bar{1}\}$	Yes	$\overline{1} \cdot \overline{1} = \overline{1}$			
$\{\bar{1}, \bar{2}\}$	No	$\bar{2} \cdot \bar{2} = \bar{4}$	$\{\bar{1}, \bar{2}, \bar{3}, \bar{4}\}$	No	$\bar{3} \cdot \bar{4} = \bar{5}$
			$\{\bar{1}, \bar{2}, \bar{3}, \bar{5}\}$	No	$\overline{5} \cdot \overline{5} = \overline{4}$
$\{\bar{1},\bar{3}\}$	No	$\bar{3} \cdot \bar{3} = \bar{2}$	$\{\bar{1}, \bar{2}, \bar{3}, \bar{6}\}$	No	$\bar{3} \cdot \bar{6} = \bar{4}$
$\{\bar{1}, \bar{4}\}$	No	$\bar{4} \cdot \bar{4} = \bar{2}$			$\overline{4} \cdot \overline{5} = \overline{6}$
$\{\bar{1}, \bar{5}\}$	No	$\overline{5} \cdot \overline{5} = \overline{4}$	$\{\bar{1}, \bar{3}, \bar{4}, \bar{5}\}$	No	
	Yes	$\overline{\overline{6} \cdot \overline{6}} = \overline{1}$	$\{ar{1},ar{3},ar{4},ar{6}\}$	No	$\bar{3} \cdot \bar{4} = \bar{5}$
$\{\bar{1},\bar{6}\}$			$\{\bar{1}, \bar{4}, \bar{5}, \bar{6}\}$	No	$\overline{5} \cdot \overline{6} = \overline{2}$
$\{\bar{1},\bar{2},\bar{3}\}$	No	$\bar{2} \cdot \bar{2} = \bar{4}$	$\{\bar{1}, \bar{3}, \bar{5}, \bar{6}\}$	No	$\overline{5} \cdot \overline{6} = \overline{2}$
$\{\bar{1}, \bar{2}, \bar{4}\}$	Yes	$\overline{2} \cdot \overline{2} = \overline{4}$			
		$\bar{2} \cdot \bar{4} = \bar{1}$	$\{\overline{1},\overline{3},\overline{4},\overline{5}\}$	No	$\overline{5} \cdot \overline{4} = \overline{6}$
		$\overline{4} \cdot \overline{4} = \overline{2}$	$\{\bar{1}, \bar{2}, \bar{5}, \bar{6}\}$	No	$\bar{5} \cdot \bar{5} = \bar{4}$
$\{\bar{1}, \bar{2}, \bar{5}\}$	No	$\frac{4 \cdot 4 = 2}{\overline{2} \cdot \overline{2} = \overline{4}}$	$\{\overline{1},\overline{2},\overline{4},\overline{6}\}$	No	$\bar{4} \cdot \bar{6} = \bar{3}$
			$\{\bar{1}, \bar{2}, \bar{4}, \bar{5}\}$	No	$\overline{4} \cdot \overline{5} = \overline{6}$
$\{\bar{1},\bar{2},\bar{6}\}$	No	$\bar{2} \cdot \bar{2} = \bar{4}$	$\{\overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}\}$	No	$\overline{4} \cdot \overline{5} = \overline{6}$
$\{\bar{1}, \bar{3}, \bar{4}\}$	No	$\bar{3} \cdot \bar{3} = \bar{2}$			
$\{\bar{1}, \bar{3}, \bar{5}\}$	No	$\bar{3} \cdot \bar{3} = \bar{2}$	$\{\bar{1}, \bar{2}, \bar{3}, \bar{4}, \bar{6}\}$	No	$\bar{3} \cdot \bar{4} = \bar{5}$
		$\frac{\overline{3} \cdot \overline{3}}{\overline{3} \cdot \overline{3}} = \overline{2}$	$\{\overline{1},\overline{2},\overline{3},\overline{5},\overline{6}\}$	No	$\bar{5} \cdot \bar{5} = \bar{4}$
$\{\bar{1}, \bar{3}, \bar{6}\}$	No		$\{\bar{1}, \bar{2}, \bar{4}, \bar{5}, \bar{6}\}$	No	$\overline{2} \cdot \overline{5} = \overline{3}$
$\{\bar{1},\bar{4},\bar{5}\}$	No	$\bar{5} \cdot \bar{5} = \bar{4}$	$\{\overline{1}, \overline{3}, \overline{4}, \overline{5}, \overline{6}\}$	No	$\overline{5} \cdot \overline{6} = \overline{2}$
$\{\bar{1}, \bar{4}, \bar{6}\}$	No	$\overline{4} \cdot \overline{6} = \overline{3}$			$\mathbf{J}\cdot0=\mathbf{Z}$
$\{\bar{1}, \bar{5}, \bar{6}\}$	No	$\overline{5} \cdot \overline{5} = \overline{4}$	$\mathbb{Z}_7^{ imes}$	Yes	

Thus, All subgroups of $(\mathbb{Z}_7^{\times}, \cdot)$ are $\{\overline{1}\}, \{\overline{1}, \overline{6}\}, \{\overline{1}, \overline{2}, \overline{4}\}$ and \mathbb{Z}_7^{\times} .

TOPIC	Subgroups & Cyclic groups SCORE 10 points
QUIZ TIME	Wed 14 Sep 2016, 6th Week, Semester $1/2016$
TEACHER	Thanatyod Jampawai, Ph.D., Faculty of Education,
	Suan Sunandha Rajabhat University
NAME	

- 1. Let $H = \left\{ \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} : ab \neq 0 \right\}$. Prove that H is a subgroup of $GL_2(\mathbb{R})$. (3 points)
- 2. Find all generators of the following groups. (3 points)
 - 2.1 $(\mathbb{Z}_{36}, +)$ 2.2 $(\mathbb{Z}_{25}^{\times}, \cdot)$
- 3. Find all subgroups of the following groups by Lagrange's theorem. (4 points)

3.1 $(\mathbb{Z}_{18}, +)$ 3.2 $(\mathbb{Z}_{25}^{\times}, \cdot)$

NAME		SECTION
	Suan Sunandha Rajabhat University	
TEACHER	Thanatyod Jampawai, Ph.D., Faculty of Education,	
QUIZ TIME	Wed 14 Sep 2016, 6th Week, Semester $1/2016$	
TOPIC	Subgroups & Cyclic groups SCORE 10 point	5

- 1. Let $H = \left\{ \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} : ab > 0 \right\}$. Prove that H is a subgroup of $GL_2(\mathbb{R})$. (3 points)
- 2. Find all generators of the following groups. (3 points)
 - 2.1 $(\mathbb{Z}_{48}, +)$ 2.2 $(\mathbb{Z}_{25}^{\times}, \cdot)$
- 3. Find all subgroups of the following groups by Lagrange's theorem. (4 points)

3.1 $(\mathbb{Z}_{24}, +)$ 3.2 $(\mathbb{Z}_{25}^{\times}, \cdot)$

ANSWER QUIZ 2 : MAT2303 ABSTRACT (SEC1)

TOPIC QUIZ TIME TEACHER Subgroups & Cyclic groups SCORE 10 points Wed 14 Sep 2016, 6th Week, Semester 1/2016 Thanatyod Jampawai, Ph.D., Faculty of Education, Suan Sunandha Rajabhat University

1. Let $H = \left\{ \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} : ab \neq 0 \right\}$. Prove that H is a subgroup of $GL_2(\mathbb{R})$.

Proof. We first choose a = b = 1, $ab = 1 \neq 0$. So, $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ belongs to H. Next, we will show that H is closed. Let $A = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$ and $B = \begin{bmatrix} x & 0 \\ 0 & y \end{bmatrix}$ be elements in H. Then $AB = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} x & 0 \\ 0 & y \end{bmatrix} = \begin{bmatrix} ax & 0 \\ 0 & by \end{bmatrix}$ Since $A B \in H$ as (0) and m (0) We conclude that (ar)(br), (ab)(mr) (0) Thus, $AB \in H$

Since $A, B \in H$, $ab \neq 0$ and $xy \neq 0$. We conclude that $(ax)(by) = (ab)(xy) \neq 0$. Thus, $AB \in H$. Finally, let $A = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$ be in H. Then $ab \neq 0$. It follows that $a \neq 0$ and $b \neq 0$. Choose $A^{-1} = \begin{bmatrix} \frac{1}{a} & 0 \\ 0 & \frac{1}{b} \end{bmatrix}$. Since $a \neq 0$ and $b \neq 0$, $\frac{1}{ab}$ is non zero. Then

$$AA^{-1} \begin{bmatrix} a & 0\\ 0 & b \end{bmatrix} \begin{bmatrix} \frac{1}{a} & 0\\ 0 & \frac{1}{b} \end{bmatrix} = \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{a} & 0\\ 0 & \frac{1}{b} \end{bmatrix} \begin{bmatrix} a & 0\\ 0 & b \end{bmatrix} = A^{-1}A$$

Hence, A^{-1} is an inverse of A and belongs to H.

- 2. Find all generators of the following groups.
 - 2.1 It easy to see that $\langle 1 \rangle = \mathbb{Z}_{36}$ and $\circ(\mathbb{Z}_{36}) = 36$. If gcd(k, 36) = 1, then k = 1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35. Hence, all generators of \mathbb{Z}_{36} are

 $\langle 1 \rangle, \langle 5 \rangle, \langle 7 \rangle, \langle 11 \rangle, \langle 13 \rangle, \langle 17 \rangle, \langle 19 \rangle, \langle 23 \rangle, \langle 25 \rangle, \langle 29 \rangle, \langle 31 \rangle, \langle 35 \rangle.$

2.2 $\mathbb{Z}_{25}^{\times} = \{1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24\}$. Then $\circ(\mathbb{Z}_{25}^{\times}) = 20$. Since

$$\begin{split} \langle 2 \rangle &= \{ 2^0, 2^1, 2^2, 2^3, 2^4, 2^5, 2^6, 2^7, 2^8, 2^9, 2^{10}, 2^{11}, 2^{11}, 2^{12}, 2^{13}, 2^{14}, 2^{15}, 2^{16}, 2^{17}, 2^{18}, 2^{19} \} \\ &= \{ 1, 2, 4, 8, 16, 12, 14, 3, 6, 12, 24, 23, 21, 17, 9, 18, 11, 22, 19, 13 \} = \mathbb{Z}_{25}^{\times}, \end{split}$$

2 is a generator of \mathbb{Z}_{25}^{\times} . If gcd(k, 20) = 1, k = 1, 3, 7, 9, 11, 13, 17, 19. Hence, all generators of \mathbb{Z}_{25}^{\times} are

$$\langle 2^{1} \rangle, \langle 2^{3} \rangle, \langle 2^{7} \rangle, \langle 2^{9} \rangle, \langle 2^{11} \rangle, \langle 2^{13} \rangle, \langle 2^{17} \rangle, \langle 2^{19} \rangle$$
 or $\langle 2 \rangle, \langle 8 \rangle, \langle 3 \rangle, \langle 12 \rangle, \langle 23 \rangle, \langle 17 \rangle, \langle 22 \rangle, \langle 13 \rangle.$

- 3. Find all subgroups of the following groups by Lagrange's theorem.
 - 3.1 It easy to see that $\langle 1 \rangle = \mathbb{Z}_{18}$ and $\circ(\mathbb{Z}_{18}) = 18$. All divisors of 18 is 1, 2, 3, 6, 9 and 18. By Lagrance's theorem, all subgroups of \mathbb{Z}_{18} are $\langle 1^{\frac{18}{1}} \rangle, \langle 1^{\frac{18}{2}} \rangle, \langle 1^{\frac{18}{3}} \rangle, \langle 1^{\frac{18}{9}} \rangle, \langle 1^{\frac{18}{9}} \rangle, \langle 1^{\frac{18}{18}} \rangle$. We obtain

 $\left<0\right>,\left<9\right>,\left<6\right>,\left<3\right>,\left<2\right>,\left<1\right>$

3.2 By 2.2, $\langle 2 \rangle = \mathbb{Z}_{25}^{\times}$ and $\circ(\mathbb{Z}_{25}^{\times}) = 20$. All dibvisors of 20 are 1, 2, 4, 5, 10 and 20. By Lagrance's theorem, all subgroups of \mathbb{Z}_{25}^{\times} are $\langle 2^{\frac{20}{1}} \rangle$, $\langle 2^{\frac{20}{2}} \rangle$, $\langle 2^{\frac{20}{5}} \rangle$, $\langle 2^{\frac{20}{5}} \rangle$, $\langle 2^{\frac{20}{20}} \rangle$. We obtain

$$\langle 1 \rangle, \langle 24 \rangle, \langle 7 \rangle, \langle 16 \rangle, \langle 4 \rangle, \langle 2 \rangle$$

ANSWER QUIZ 2 : MAT2303 ABSTRACT (SEC2)

TOPIC QUIZ TIME TEACHER Subgroups & Cyclic groups SCORE 10 points Wed 14 Sep 2016, 6th Week, Semester 1/2016 Thanatyod Jampawai, Ph.D., Faculty of Education, Suan Sunandha Rajabhat University

1. Let $H = \left\{ \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} : ab > 0 \right\}$. Prove that H is a subgroup of $GL_2(\mathbb{R})$.

Proof. We first choose a = b = 1, ab = 1 > 0. So, $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ belongs to H. Next, we will show that H is closed. Let $A = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$ and $B = \begin{bmatrix} x & 0 \\ 0 & y \end{bmatrix}$ be elements in H. Then $AB = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} x & 0 \\ 0 & y \end{bmatrix} = \begin{bmatrix} ax & 0 \\ 0 & by \end{bmatrix}$

Since $A, B \in H$, ab > 0 and xy > 0. We conclude that (ax)(by) = (ab)(xy) > 0. Thus, $AB \in H$. Finally, let $A = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$ be in H. Then ab > 0. It follows that $a \neq 0$ and $b \neq 0$. Choose $A^{-1} = \begin{bmatrix} \frac{1}{a} & 0 \\ 0 & \frac{1}{b} \end{bmatrix}$. Since ab is positive, $\frac{1}{ab}$ is also positive. Then

$$AA^{-1} \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} \frac{1}{a} & 0 \\ 0 & \frac{1}{b} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{a} & 0 \\ 0 & \frac{1}{b} \end{bmatrix} \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} = A^{-1}A$$

Hence, A^{-1} is an inverse of A and belongs to H.

- 2. Find all generators of the following groups.
 - 2.1 It easy to see that $\langle 1 \rangle = \mathbb{Z}_{48}$ and $\circ (\mathbb{Z}_{48}) = 48$. If gcd(k, 48) = 1, then k = 1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, 37, 41, 43, 47. Hence, all generators of \mathbb{Z}_{48} are

$$\left<1\right>, \left<5\right>, \left<7\right>, \left<11\right>, \left<13\right>, \left<17\right>, \left<19\right>, \left<23\right>, \left<25\right>, \left<29\right>, \left<31\right>, \left<35\right>, \left<29\right>, \left<31\right>, \left<35\right>, \left<37\right>, \left<41\right>, \left<43\right>, \left<47\right>.$$

2.2 $\mathbb{Z}_{25}^{\times} = \{1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24\}$. Then $\circ(\mathbb{Z}_{25}^{\times}) = 20$. Since

$$\begin{aligned} \langle 2 \rangle &= \{ 2^0, 2^1, 2^2, 2^3, 2^4, 2^5, 2^6, 2^7, 2^8, 2^9, 2^{10}, 2^{11}, 2^{11}, 2^{12}, 2^{13}, 2^{14}, 2^{15}, 2^{16}, 2^{17}, 2^{18}, 2^{19} \} \\ &= \{ 1, 2, 4, 8, 16, 12, 14, 3, 6, 12, 24, 23, 21, 17, 9, 18, 11, 22, 19, 13 \} = \mathbb{Z}_{25}^{\times}, \end{aligned}$$

2 is a generator of \mathbb{Z}_{25}^{\times} . If gcd(k, 20) = 1, k = 1, 3, 7, 9, 11, 13, 17, 19. Hence, all generators of \mathbb{Z}_{25}^{\times} are

$$\left\langle 2^{1}\right\rangle,\left\langle 2^{3}\right\rangle,\left\langle 2^{7}\right\rangle,\left\langle 2^{9}\right\rangle,\left\langle 2^{11}\right\rangle,\left\langle 2^{13}\right\rangle,\left\langle 2^{17}\right\rangle,\left\langle 2^{19}\right\rangle\quad\text{or}\quad\left\langle 2\right\rangle,\left\langle 8\right\rangle,\left\langle 3\right\rangle,\left\langle 7\right\rangle,\left\langle 23\right\rangle,\left\langle 17\right\rangle,\left\langle 22\right\rangle,\left\langle 13\right\rangle.$$

- 3. Find all subgroups of the following groups by Lagrange's theorem.
 - 3.1 It easy to see that $\langle 1 \rangle = \mathbb{Z}_{18}$ and $\circ(\mathbb{Z}_{24}) = 24$. All divisors of 24 is 1, 2, 3, 4, 6, 8, 12 and 24. By Lagrance's theorem, all subgroups of \mathbb{Z}_{18} are $\langle 1^{\frac{24}{1}} \rangle$, $\langle 1^{\frac{24}{2}} \rangle$, $\langle 1^{\frac{24}{3}} \rangle$, $\langle 1^{\frac{24}{4}} \rangle$, $\langle 1^{\frac{24}{8}} \rangle$, $\langle 1^{\frac{24}{8}} \rangle$, $\langle 1^{\frac{24}{12}} \rangle$, $\langle 1^{\frac{24}{24}} \rangle$. Then

 $\langle 0 \rangle, \langle 12 \rangle, \langle 8 \rangle, \langle 6 \rangle, \langle 4 \rangle, \langle 3 \rangle, \langle 2 \rangle, \langle 1 \rangle$

3.2 By 2.2, $\langle 2 \rangle = \mathbb{Z}_{25}^{\times}$ and $\circ(\mathbb{Z}_{25}^{\times}) = 20$. All dibvisors of 20 are 1, 2, 4, 5, 10 and 20. By Lagrance's theorem, all subgroups of \mathbb{Z}_{25}^{\times} are $\left\langle 2^{\frac{20}{1}} \right\rangle, \left\langle 2^{\frac{20}{2}} \right\rangle, \left\langle 2^{\frac{20}{4}} \right\rangle, \left\langle 2^{\frac{20}{5}} \right\rangle, \left\langle 2^{\frac{20}{10}} \right\rangle, \left\langle 2^{\frac{20}{20}} \right\rangle$. We obtain

$$\langle 1 \rangle, \langle 24 \rangle, \langle 7 \rangle, \langle 16 \rangle, \langle 4 \rangle, \langle 2 \rangle$$

TOPIC	Quotient groups & Homomorphism SCORE 10 points
QUIZ TIME	Wed 12 Oct 2016, 9th Week, Semester $1/2016$
TEACHER	Thanatyod Jampawai, Ph.D., Faculty of Education,
	Suan Sunandha Rajabhat University
NAME	ID SECTION

- 1. (3 points) In quotient group,
 - 1.1 List all elements of $\mathbb{Z}_{12}/\langle 3 \rangle$ 1.2 Find all inverses for each element in $\mathbb{Z}_{12}/\langle 3 \rangle$
- 2. (4 points) Define a map $\varphi: (\mathbb{R}^+, \cdot) \to (\mathbb{R}, +)$ by $\varphi(x) = \ln x$
 - 2.1 Prove that φ is isomorphism 2.2 Find $Ker(\varphi)$
- 3. (3 points) Define a map from $\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$ to $\mathbb{Z}_2 \times \mathbb{Z}_3 = \{(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)\}$ by
 - $0 \mapsto (0,0), \ 1 \mapsto (1,1), \ 2 \mapsto (0,2), \ 3 \mapsto (1,0), \ 4 \mapsto (0,1) \ \text{ and } \ 5 \mapsto (1,2)$

Show that the map is homomorphism by filling below tables and explain that $\mathbb{Z}_6 \cong \mathbb{Z}_2 \times \mathbb{Z}_3$.

+	0	1	2	3	4	5		map	0	1	2	3	4	5
0	0							0	(0,0)					
1		2						1		(0,2)				
2							\mapsto	2						
3		4						3		(0,1)				
4				1				4				(1,1)		
5								5						

map		0	1	2	3	4	5
		\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
	+	(0,0)	(1,1)	(0,2)	(1,0)	(0,1)	(1,2)
$0 \mapsto$	(0,0)	(0,0)					
$1 \mapsto$	(1,1)		(0,2)				
$2 \mapsto$	(0,2)						
$3 \mapsto$	(1,0)		(0,1)				
$4 \mapsto$	(0,1)				(1,1)		
$5 \mapsto$	(1,2)						

TOPIC	Quotient groups & Homomorphism SCORE 10 points
QUIZ TIME	Wed 12 Oct 2016, 9th Week, Semester $1/2016$
TEACHER	Thanatyod Jampawai, Ph.D., Faculty of Education,
	Suan Sunandha Rajabhat University
NAME	ID SECTION

- 1. (3 points) In quotient group,
 - 1.1 List all elements of $\mathbb{Z}_{15}/\langle 5 \rangle$ 1.2 Find all inverses for each element in $\mathbb{Z}_{15}/\langle 5 \rangle$
- 2. (4 points) Define a map $\varphi: (M_{22}(\mathbb{Z}), +) \to (\mathbb{Z}, +)$ by

$$\begin{pmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = a + d$$

2.1 Prove that φ is isomorphism

2.2 Find $Ker(\varphi)$

3. (3 points) Define a map from $\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$ to $\mathbb{Z}_2 \times \mathbb{Z}_3 = \{(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)\}$ by

$$0 \mapsto (0,0), \ 1 \mapsto (1,1), \ 2 \mapsto (0,2), \ 3 \mapsto (1,0), \ 4 \mapsto (0,1) \text{ and } 5 \mapsto (1,2)$$

Show that the map is homomorphism by filling below tables and explain that $\mathbb{Z}_6 \cong \mathbb{Z}_2 \times \mathbb{Z}_3$.

 φ

+	0	1	2	3	4	5		map	0	1	2	3	4	5
0	0							0	(0,0)					
1		2						1		(0,2)				
2							\mapsto	2						
3		4						3		(0,1)				
4				1				4				(1,1)		
5								5						

map		0	1	2	3	4	5
		\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
	+	(0,0)	(1,1)	(0,2)	(1,0)	(0,1)	(1,2)
$0 \mapsto$	(0,0)	(0,0)					
$1 \mapsto$	(1,1)		(0,2)				
$2 \mapsto$	(0,2)						
$3 \mapsto$	(1,0)		(0,1)				
$4 \mapsto$	(0,1)				(1,1)		
$5 \mapsto$	(1,2)						