QUIZ 1 : MAT2303 ABSTRACT ALGEBRA

TOPIC	Groups & Symmetric groups SCORE 10 points
QUIZ TIME	Thu 31 Aug 2017, 3rd Week, Semester $1/2017$
TEACHER	Thanatyod Jampawai, Ph.D., Faculty of Education,
	Suan Sunandha Rajabhat University
NAME	

- 1. (3 points) Define a * b = 7ab for all $a, b \in \mathbb{Q}^+$. Prove that $(\mathbb{Q}^+, *)$ is a group.
- 2. (3 points) Compute inverses for each element in the following groups.
 - 2.1 543 in $(\mathbb{Z}_{2560}, +)$ 2.2 7 in $(\mathbb{Z}_{15}^{\times}, \cdot)$ 2.3 $(1234)^3$ in (S_4, \circ)
- 3. (4 points) Compute orders for each element in the following groups.

3.1 9 in $(\mathbb{Z}_{144}, +)$	3.3 $\frac{1}{2} + i\frac{\sqrt{3}}{2}$ in $(\mathbb{C} - \{0\}, \cdot)$
3.2 5 in $(\mathbb{Z}_{21}^{\times}, \cdot)$	3.4 $(1243)(3425)$ in (S_5, \circ)

SOLUTION QUIZ 1 : MAT2303 (SEC2)

TOPIC	Groups & Symmetric groups	SCORE 10 points		
QUIZ TIME	Thu 31 Aug 2017, 3rd Week,	Semester $1/2016$		
TEACHER	Thanatyod Jampawai, Ph.D., I	Faculty of Education,		
	Suan Sunandha Rajabhat University			

1. (3 points) Define a * b = 7ab for all $a, b \in \mathbb{Q}^+$. Prove that $(\mathbb{Q}^+, *)$ is a group.

Proof. First, let $a, b, c \in \mathbb{Q}^+$. Then

$$(a * b) * c = (7ab) * c = 7(7ab)c = 7(a)(7bc) = a * (7bc) = a * (b * c)$$

So, * is associative on \mathbb{Q}^+ . Next, let $a \in \mathbb{Q}^+$. We obtain

$$a * \frac{1}{7} = 7a(\frac{1}{7}) = a = 7(\frac{1}{7})a = \frac{1}{7} * a$$

Thus, $\frac{1}{7}$ is the identity. Finally, we will prove that all elements in \mathbb{Q}^+ have inverses. Let $a \in \mathbb{Q}^+$. Since a in a nonzero rational number, $\frac{1}{49a}$ is a positive rational number. We get

$$a*(\frac{1}{49a}) = 7a(\frac{1}{49a}) = \frac{1}{7} = 7(\frac{1}{49a})a = \frac{1}{49a}*a$$

Hence, $\frac{1}{49a}$ ia an inverses of *a*. Therefore, $(\mathbb{Q}^+, *)$ is a group.

- 2. (3 points) Compute inverses for each element in the following groups.
 - 2.1 543 in $(\mathbb{Z}_{2560}, +)$ Since 543 + 2017 = 2560 = 0, 2017 is the inverse of 345.
 - 2.2 7 in $(\mathbb{Z}_{15}^{\times}, \cdot)$ Since $7 \cdot 13 = 91 = 1, 13$ is the inverse of 7.
 - 2.3 $(1 2 3 4)^3$ in (S_4, \circ) Let $\alpha = (1 2 3 4)^3$. Then,

$$\alpha = (1\,2\,3\,4)^3 = (1\,2\,3\,4)(1\,2\,3\,4)(1\,2\,3\,4) = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix}$$
$$\alpha^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} = (1\,2\,3\,4)$$

Hence, (1234) is the inverse of $(1234)^3$.

3. (4 points) Compute orders for each element in the following groups.

3.1 9 in
$$(\mathbb{Z}_{144}, +)$$

Since 16(9) = 144 = 0, \circ (9) = 16.
3.2 5 in $(\mathbb{Z}_{21}^{\times}, \cdot)$
Consider,
$$5^{2} = 25 = 4$$
$$5^{3} = 5(4) = 20$$
$$5^{4} = 5(20) = 100 = 16$$
$$5^{5} = 5(16) = 80 = 17$$
$$5^{6} = 5(17) = 85 = 1$$

3.3 $\frac{1}{2} + i\frac{\sqrt{3}}{2}$ in $(\mathbb{C} - \{0\}, \cdot)$ Consider,

$$\begin{pmatrix} \frac{1}{2} + i\frac{\sqrt{3}}{2} \end{pmatrix}^2 = \begin{pmatrix} \frac{1}{2} \end{pmatrix}^2 + 2\begin{pmatrix} \frac{1}{2} \end{pmatrix} \begin{pmatrix} i\frac{\sqrt{3}}{2} \end{pmatrix} + \begin{pmatrix} i\frac{\sqrt{3}}{2} \end{pmatrix}^2 = \frac{1}{4} + i\frac{\sqrt{3}}{2} - \frac{3}{4} = -\frac{1}{2} + i\frac{\sqrt{3}}{2} \\ \begin{pmatrix} \frac{1}{2} + i\frac{\sqrt{3}}{2} \end{pmatrix}^3 = \begin{pmatrix} \frac{1}{2} + i\frac{\sqrt{3}}{2} \end{pmatrix} \begin{pmatrix} \frac{1}{2} + i\frac{\sqrt{3}}{2} \end{pmatrix}^2 = \begin{pmatrix} \frac{1}{2} + i\frac{\sqrt{3}}{2} \end{pmatrix} \begin{pmatrix} -\frac{1}{2} + i\frac{\sqrt{3}}{2} \end{pmatrix} \\ = \begin{pmatrix} i\frac{\sqrt{3}}{2} \end{pmatrix}^2 - \begin{pmatrix} \frac{1}{2} \end{pmatrix}^2 = -1 \\ \begin{pmatrix} \frac{1}{2} + i\frac{\sqrt{3}}{2} \end{pmatrix}^4 = \begin{pmatrix} \frac{1}{2} + i\frac{\sqrt{3}}{2} \end{pmatrix} \begin{pmatrix} \frac{1}{2} + i\frac{\sqrt{3}}{2} \end{pmatrix}^3 = \begin{pmatrix} \frac{1}{2} + i\frac{\sqrt{3}}{2} \end{pmatrix} (-1) = -\frac{1}{2} - i\frac{\sqrt{3}}{2} \\ \begin{pmatrix} \frac{1}{2} + i\frac{\sqrt{3}}{2} \end{pmatrix}^5 = \begin{pmatrix} \frac{1}{2} + i\frac{\sqrt{3}}{2} \end{pmatrix}^3 \begin{pmatrix} \frac{1}{2} + i\frac{\sqrt{3}}{2} \end{pmatrix}^2 = (-1) \begin{pmatrix} -\frac{1}{2} + i\frac{\sqrt{3}}{2} \end{pmatrix} = \frac{1}{2} - i\frac{\sqrt{3}}{2} \\ \begin{pmatrix} \frac{1}{2} + i\frac{\sqrt{3}}{2} \end{pmatrix}^6 = \begin{pmatrix} \frac{1}{2} + i\frac{\sqrt{3}}{2} \end{pmatrix}^3 \begin{pmatrix} \frac{1}{2} + i\frac{\sqrt{3}}{2} \end{pmatrix}^3 = (-1)(-1) = 1 \end{cases}$$

Hence, $\circ(\frac{1}{2} + i\frac{\sqrt{3}}{2}) = 6$

3.4 (1243)(3425) in (S_5, \circ) Let $\alpha = (1243)(3425)$. Then

$$\alpha = (1\,2\,4\,3)(3\,4\,2\,5) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 2 & 1 & 4 & 3 \end{pmatrix}$$

$$\alpha^2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 2 & 1 & 4 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 2 & 1 & 4 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 5 & 4 & 1 \end{pmatrix}$$

$$\alpha^3 = \alpha\alpha^2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 2 & 1 & 4 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 5 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \end{pmatrix} = (1)$$

Thus, $\circ(\alpha) = 3$.

QUIZ 1 : MAT2303 ABSTRACT ALGEBRA

TOPIC	Groups & Symmetric groups SCORE 10 points
QUIZ TIME	Fri 1 Sep 2017, 3rd Week, Semester 1/2017
TEACHER	Thanatyod Jampawai, Ph.D., Faculty of Education,
	Suan Sunandha Rajabhat University
NAME	ID SECTION

- 1. (3 points) Define a * b = a + b 387 for all $a, b \in \mathbb{Z}$. Prove that $(\mathbb{Z}, *)$ is a group.
- 2. (3 points) Compute inverses for each element in the following groups.
 - 2.1 1112 in $(\mathbb{Z}_{2017}, +)$ 2.2 14 in $(\mathbb{Z}_{15}^{\times}, \cdot)$ 2.3 $\begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$ in $(GL_2(\mathbb{R}), \cdot)$
- 3. (4 points) Compute orders for each element in the following groups.
 - 3.121 in $(\mathbb{Z}_{144}, +)$ 3.3 $\frac{1}{2} i\frac{\sqrt{3}}{2}$ in $(\mathbb{C} \{0\}, \cdot)$ 3.211 in $(\mathbb{Z}_{25}^{\times}, \cdot)$ 3.4(1253)(4325) in (S_5, \circ)

SOLUTION QUIZ 1 : MAT2303 (SEC1)

TOPIC	Groups & Symmetric groups SCORE	10 points
QUIZ TIME	Fri 1 Sep 2017, 3rd Week, Semester 1/20	016
TEACHER	Thanatyod Jampawai, Ph.D., Faculty of Ed	ducation,
	Suan Sunandha Rajabhat University	

1. (3 points) Define a * b = a + b - 387 for all $a, b \in \mathbb{Z}$. Prove that $(\mathbb{Z}, *)$ is a group.

Proof. First, let $a, b, c \in \mathbb{Z}$. Then

$$(a * b) * c = (a + b - 387) * c$$

= (a + b - 387) + c - 387
= a + (b + c - 387) - 387
= a * (b + c - 387)
= a * (b + c - 387)
= a * (b * c).

So, * is associative on \mathbb{Z} . Next, let $a \in \mathbb{Z}$. We obtain

$$a * 387 = a + 387 - 387 = a = 387 + a - 387 = 387 * a.$$

Thus, 387 is the identity. Finally, we will prove that all elements in \mathbb{Z} have inverses. Let $a \in \mathbb{Z}$. We obtain

$$a * (774 - a) = a + (774 - a) - 387 = 387 = a + (774 - a) - 387 = (774 - a) * a$$

Hence, 774 - a is an inverses of a. Therefore, $(\mathbb{Z}, *)$ is a group.

2. (3 points) Compute inverses for each element in the following groups.

- 2.1 1112 in $(\mathbb{Z}_{2017}, +)$ Since 1112 + 905 = 2017 = 0, 905 is the inverse of 1113.
- 2.2 14 in $(\mathbb{Z}_{15}^{\times}, \cdot)$ Since $14 \cdot 14 = 196 = 1$, 14 is the inverse of 14.
- 2.3 $\begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$ in $(GL_2(\mathbb{R}), \cdot)$ Since $\begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$ is the inverse of $\begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}.$
- 3. (4 points) Compute orders for each element in the following groups.

3.1 21 in
$$(\mathbb{Z}_{144}, +)$$

Since $48(21) = 144(7) = 0$, $\circ(21) = 48$.
3.2 11 in $(\mathbb{Z}_{25}^{\times}, \cdot)$
Consider,
$$11^2 = 121 = 21$$
$$11^3 = 11(21) = 231 = 6$$
$$11^4 = 11(6) = 66 = 16$$

$$11^4 = 11(6) = 66 = 16$$

 $11^5 = 11(16) = 176 = 1$

Thus, $\circ(11) = 5$

3.3 $\frac{1}{2} - i\frac{\sqrt{3}}{2}$ in $(\mathbb{C} - \{0\}, \cdot)$ Consider,

$$\begin{pmatrix} \frac{1}{2} - i\frac{\sqrt{3}}{2} \end{pmatrix}^2 = \begin{pmatrix} \frac{1}{2} \end{pmatrix}^2 - 2\begin{pmatrix} \frac{1}{2} \end{pmatrix} \begin{pmatrix} i\frac{\sqrt{3}}{2} \end{pmatrix} + \begin{pmatrix} i\frac{\sqrt{3}}{2} \end{pmatrix}^2 = \frac{1}{4} - i\frac{\sqrt{3}}{2} - \frac{3}{4} = -\frac{1}{2} - i\frac{\sqrt{3}}{2} \\ \begin{pmatrix} \frac{1}{2} - i\frac{\sqrt{3}}{2} \end{pmatrix}^3 = \begin{pmatrix} \frac{1}{2} - i\frac{\sqrt{3}}{2} \end{pmatrix} \begin{pmatrix} \frac{1}{2} - i\frac{\sqrt{3}}{2} \end{pmatrix}^2 = \begin{pmatrix} \frac{1}{2} - i\frac{\sqrt{3}}{2} \end{pmatrix} \begin{pmatrix} -\frac{1}{2} - i\frac{\sqrt{3}}{2} \end{pmatrix} \\ = -\begin{pmatrix} \frac{1}{2} - i\frac{\sqrt{3}}{2} \end{pmatrix} \begin{pmatrix} \frac{1}{2} + i\frac{\sqrt{3}}{2} \end{pmatrix}^2 = -\begin{bmatrix} \begin{pmatrix} \frac{1}{2} \end{pmatrix}^2 - \begin{pmatrix} i\frac{\sqrt{3}}{2} \end{pmatrix}^2 \end{bmatrix} = -1 \\ \begin{pmatrix} \frac{1}{2} - i\frac{\sqrt{3}}{2} \end{pmatrix}^4 = \begin{pmatrix} \frac{1}{2} - i\frac{\sqrt{3}}{2} \end{pmatrix} \begin{pmatrix} \frac{1}{2} - i\frac{\sqrt{3}}{2} \end{pmatrix}^3 = \begin{pmatrix} \frac{1}{2} - i\frac{\sqrt{3}}{2} \end{pmatrix} (-1) = -\frac{1}{2} + i\frac{\sqrt{3}}{2} \\ \begin{pmatrix} \frac{1}{2} - i\frac{\sqrt{3}}{2} \end{pmatrix}^5 = \begin{pmatrix} \frac{1}{2} - i\frac{\sqrt{3}}{2} \end{pmatrix}^3 \begin{pmatrix} \frac{1}{2} - i\frac{\sqrt{3}}{2} \end{pmatrix}^2 = (-1) \begin{pmatrix} -\frac{1}{2} - i\frac{\sqrt{3}}{2} \end{pmatrix} = \frac{1}{2} + i\frac{\sqrt{3}}{2} \\ \begin{pmatrix} \frac{1}{2} - i\frac{\sqrt{3}}{2} \end{pmatrix}^6 = \begin{pmatrix} \frac{1}{2} - i\frac{\sqrt{3}}{2} \end{pmatrix}^3 \begin{pmatrix} \frac{1}{2} - i\frac{\sqrt{3}}{2} \end{pmatrix}^3 = (-1)(-1) = 1 \end{cases}$$

Hence, $\circ(\frac{1}{2} - i\frac{\sqrt{3}}{2}) = 6$ 3.4 (1253)(4325) in (S_5, \circ) Let $\alpha = (1253)(4325)$. Then

$$\alpha = (1\ 2\ 5\ 3)(4\ 3\ 2\ 5) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 1 & 3 & 2 \end{pmatrix}$$

$$\alpha^{2} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 1 & 3 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 1 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 1 & 4 \end{pmatrix}$$

$$\alpha^{3} = \alpha\alpha^{2} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 1 & 3 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 1 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 1 & 2 & 5 & 3 \end{pmatrix}$$

$$\alpha^{4} = \alpha\alpha^{3} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 1 & 3 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 1 & 2 & 5 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 4 & 2 & 1 \end{pmatrix}$$

$$\alpha^{5} = \alpha\alpha^{4} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 1 & 3 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 4 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \end{pmatrix} = (1)$$

Thus, $\circ(\alpha) = 5$.

QUIZ 2 : MAT2303 ABSTRACT ALGEBRA

TOPIC	Subgroups & Lagrange's theorem SCORE 10 points
QUIZ TIME	Thu 14 Sep 2017, 5th Week, Semester $1/2017$
TEACHER	Thanatyod Jampawai, Ph.D., Faculty of Education,
	Suan Sunandha Rajabhat University
NAME	

1. (3 points) Let
$$H = \left\{ \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} : a, b \in \mathbb{R} \text{ and } ab > 0 \right\}$$
. Prove that H is a subgroup of $GL_2(\mathbb{R})$.

2. (3 points) Compute

2.1 the number of all generators of \mathbb{Z}_{43200} 2.2 index of $[\mathbb{Z}_{9000} : \langle 150 \rangle]$

3. (4 points) Find all subgroups and draw lattice diagram of the following groups

3.1 \mathbb{Z}_{36} 3.2 \mathbb{Z}_{27}^{\times}

SOLUTION QUIZ 2 : MAT2303 (SEC2)

TOPIC QUIZ TIME TEACHER Subgroups & Lagrange's theorem **SCORE** 10 points Thu 14 Sep 2017, 5th Week, Semester 1/2017 Thanatyod Jampawai, Ph.D., Faculty of Education, Suan Sunandha Rajabhat University

1. (3 points) Let $H = \left\{ \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} : a, b \in \mathbb{R} \text{ and } ab > 0 \right\}$. Prove that H is a subgroup of $GL_2(\mathbb{R})$.

Proof. We first choose a = b = 1, so ab = 1 > 0. Then, $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ belongs to H. Next, we will show that H is closed. Let $A = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$ and $B = \begin{bmatrix} x & 0 \\ 0 & y \end{bmatrix}$ be elements in H. Then $AB = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} x & 0 \\ 0 & y \end{bmatrix} = \begin{bmatrix} ax & 0 \\ 0 & by \end{bmatrix}$

Since $A, B \in H$, ab > 0 and xy > 0. We conclude that (ax)(by) = (ab)(xy) > 0. Thus, $AB \in H$. Finally, let $A = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$ be in H. Then ab > 0. It follows that $a \neq 0$ and $b \neq 0$. Choose $A^{-1} = \begin{bmatrix} \frac{1}{a} & 0 \\ 0 & \frac{1}{b} \end{bmatrix}$. Then

$$AA^{-1} = \begin{bmatrix} a & 0\\ 0 & b \end{bmatrix} \begin{bmatrix} \frac{1}{a} & 0\\ 0 & \frac{1}{b} \end{bmatrix} = \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{a} & 0\\ 0 & \frac{1}{b} \end{bmatrix} \begin{bmatrix} a & 0\\ 0 & b \end{bmatrix} = A^{-1}A$$

It is easy to see that $\frac{1}{ab} > 0$. Hence, A^{-1} is an inverse of A and belongs to H. Therefore, $H \leq GL_2(\mathbb{R})$. \Box

2. (3 points) Compute

2.1 the number of all generators of \mathbb{Z}_{43200}

The number of all generators of $\mathbb{Z}_{43200} = \phi(43200)$ $= \phi(2^6 \cdot 3^3 \cdot 5^2)$ $= \phi(2^6)\phi(3^3)\phi(5^2)$ $= (2^6 - 2^5)(3^3 - 3^2)(5^2 - 5)$ = (32)(18)(20) $= 11520 \quad \#$

2.2 index of $[\mathbb{Z}_{9000} : \langle 150 \rangle]$ Consider $\langle 150 \rangle = \{0, 150, 300, 450, ..., 9000\}$. Then $\circ(\langle 150 \rangle) = 60$. Thus

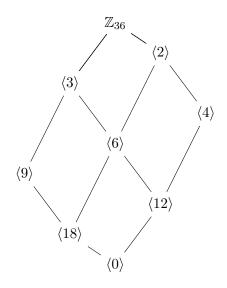
$$[\mathbb{Z}_{9000} : \langle 150 \rangle] = \frac{\circ(\mathbb{Z}_{9000})}{\circ(\langle 150 \rangle)} = \frac{9000}{60} = 150 \quad \#$$

3. (4 points) Find all subgroups and draw lattice diagram of the following groups

 $3.1 \ \mathbb{Z}_{36}$

We choose 1 to be a generator of \mathbb{Z}_{36} . Then all divisors pf 36 are 1, 2, 3, 4, 6, 9, 12, 18, 36. Hence, all subgroups are

$\langle 1 \rangle = \mathbb{Z}_{36}$	$\langle 9 \rangle = \{0,9,18,27\}$
$\langle 2 \rangle = \{0, 2, 4,, 34\}$	$\langle 12 \rangle = \{0, 12, 24\}$
$\langle 3 \rangle = \{0, 3, 6,, 33\}$	$\langle 18 \rangle = \{0, 18\}$
$\langle 4 \rangle = \{0, 4, 8,, 32\}$	
$\langle 6 \rangle = \{0, 6, 12, 18, 24, 30\}$	$\langle 0 \rangle = \{0\}$



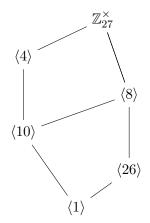
$3.2 \ \mathbb{Z}_{27}^{\times}$

For $\mathbb{Z}_{27}^{\times} = \{1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 20, 22, 23, 25, 26\}$, we consider

$2^0 = 1$	$2^5 = 32 = 5$	$2^{10} = 52 = 25$	$2^{15} = 44 = 17$
$2^1 = 2$	$2^6 = 10$	$2^{11} = 50 = 23$	$2^{16} = 34 = 7$
$2^2 = 4$	$2^7 = 20$	$2^{12} = 46 = 19$	$2^{17} = 14$
$2^3 = 8$	$2^8 = 40 = 13$	$2^{13} = 38 = 11$	
$2^4 = 16$	$2^9 = 26$	$2^{14} = 22$	$2^{18} = 28 = 1$

Hence, $\langle 2 \rangle = \mathbb{Z}_{27}^{\times}$. That is 2 to be a generator of \mathbb{Z}_{27}^{\times} . Since $\circ(\mathbb{Z}_{27}^{\times}) = 18$, all divisors of 18 are 1, 2, 3, 6, 9, 18. Then,

$$\begin{split} \left\langle 2^{\frac{18}{1}} \right\rangle &= \left\langle 2^{18} \right\rangle = \left\langle 1 \right\rangle = \{1\} \\ \left\langle 2^{\frac{18}{2}} \right\rangle &= \left\langle 2^{9} \right\rangle = \left\langle 26 \right\rangle = \{1, 26\} \\ \left\langle 2^{\frac{18}{3}} \right\rangle &= \left\langle 2^{6} \right\rangle = \left\langle 10 \right\rangle = \{1, 10, 19\} \\ \left\langle 2^{\frac{18}{6}} \right\rangle &= \left\langle 2^{3} \right\rangle = \left\langle 8 \right\rangle = \{1, 8, 10, 26, 19, 17\} \\ \left\langle 2^{\frac{18}{9}} \right\rangle &= \left\langle 2^{2} \right\rangle = \left\langle 4 \right\rangle = \{1, 4, 16, 10, 13, 25, 19, 22, 7\} \\ \left\langle 2^{\frac{18}{18}} \right\rangle &= \left\langle 2^{1} \right\rangle = \left\langle 2 \right\rangle = \mathbb{Z}_{27}^{\times} \end{split}$$



QUIZ 2 : MAT2303 ABSTRACT ALGEBRA

TOPIC	Subgroups & Lagrange's theorem SCORE 10 points
QUIZ TIME	Fri 15 Sep 2017, 5th Week, Semester $1/2017$
TEACHER	Thanatyod Jampawai, Ph.D., Faculty of Education,
	Suan Sunandha Rajabhat University
NAME	

1. (3 points) Let
$$H = \left\{ \begin{bmatrix} a & b \\ 0 & \frac{1}{a} \end{bmatrix} : a, b \in \mathbb{R} \text{ and } a \neq 0 \right\}$$
. Prove that H is a subgroup of $GL_2(\mathbb{R})$.

2. (3 points) Compute

2.1 the number of all generators of \mathbb{Z}_{86400} 2.2 index of $[S_6 : \langle (1\,2\,3\,4)(4\,3\,5\,1) \rangle]$

3. (4 points) Find all subgroups and draw lattice diagram of the following groups

 $3.1 \mathbb{Z}_{24} \qquad \qquad 3.2 \mathbb{Z}_{27}^{\times}$

SOLUTION QUIZ 2 : MAT2303 (SEC1)

TOPIC QUIZ TIME TEACHER Subgroups & Lagrange's theorem **SCORE** 10 points Fri 15 Sep 2017, 5th Week, Semester 1/2017 Thanatyod Jampawai, Ph.D., Faculty of Education, Suan Sunandha Rajabhat University

1. (3 points) Let $H = \left\{ \begin{bmatrix} a & b \\ 0 & \frac{1}{a} \end{bmatrix} : a, b \in \mathbb{R} \text{ and } a \neq 0 \right\}$. Prove that H is a subgroup of $GL_2(\mathbb{R})$.

Proof. We first choose a = 1 and b = 0. Then, $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ belongs to H. Next, we will show that H is closed. Let $A = \begin{bmatrix} a & b \\ 0 & \frac{1}{a} \end{bmatrix}$ and $B = \begin{bmatrix} x & y \\ 0 & \frac{1}{x} \end{bmatrix}$ be elements in H. Then $AB = \begin{bmatrix} a & b \\ 0 & \frac{1}{a} \end{bmatrix} \begin{bmatrix} x & y \\ 0 & \frac{1}{x} \end{bmatrix} = \begin{bmatrix} ax & ay + \frac{b}{x} \\ 0 & -\frac{1}{ax} \end{bmatrix}$ Since $A, B \in H$, $a \neq 0$ and $x \neq 0$. We conclude that $ax \neq 0$. Thus, $AB \in H$. Finally, let $A = \begin{bmatrix} a & b \\ 0 & \frac{1}{a} \end{bmatrix}$ be in H. Then $a \neq 0$. Choose $A^{-1} = \begin{bmatrix} \frac{1}{a} & -b \\ 0 & a \end{bmatrix}$. Then $AA^{-1} = \begin{bmatrix} a & b \\ -1 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{a} & -b \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & -b \\ -1 & 0 \end{bmatrix} = A^{-1}A$.

 $AA^{-1} = \begin{bmatrix} a & b \\ 0 & \frac{1}{a} \end{bmatrix} \begin{bmatrix} \frac{1}{a} & -b \\ 0 & a \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{a} & -b \\ 0 & a \end{bmatrix} \begin{bmatrix} a & b \\ 0 & \frac{1}{a} \end{bmatrix} = A^{-1}A.$

Hence, A^{-1} is an inverse of A and belongs to H. Therefore, $H \leq GL_2(\mathbb{R})$.

2. (3 points) Compute

2.1 the number of all generators of \mathbb{Z}_{86400}

The number of all generators of
$$\mathbb{Z}_{43200} = \phi(86400)$$

 $= \phi(2^7 \cdot 3^3 \cdot 5^2)$
 $= \phi(2^7)\phi(3^3)\phi(5^2)$
 $= (2^7 - 2^6)(3^3 - 3^2)(5^2 - 5)$
 $= (64)(18)(20)$
 $= 23040 \quad \#$

2.2 index of $[S_6 : \langle (1\,2\,3\,4)(4\,3\,5\,1)\rangle]$ Consider

$$(1\,2\,3\,4)(4\,3\,5\,1) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 5 & 3 & 4 & 1 & 6 \end{pmatrix} = (1\,2\,5)$$

$$\circ((1\,2\,3\,4)(4\,3\,5\,1)) = 3$$

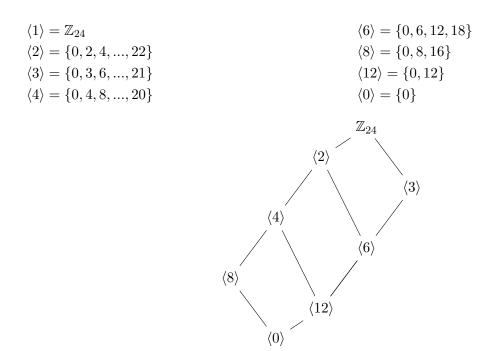
Thus,

$$[S_6: \langle (1\,2\,3\,4)(4\,3\,5\,1)\rangle] = \frac{\circ(S_6)}{\circ((1\,2\,3\,4)(4\,3\,5\,1))} = \frac{6!}{3} = 240 \quad \#$$

3. (4 points) Find all subgroups and draw lattice diagram of the following groups

 $3.1 \ \mathbb{Z}_{24}$

We choose 1 to be a generator of \mathbb{Z}_{24} . Then all divisors pf 24 are 1, 2, 3, 4, 6, 8, 12, 24. Hence, all subgroups are



$3.2 \mathbb{Z}_{27}^{\times}$

For $\mathbb{Z}_{27}^{\times} = \{1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 20, 22, 23, 25, 26\}$, we consider

$2^0 = 1$	$2^5 = 32 = 5$	$2^{10} = 52 = 25$	$2^{15} = 44 = 17$
$2^1 = 2$	$2^6 = 10$	$2^{11} = 50 = 23$	$2^{16} = 34 = 7$
$2^2 = 4$	$2^7 = 20$	$2^{12} = 46 = 19$	
$2^3 = 8$	$2^8 = 40 = 13$	$2^{13} = 38 = 11$	$2^{17} = 14$
$2^4 = 16$	$2^9 = 26$	$2^{14} = 22$	$2^{18} = 28 = 1$

Hence, $\langle 2 \rangle = \mathbb{Z}_{27}^{\times}$. That is 2 to be a generator of \mathbb{Z}_{27}^{\times} . Since $\circ(\mathbb{Z}_{27}^{\times}) = 18$, all divisors of 18 are 1, 2, 3, 6, 9, 18. Then,

$$\left\langle 2^{\frac{18}{1}} \right\rangle = \left\langle 2^{18} \right\rangle = \left\langle 1 \right\rangle = \{1\}$$

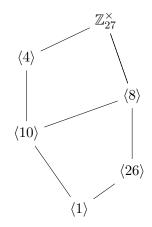
$$\left\langle 2^{\frac{18}{2}} \right\rangle = \left\langle 2^{9} \right\rangle = \left\langle 26 \right\rangle = \{1, 26\}$$

$$\left\langle 2^{\frac{18}{3}} \right\rangle = \left\langle 2^{6} \right\rangle = \left\langle 10 \right\rangle = \{1, 10, 19\}$$

$$\left\langle 2^{\frac{18}{6}} \right\rangle = \left\langle 2^{3} \right\rangle = \left\langle 8 \right\rangle = \{1, 8, 10, 26, 19, 17\}$$

$$\left\langle 2^{\frac{18}{9}} \right\rangle = \left\langle 2^{2} \right\rangle = \left\langle 4 \right\rangle = \{1, 4, 16, 10, 13, 25, 19, 22, 7\}$$

$$\left\langle 2^{\frac{18}{18}} \right\rangle = \left\langle 2^{1} \right\rangle = \left\langle 2 \right\rangle = \mathbb{Z}_{27}^{\times}$$



QUIZ 3 : MAT2303 ABSTRACT ALGEBRA

NT A N (TT)	ID	CECTION
	Suan Sunandha Rajabhat University	
TEACHER	Thanatyod Jampawai, Ph.D., Faculty of Education,	
QUIZ TIME	Fri 3 Nov 2017, 11th Week, Semester $1/2017$	
TOPIC	Rings SCORE 10 points	

- 1. (3 points) Determine $I = \left\{ \begin{bmatrix} 0 & 0 & 0 \\ a & b & c \\ 0 & 0 & 0 \end{bmatrix} : a, b, c \in \mathbb{R} \right\}$ is right ideal or left ideal of $M_{33}(\mathbb{R})$.
- 2. (3 points) Show that $\mathbb{Z}[\sqrt{3}] = \{a + b\sqrt{3} : a, b \in \mathbb{Z}\}$ is a subsring of \mathbb{C} . Show that $\mathbb{Z}[\sqrt{3}]$ has more than 4 elements which are units.
- 3. (4 points) Let $\varphi : \mathbb{Z} \to \mathbb{Z}_3$ be defined by $\varphi(x) = \bar{x}^3$. Show that φ is a ring homomorphism, find $Ker(\varphi)$ and $Im(\varphi)$. Use the first isomorphism theorem to show that $\mathbb{Z}/3\mathbb{Z} \cong \mathbb{Z}_3$

SOLUTION QUIZ 3 : MAT2303

TOPIC QUIZ TIME TEACHER

RingsSCORE10 pointsFri 3 Nov 2017, 11th Week, Semester 1/2017Thanatyod Jampawai, Ph.D., Faculty of Education,
Suan Sunandha Rajabhat University

1. (3 points) Determine
$$I = \left\{ \begin{bmatrix} 0 & 0 & 0 \\ a & b & c \\ 0 & 0 & 0 \end{bmatrix} : a, b, c \in \mathbb{R} \right\}$$
 is right ideal or left ideal of $M_{33}(\mathbb{R})$.
Proof. Let $\begin{bmatrix} x & y & z \\ s & r & t \\ u & w & p \end{bmatrix} \in M_{33}(\mathbb{R})$ and $\begin{bmatrix} 0 & 0 & 0 \\ a & b & c \\ 0 & 0 & 0 \end{bmatrix} \in I$. Then
 $\begin{bmatrix} 0 & 0 & 0 \\ a & b & c \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x & y & z \\ s & r & t \\ u & w & p \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ ax + bs + cu & ay + br + cw & az + bt + cp \\ 0 & 0 & 0 \end{bmatrix} \in I$

Thus, I is a right ideal of $M_{33}(\mathbb{R})$ but not a left ideal because

[1	1	1]	[0	0	0		Γ1	1	1]	
1	1	1	1	1	1	=	1	1	1	$\notin I$
1	1	1	0	0	0		$\lfloor 1$	1	1	$\notin I$

Hence, I is not an ideal of $M_{33}(\mathbb{R})$.

2. (3 points) Show that $\mathbb{Z}[\sqrt{3}] = \{a + b\sqrt{3} : a, b \in \mathbb{Z}\}$ is a subsring of \mathbb{C} . Show that $\mathbb{Z}[\sqrt{3}]$ has more than 4 elements which are units.

Proof. Let $a + b\sqrt{3}, x + y\sqrt{3} \in \mathbb{Z}[\sqrt{3}]$ where $a, b, x, y \in \mathbb{Z}$. Since $a + x, b + y \in \mathbb{Z}$, $(a + b\sqrt{3}) + (x + y\sqrt{3}) = (a + x) + (b + y)\sqrt{3} \in \mathbb{Z}[\sqrt{3}]$

Since $0 = 0 + 0\sqrt{3} \in \mathbb{Z}[\sqrt{3}], 0 \in \mathbb{Z}[\sqrt{3}]$. For each $a + b\sqrt{3}$, we get

$$(a + b\sqrt{3}) + (-a - b\sqrt{3}) = 0$$

and $-a - b\sqrt{3} \in \mathbb{Z}[\sqrt{3}]$. Thus, $(\mathbb{Z}[\sqrt{3}], +)$ is an abelian group. It is obviously that $(\mathbb{Z}[\sqrt{3}], \cdot)$ is associative because $\mathbb{Z}[\sqrt{3} \subseteq \mathbb{R}$. Next, we will show that $(\mathbb{Z}[\sqrt{3}], \cdot)$ is closed. It is easy to see that

$$(a + b\sqrt{3})(x + y\sqrt{3}) = (ax + 3by) + (ay + bx)\sqrt{3} \in \mathbb{Z}[\sqrt{3}]$$

Finally, let $x + y\sqrt{3} \in \mathbb{Z}[\sqrt{3}]$ be an inverse of $a + b\sqrt{3} \in \mathbb{Z}[\sqrt{3}]$ with $a \neq 0$ or $b \neq 0$, we have

$$(a + b\sqrt{3})(x + y\sqrt{3}) = 1$$

 $(ax + 3by) + (ay + bx)\sqrt{3} = 1 + 0\sqrt{3}$

So, ax + 3by = 1 and ay + bx = 0. Suppose a = 0. Then 3by = 1 is imposible. Thus, $a \neq 0$. Then $y = -\frac{bx}{a}$ and we get

$$ax + 3b\left(-\frac{bx}{a}\right) = 1$$
$$x\left(\frac{a^2 - 3b^2}{a}\right) = 1$$
$$x = \frac{a}{a^2 - 3b^2} \in \mathbb{Z} \quad \text{and} \quad y = -\frac{bx}{a} \in \mathbb{Z}$$

- If $a = \pm 1$, then $x = \frac{\pm 1}{1 3b^2}$.
- If $a = \pm 2$, then $x = \frac{\pm 2}{4 3b^2}$.

Thus,

That is
$$1 - 3b^2 = \pm 1$$
. Then $b = 0$
That is $4 - 3b^2 = \pm 1, \pm 2$. Then $b = \pm 1$

Elements	Inverses
-1	-1
1	1
$2+\sqrt{3}$	$-2 + \sqrt{3}$
$2-\sqrt{3}$	$-2 - \sqrt{3}$
$-2 + \sqrt{3}$	$2+\sqrt{3}$
$-2-\sqrt{3}$	$2-\sqrt{3}$

3. (4 points) Let $\varphi : \mathbb{Z} \to \mathbb{Z}_3$ be defined by $\varphi(x) = \overline{x}^3$. Show that φ is a ring homomorphism, find $Ker(\varphi)$ and $Im(\varphi)$. Use the first isomorphism theorem to show that $\mathbb{Z}/3\mathbb{Z} \cong \mathbb{Z}_3$

Proof. Let $x, y \in \mathbb{Z}$. Then

$$\begin{aligned} \varphi(x+y) &= (\overline{x+y})^3 = (\bar{x}+\bar{y})^3 \\ &= \bar{x}^3 + 3\bar{x}^2\bar{y} + 3\bar{x}\bar{y}^2 + \bar{y}^3 = \bar{x}^3 + 0 + 0 + \bar{y}^3 \\ &= \bar{x}^3 + \bar{y}^3 = \varphi(x) + \varphi(y) \\ \varphi(xy) &= \overline{xy}^3 = (\bar{x}\bar{y})^3 = \bar{x}^3\bar{y}^3 \\ &= \varphi(x)\varphi(y) \end{aligned}$$

Thus, φ is a ring homomorphism. Next, we find $Ker(\varphi)$ and $Im(\varphi)$. That is

$$Ker(\varphi) = \{x \in \mathbb{Z} : \varphi(x) = \overline{0}\}$$
$$= \{x \in \mathbb{Z} : \overline{x}^3 = \overline{0}\}$$
$$= 3\mathbb{Z}$$
$$Im(\varphi) = \{y \in \mathbb{Z}_3 : \exists x \in \mathbb{Z}, \varphi(x) = y\}$$
$$= \{y \in \mathbb{Z}_3 : \exists x \in \mathbb{Z}, \overline{x}^3 = y\}$$
$$= \{0, 1, 2\} = \mathbb{Z}_3$$

By the first isomorphism theorem, $\mathbb{Z}/Ker(\varphi) \cong Im(\varphi)$. That is

 $\mathbb{Z}/3\mathbb{Z}\cong\mathbb{Z}_3$

QUIZ 4 : MAT2303 ABSTRACT ALGEBRA

TOPIC	Integral domain SCORE 10 points	
QUIZ TIME	Thur 9 Nov 2017, 13th Week, Semester $1/2017$	
TEACHER	Thanatyod Jampawai, Ph.D., Faculty of Education	n,
	Suan Sunandha Rajabhat University	
NAME	ID	SECTION

- 1. (3 points) Find all maximal ideals and prime ideals of \mathbb{Z}_{2310}
- 2. (3 points) Find all irreducible elements in \mathbb{Z}_{15}
- 3. (4 points) Find all prime elements in \mathbb{Z}_8 by table

	1	2	3	4	5	6	7
1							
2							
3							
4							
5							
6							
7							

SOLUTION QUIZ 4 : MAT2303 (SEC2)

TOPIC QUIZ TIME TEACHER

Integral domain **SCORE** 10 points Thur 9 Nov 2017, 13th Week, Semester 1/2017 Thanatyod Jampawai, Ph.D., Faculty of Education, Suan Sunandha Rajabhat University

- 1. (3 points) Find all maximal ideals and prime ideals of \mathbb{Z}_{2310} Since $2310 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11$, all prime divisors of 2310 are 2, 3, 5, 7, and 11. Thus, all maximal ideals and prime ideals are
 - (2), (3), (5), (7), and (11)
- 2. (3 points) Find all irreducible elements in \mathbb{Z}_{15} All non units are 3, 5, 6, 9, 10 and 12.

•	3	5	6	9	10	12
3	9	0	3	12	0	6
5	0	10	0	0	5	0
6	3	0	6	9	0	12
9	6	10	9	6	0	3
10	0	5	0	0	10	0
12	9	0	12	3	$ \begin{array}{c} 10 \\ 0 \\ 5 \\ 0 \\ 10 \\ 0 \end{array} $	9

There is no irreducible elements in \mathbb{Z}_{15} .

3. (4 points) Find all prime elements in \mathbb{Z}_8 by table

•	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7
2	2	4	6	0	2	4	6
3	3	6	1	4	7	2	5
4	4	0	4	0	4	0	4
5	5	2	7	4	1	6	3
6	6	4	2	0	6	4	2
7	7	6	5	4	3	2	1

All non units are 2, 4 and 6.

- Since $2 \mid x$ for x = 0, 2, 4, 6 (see 2 th row), if $2 \mid ab$, then $2 \mid a$ or $2 \mid b$. Thus, 2 is a prime element.
- Since $4 = 2 \cdot 2$, $4 \mid (2 \cdot 2)$ but $4 \nmid 2$ (see 4th row), 4 is not a prime element.
- Since $6 \mid x$ for x = 0, 2, 4, 6 (see 6 th row), if $6 \mid ab$, then $6 \mid a$ or $6 \mid b$. Thus, 6 is a prime element.

QUIZ 4 : MAT2303 ABSTRACT ALGEBRA

TOPIC	Integral domain SCORE	10 points	
QUIZ TIME	Fri 10 Nov 2017, 13th Week,	Semester $1/2017$	
TEACHER	Thanatyod Jampawai, Ph.D.,	Faculty of Education,	
	Suan Sunandha Rajabhat Univ	versity	
NAME	ID)	SECTION

- 1. (3 points) Find all maximal ideals and prime ideals of \mathbb{Z}_{2418}
- 2. (3 points) Find all irreducible elements in \mathbb{Z}_{16}
- 3. (4 points) Find all prime elements in \mathbb{Z}_{10} by table

	1	2	3	4	5	6	7	8	9
1									
$\frac{2}{3}$									
4									
5									
6									
7									
8									
9									

SOLUTION QUIZ 4 : MAT2303 (SEC1)

TOPIC QUIZ TIME TEACHER Integral domainSCORE10 pointsFri 10 Nov 2017,13th Week,Semester 1/2017Thanatyod Jampawai,Ph.D.,Faculty of Education,Suan Sunandha RajabhatUniversity

- 1. (3 points) Find all maximal ideals and prime ideals of \mathbb{Z}_{2418} Since $2418 = 2 \cdot 3 \cdot 13 \cdot 31$, all prime divisors of 2418 are 2, 3, 13 and 31. Thus, all maximal ideals and prime ideals are
 - (2), (3), (13) and (31)
- 2. (3 points) Find all irreducible elements in \mathbb{Z}_{16} All non unit of \mathbb{Z}_{16} are 2, 4, 6, 8, 10, 12 and 14. Then

•	2	4	6	8	10	12	14
2	4	8	12	0	4	8	12
4	8	0	8	0	8	0	8
6	12	8	4	0	12	8	4
8	0	0	0	0	0	0	0
10	4	8	12	0	4	8	12
12	8	0	8	0	8	0	8
14	12	8	4	0		8	4

In the table, it appears 0, 4, 8 and 12. Hence, 2, 6, 10 and 14 are irreducible.

3. (4 points) Find all prime elements in \mathbb{Z}_{10} by table

•	1	2	3	4	5	6	7	8	9
1	1	2	3	4	5	6	7	8	9
2	2	4	6	8	0	2	4	6	8
3	3	6	9	2	5	8	1	4	7
4	4	8	2	6	0	4	8	2	6
5	5	0	5	0	5	0	5	0	5
6	6	2	8	4	0	6	2	8	4
7	7	4	1	8	5	2	9	6	3
8	8	6	4	2	0	8	6	4	2
9	9	8	7	6	5	4	3	2	1

All non units are 2, 4, 5, 6 and 8.

- Since $2 \mid x$ for x = 0, 2, 4, 6, 8 (see 2 th row), if $2 \mid ab$, then $2 \mid a$ or $2 \mid b$. Thus, 2 is a prime element.
- Since $4 \mid x$ for x = 0, 2, 4, 6, 8 (see 4 th row), if $4 \mid ab$, then $4 \mid a$ or $4 \mid b$. Thus, 4 is a prime element.
- Since $5 \mid x$ for x = 0, 5 (see 5 th row), if $5 \mid ab$, then $5 \mid a$ or $5 \mid b$. Thus, 5 is a prime element.
- Since $6 \mid x$ for x = 0, 2, 4, 6, 8 (see 6 th row), if $6 \mid ab$, then $6 \mid a$ or $6 \mid b$. Thus, 6 is a prime element.
- Since $8 \mid x$ for x = 0, 2, 4, 6, 8 (see 8 th row), if $8 \mid ab$, then $8 \mid a$ or $8 \mid b$. Thus, 8 is a prime element.