QUIZ 1 : MAT2303 ABSTRACT ALGEBRA

- 1. **(3 points)** Define $a * b = 7ab$ for all $a, b \in \mathbb{Q}^+$. Prove that $(\mathbb{Q}^+, *)$ is a group.
- 2. **(3 points)** Compute **inverses** for each element in the following groups.
	- 2.1 543 in $(\mathbb{Z}_{2560}, +)$ 2.2 7 in $(\mathbb{Z}_{15}^{\times}, \cdot)$ $\frac{1}{15}$, \cdot) 2.3 $(1\,2\,3\,4)^3$ in (S_4, \circ)
- 3. **(4 points)** Compute **orders** for each element in the following groups.

SOLUTION QUIZ 1 : MAT2303 (SEC2)

1. **(3 points)** Define $a * b = 7ab$ for all $a, b \in \mathbb{Q}^+$. Prove that $(\mathbb{Q}^+, *)$ is a group.

Proof. First, let $a, b, c \in \mathbb{Q}^+$. Then

$$
(a * b) * c = (7ab) * c = 7(7ab)c = 7(a)(7bc) = a * (7bc) = a * (b * c).
$$

So, $*$ is associative on \mathbb{Q}^+ . Next, let $a \in \mathbb{Q}^+$. We obtain

$$
a * \frac{1}{7} = 7a(\frac{1}{7}) = a = 7(\frac{1}{7})a = \frac{1}{7} * a.
$$

Thus, $\frac{1}{7}$ is the identity. Finally, we will prove that all elements in \mathbb{Q}^+ have inverses. Let $a \in \mathbb{Q}^+$. Since *a* in a nonzero rational number, $\frac{1}{49a}$ is a positive rational number. We get

$$
a*(\frac{1}{49a})=7a(\frac{1}{49a})=\frac{1}{7}=7(\frac{1}{49a})a=\frac{1}{49a}*a.
$$

Hence, $\frac{1}{49a}$ ia an inverses of *a*. Therefore, $(\mathbb{Q}^+, *)$ is a group.

- 2. **(3 points)** Compute **inverses** for each element in the following groups.
	- 2.1 543 in $(\mathbb{Z}_{2560}, +)$ Since $543 + 2017 = 2560 = 0$, 2017 is the inverse of 345.
	- 2.2 7 in $(\mathbb{Z}_{15}^{\times}, \cdot)$ Since $7 \cdot 13 = 91 = 1$, 13 is the inverse of 7.
	- 2.3 $(1\,2\,3\,4)^3$ in (S_4, \circ) Let $\alpha = (1\,2\,3\,4)^3$. Then,

$$
\alpha = (1\ 2\ 3\ 4)^3 = (1\ 2\ 3\ 4)(1\ 2\ 3\ 4)(1\ 2\ 3\ 4) = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix}
$$

$$
\alpha^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} = (1\ 2\ 3\ 4)
$$

Hence, $(1\,2\,3\,4)$ is the inverse of $(1\,2\,3\,4)^3$.

3. **(4 points)** Compute **orders** for each element in the following groups.

3.1 9 in
$$
(\mathbb{Z}_{144}, +)
$$

\nSince $16(9) = 144 = 0$, $\circ(9) = 16$.

\n3.2 5 in $(\mathbb{Z}_{21}^{\times}, \cdot)$

\nConsider,

\n
$$
5^{2} = 25 = 4
$$
\n
$$
5^{3} = 5(4) = 20
$$
\n
$$
5^{4} = 5(20) = 100 = 16
$$
\n
$$
5^{5} = 5(16) = 80 = 17
$$
\n
$$
5^{6} = 5(17) = 85 = 1
$$

Thus, $\circ(5) = 6$

3.3 $\frac{1}{2} + i\frac{\sqrt{3}}{2}$ $\frac{\sqrt{3}}{2}$ in $(\mathbb{C} - \{0\}, \cdot)$ Consider,

$$
\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)^2 = \left(\frac{1}{2}\right)^2 + 2\left(\frac{1}{2}\right)\left(i\frac{\sqrt{3}}{2}\right) + \left(i\frac{\sqrt{3}}{2}\right)^2 = \frac{1}{4} + i\frac{\sqrt{3}}{2} - \frac{3}{4} = -\frac{1}{2} + i\frac{\sqrt{3}}{2}
$$

$$
\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)^3 = \left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)^2 = \left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)\left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)
$$

$$
= \left(i\frac{\sqrt{3}}{2}\right)^2 - \left(\frac{1}{2}\right)^2 = -1
$$

$$
\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)^4 = \left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)^3 = \left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)(-1) = -\frac{1}{2} - i\frac{\sqrt{3}}{2}
$$

$$
\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)^5 = \left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)^3 \left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)^2 = (-1)\left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right) = \frac{1}{2} - i\frac{\sqrt{3}}{2}
$$

$$
\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)^6 = \left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)^3 \left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)^3 = (-1)(-1) = 1
$$

Hence, $\circ(\frac{1}{2} + i\frac{\sqrt{3}}{2})$ $\frac{\sqrt{3}}{2}$) = 6

3.4 $(1\,2\,4\,3)(3\,4\,2\,5)$ in (S_5, \circ) Let $\alpha = (1\,2\,4\,3)(3\,4\,2\,5)$. Then

$$
\alpha = (1243)(3425) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 2 & 1 & 4 & 3 \end{pmatrix}
$$

\n
$$
\alpha^2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 2 & 1 & 4 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 2 & 1 & 4 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 5 & 4 & 1 \end{pmatrix}
$$

\n
$$
\alpha^3 = \alpha \alpha^2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 2 & 1 & 4 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 5 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \end{pmatrix} = (1)
$$

Thus, $\circ(\alpha) = 3$.

QUIZ 1 : MAT2303 ABSTRACT ALGEBRA

- 1. **(3 points)** Define $a * b = a + b 387$ for all $a, b \in \mathbb{Z}$. Prove that $(\mathbb{Z}, *)$ is a group.
- 2. **(3 points)** Compute **inverses** for each element in the following groups.
	- 2.1 1112 in $(\mathbb{Z}_{2017}, +)$ $\frac{\times}{15}, \cdot)$ $2.3\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ 0 *−*1] in $(GL_2(\mathbb{R}), \cdot)$
- 3. **(4 points)** Compute **orders** for each element in the following groups.
	- 3.1 21 in $(\mathbb{Z}_{144}, +)$ 3.2 11 in $(\mathbb{Z}_{25}^{\times}, \cdot)$ 3.3 $\frac{1}{2} - i\frac{\sqrt{3}}{2}$ $\frac{\sqrt{3}}{2}$ in (**ℂ** − {0}, ·) 3.4 $(1\,2\,5\,3)(4\,3\,2\,5)$ in (S_5, \circ)

SOLUTION QUIZ 1 : MAT2303 (SEC1)

1. **(3 points)** Define $a * b = a + b - 387$ for all $a, b \in \mathbb{Z}$. Prove that $(\mathbb{Z}, *)$ is a group.

Proof. First, let $a, b, c \in \mathbb{Z}$. Then

$$
(a * b) * c = (a + b - 387) * c
$$

= (a + b - 387) + c - 387
= a + (b + c - 387) - 387
= a * (b + c - 387)
= a * (b * c).

So, $*$ is associative on \mathbb{Z} . Next, let $a \in \mathbb{Z}$. We obtain

$$
a * 387 = a + 387 - 387 = a = 387 + a - 387 = 387 * a.
$$

Thus, 387 is the identity. Finally, we will prove that all elements in $\mathbb Z$ have inverses. Let $a \in \mathbb Z$. We obtain

$$
a * (774 - a) = a + (774 - a) - 387 = 387 = a + (774 - a) - 387 = (774 - a) * a.
$$

 $11⁵ = 11(16) = 176 = 1$

Hence, $774 - a$ ia an inverses of *a*. Therefore, $(\mathbb{Z}, *)$ is a group.

2. **(3 points)** Compute **inverses** for each element in the following groups.

- 2.1 1112 in $(\mathbb{Z}_{2017}, +)$ Since $1112 + 905 = 2017 = 0$, 905 is the inverse of 1113.
- 2.2 14 in $(\mathbb{Z}_{15}^{\times}, \cdot)$ Since $14 \cdot 14 = 196 = 1$, 14 is the inverse of 14.
- $2.3\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ 0 *−*1] in $(GL_2(\mathbb{R}), \cdot)$ Since $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ 0 *−*1 $\begin{bmatrix} 1 & 1 \end{bmatrix}$ 0 *−*1] = $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 \end{bmatrix}$ 0 *−*1 is the inverse of $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ 0 *−*1] .
- 3. **(4 points)** Compute **orders** for each element in the following groups.

3.1 21 in
$$
(\mathbb{Z}_{144}, +)
$$

\nSince $48(21) = 144(7) = 0$, $\circ(21) = 48$.

\n3.2 11 in $(\mathbb{Z}_{25}^{\times}, \cdot)$

\nConsider,

\n
$$
11^{2} = 121 = 21
$$
\n
$$
11^{3} = 11(21) = 231 = 6
$$
\n
$$
11^{4} = 11(6) = 66 = 16
$$

Thus, $\circ(11) = 5$

3.3 $\frac{1}{2} - i\frac{\sqrt{3}}{2}$ $\frac{\sqrt{3}}{2}$ in $(\mathbb{C} - \{0\}, \cdot)$ Consider,

$$
\left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)^2 = \left(\frac{1}{2}\right)^2 - 2\left(\frac{1}{2}\right)\left(i\frac{\sqrt{3}}{2}\right) + \left(i\frac{\sqrt{3}}{2}\right)^2 = \frac{1}{4} - i\frac{\sqrt{3}}{2} - \frac{3}{4} = -\frac{1}{2} - i\frac{\sqrt{3}}{2}
$$

$$
\left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)^3 = \left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)\left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)^2 = \left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)\left(-\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)
$$

$$
= -\left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right) = -\left[\left(\frac{1}{2}\right)^2 - \left(i\frac{\sqrt{3}}{2}\right)^2\right] = -1
$$

$$
\left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)^4 = \left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)\left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)^3 = \left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)(-1) = -\frac{1}{2} + i\frac{\sqrt{3}}{2}
$$

$$
\left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)^5 = \left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)^3 \left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)^2 = (-1)\left(-\frac{1}{2} - i\frac{\sqrt{3}}{2}\right) = \frac{1}{2} + i\frac{\sqrt{3}}{2}
$$

$$
\left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)^6 = \left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)^3 \left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)^3 = (-1)(-1) = 1
$$

Hence, $\circ(\frac{1}{2} - i\frac{\sqrt{3}}{2})$ $\frac{\sqrt{3}}{2}$) = 6 3.4 $(1\,2\,5\,3)(4\,3\,2\,5)$ in (S_5, \circ) Let $\alpha = (1\,2\,5\,3)(4\,3\,2\,5)$. Then

$$
\alpha = (1253)(4325) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 1 & 3 & 2 \end{pmatrix}
$$

\n
$$
\alpha^2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 1 & 3 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 1 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 1 & 4 \end{pmatrix}
$$

\n
$$
\alpha^3 = \alpha \alpha^2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 1 & 3 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 1 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 1 & 2 & 5 & 3 \end{pmatrix}
$$

\n
$$
\alpha^4 = \alpha \alpha^3 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 1 & 3 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 1 & 2 & 5 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 4 & 2 & 1 \end{pmatrix}
$$

\n
$$
\alpha^5 = \alpha \alpha^4 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 1 & 3 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 4 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \end{pmatrix} = (1)
$$

Thus, $\circ(\alpha) = 5$.

QUIZ 2 : MAT2303 ABSTRACT ALGEBRA

1. **(3 points)** Let $H = \begin{cases} \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$ 0 *b*] : $a, b \in \mathbb{R}$ and $ab > 0$ λ . Prove that *H* is a **subgroup** of $GL_2(\mathbb{R})$.

2. **(3 points)** Compute

2.1 the **number of all generators** of \mathbb{Z}_{43200} 2.2 **index** of $[\mathbb{Z}_{9000} : \langle 150 \rangle]$

3. **(4 points)** Find **all subgroups** and draw **lattice diagram** of the following groups

3.1 \mathbb{Z}_{36} *×* 27

SOLUTION QUIZ 2 : MAT2303 (SEC2)

TOPIC Subgroups & Lagrange's theorem **SCORE** 10 points **QUIZ TIME** Thu 14 Sep 2017, 5th Week, Semester 1/2017 **TEACHER** Thanatyod Jampawai, Ph.D., Faculty of Education, Suan Sunandha Rajabhat University

1. **(3 points)** Let $H = \begin{cases} \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$ 0 *b*] : $a, b \in \mathbb{R}$ and $ab > 0$ λ . Prove that *H* is a **subgroup** of $GL_2(\mathbb{R})$.

Proof. We first choose $a = b = 1$, so $ab = 1 > 0$. Then, $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ belongs to *H*. Next, we will show that *H* is closed. Let $A =$ [*a* 0 0 *b*] and $B =$ $\begin{bmatrix} x & 0 \\ \end{bmatrix}$ 0 *y*] be elements in *H*. Then $AB =$ [*a* 0 0 *b* $\begin{bmatrix} x & 0 \\ 0 & 0 \end{bmatrix}$ 0 *y*] = $\begin{bmatrix} ax & 0 \\ 0 & by \end{bmatrix}$

Since $A, B \in H$, $ab > 0$ and $xy > 0$. We conclude that $(ax)(by) = (ab)(xy) > 0$. Thus, $AB \in H$. Finally, let $A =$ [*a* 0 0 *b* be in *H*. Then $ab > 0$. It follows that $a \neq 0$ and $b \neq 0$. Choose $A^{-1} = \begin{bmatrix} \frac{1}{a} & 0 \\ 0 & 1 \end{bmatrix}$ $\overline{0}$ $\frac{1}{b}$ *b*] . Then

$$
AA^{-1} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} \frac{1}{a} & 0 \\ 0 & \frac{1}{b} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{a} & 0 \\ 0 & \frac{1}{b} \end{bmatrix} \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} = A^{-1}A.
$$

It is easy to see that $\frac{1}{ab} > 0$. Hence, A^{-1} is an inverse of *A* and belongs to *H*. Therefore, $H \le GL_2(\mathbb{R})$.

2. **(3 points)** Compute

2.1 the **number of all generators** of \mathbb{Z}_{43200}

The number of all generators of $\mathbb{Z}_{43200} = \phi(43200)$ $= \phi(2^6 \cdot 3^3 \cdot 5^2)$ $= \phi(2^6)\phi(3^3)\phi(5^2)$ $=(2^6-2^5)(3^3-3^2)(5^2-5)$ $= (32)(18)(20)$ $= 11520$ #

2.2 **index** of $[\mathbb{Z}_{9000} : \langle 150 \rangle]$ Consider $\langle 150 \rangle = \{0, 150, 300, 450, ..., 9000\}$. Then $\circ (\langle 150 \rangle) = 60$. Thus

$$
[\mathbb{Z}_{9000} : \langle 150 \rangle] = \frac{\circ (\mathbb{Z}_{9000})}{\circ (\langle 150 \rangle)} = \frac{9000}{60} = 150 \quad #
$$

3. **(4 points)** Find **all subgroups** and draw **lattice diagram** of the following groups

3.1 \mathbb{Z}_{36}

We choose 1 to be a generator of \mathbb{Z}_{36} . Then all divisors pf 36 are 1, 2, 3, 4, 6, 9, 12, 18, 36. Hence, all subgroups are

$$
3.2\ \mathbb{Z}_{27}^\times
$$

For $\mathbb{Z}_{27}^{\times} = \{1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 20, 22, 23, 25, 26\}$, we consider

Hence, $\langle 2 \rangle = \mathbb{Z}_{27}^{\times}$. That is 2 to be a generator of \mathbb{Z}_{27}^{\times} . Since $\circ(\mathbb{Z}_{27}^{\times}) = 18$, all divisors of 18 are 1, 2, 3, 6, 9, 18. Then,

$$
\left\langle 2^{\frac{18}{1}} \right\rangle = \left\langle 2^{18} \right\rangle = \left\langle 1 \right\rangle = \{1\}
$$

$$
\left\langle 2^{\frac{18}{2}} \right\rangle = \left\langle 2^{9} \right\rangle = \left\langle 26 \right\rangle = \{1, 26\}
$$

$$
\left\langle 2^{\frac{18}{3}} \right\rangle = \left\langle 2^{6} \right\rangle = \left\langle 10 \right\rangle = \{1, 10, 19\}
$$

$$
\left\langle 2^{\frac{18}{6}} \right\rangle = \left\langle 2^{3} \right\rangle = \left\langle 8 \right\rangle = \{1, 8, 10, 26, 19, 17\}
$$

$$
\left\langle 2^{\frac{18}{9}} \right\rangle = \left\langle 2^{2} \right\rangle = \left\langle 4 \right\rangle = \{1, 4, 16, 10, 13, 25, 19, 22, 7\}
$$

$$
\left\langle 2^{\frac{18}{18}} \right\rangle = \left\langle 2^{1} \right\rangle = \left\langle 2 \right\rangle = \mathbb{Z}_{27}^{\times}
$$

QUIZ 2 : MAT2303 ABSTRACT ALGEBRA

1. **(3 points)** Let $H = \begin{cases} \begin{bmatrix} a & b \end{bmatrix}$ $0 \frac{1}{a}$ *a* $\Big]$: $a, b \in \mathbb{R}$ and $a \neq 0$. Prove that *H* is a **subgroup** of $GL_2(\mathbb{R})$.

2. **(3 points)** Compute

2.1 the **number of all generators** of \mathbb{Z}_{86400} 2.2 **index** of $[S_6 : \langle (1\,2\,3\,4)(4\,3\,5\,1) \rangle]$

3. **(4 points)** Find **all subgroups** and draw **lattice diagram** of the following groups

3.1 \mathbb{Z}_{24} *×* 27

SOLUTION QUIZ 2 : MAT2303 (SEC1)

TOPIC Subgroups & Lagrange's theorem **SCORE** 10 points **QUIZ TIME** Fri 15 Sep 2017, 5th Week, Semester 1/2017 **TEACHER** Thanatyod Jampawai, Ph.D., Faculty of Education, Suan Sunandha Rajabhat University

1. **(3 points)** Let $H = \begin{cases} \begin{bmatrix} a & b \end{bmatrix}$ $0 \frac{1}{a}$ *a* $\Big]$: $a, b \in \mathbb{R}$ and $a \neq 0$. Prove that *H* is a **subgroup** of $GL_2(\mathbb{R})$.

Proof. We first choose $a = 1$ and $b = 0$. Then, $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ belongs to *H*. Next, we will show that *H* is closed. Let $A =$ [*a b* $0 \frac{1}{a}$ *a*] and $B =$ [*x y* $0 \frac{1}{r}$ *x*] be elements in *H*. Then $AB =$ [*a b* $0 \frac{1}{a}$ *a*] [*x y* $0 \frac{1}{r}$ *x*] = $\int ax \, ay + \frac{b}{x}$ $\begin{array}{cc} 0 & \frac{1}{x} \\ 0 & \frac{1}{x} \end{array}$ *ax*] Since $A, B \in H$, $a \neq 0$ and $x \neq 0$. We conclude that $ax \neq 0$. Thus, $AB \in H$. Finally, let $A =$ $\begin{bmatrix} a & b \end{bmatrix}$ $0 \frac{1}{a}$ *a* $\left[\begin{array}{cc} \n\frac{1}{a} & -b \\
\frac{1}{b} & -\frac{b}{c} \\
\frac{1}{c} & -\frac$ 0 *a*] . Then $AA^{-1} = \begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix}$ $0 \frac{1}{a}$ $\left| \begin{array}{cc} \frac{1}{a} & -b \end{array} \right|$] = $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} =$ $\begin{bmatrix} \frac{1}{a} & -b \end{bmatrix}$] [*a b* $0 \frac{1}{a}$] $= A^{-1}A$.

a 0 *a* 0 *a a*

Hence, A^{-1} is an inverse of *A* and belongs to *H*. Therefore, $H \le GL_2(\mathbb{R})$.

2. **(3 points)** Compute

2.1 the **number of all generators** of \mathbb{Z}_{86400}

The number of all generators of
$$
\mathbb{Z}_{43200} = \phi(86400)
$$

\n
$$
= \phi(2^7 \cdot 3^3 \cdot 5^2)
$$
\n
$$
= \phi(2^7)\phi(3^3)\phi(5^2)
$$
\n
$$
= (2^7 - 2^6)(3^3 - 3^2)(5^2 - 5)
$$
\n
$$
= (64)(18)(20)
$$
\n
$$
= 23040 \quad \#
$$

2.2 **index** of $[S_6 : \langle (1\,2\,3\,4)(4\,3\,5\,1) \rangle]$ Consider

$$
(1\ 2\ 3\ 4)(4\ 3\ 5\ 1) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 5 & 3 & 4 & 1 & 6 \end{pmatrix} = (1\ 2\ 5)
$$

$$
\circ((1\ 2\ 3\ 4)(4\ 3\ 5\ 1)) = 3
$$

Thus,

$$
[S_6: \langle (1\,2\,3\,4)(4\,3\,5\,1) \rangle] = \frac{\circ(S_6)}{\circ((1\,2\,3\,4)(4\,3\,5\,1))} = \frac{6!}{3} = 240 \quad \#
$$

3. **(4 points)** Find **all subgroups** and draw **lattice diagram** of the following groups

3.1 \mathbb{Z}_{24}

We choose 1 to be a generator of \mathbb{Z}_{24} . Then all divisors pf 24 are 1, 2, 3, 4, 6, 8, 12, 24. Hence, all subgroups are

3.2 \mathbb{Z}_{27}^{\times}

For $\mathbb{Z}_{27}^{\times} = \{1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 20, 22, 23, 25, 26\}$, we consider

*⟨*0*⟩*

*⟨*12*⟩*

*⟨*3*⟩*

Hence, $\langle 2 \rangle = \mathbb{Z}_{27}^{\times}$. That is 2 to be a generator of \mathbb{Z}_{27}^{\times} . Since $\circ(\mathbb{Z}_{27}^{\times}) = 18$, all divisors of 18 are 1, 2, 3, 6, 9, 18. Then,

$$
\left\langle 2^{\frac{18}{1}} \right\rangle = \left\langle 2^{18} \right\rangle = \left\langle 1 \right\rangle = \{1\}
$$

\n
$$
\left\langle 2^{\frac{18}{2}} \right\rangle = \left\langle 2^{9} \right\rangle = \left\langle 26 \right\rangle = \{1, 26\}
$$

\n
$$
\left\langle 2^{\frac{18}{3}} \right\rangle = \left\langle 2^{6} \right\rangle = \left\langle 10 \right\rangle = \{1, 10, 19\}
$$

\n
$$
\left\langle 2^{\frac{18}{6}} \right\rangle = \left\langle 2^{3} \right\rangle = \left\langle 8 \right\rangle = \{1, 8, 10, 26, 19, 17\}
$$

\n
$$
\left\langle 2^{\frac{18}{9}} \right\rangle = \left\langle 2^{2} \right\rangle = \left\langle 4 \right\rangle = \{1, 4, 16, 10, 13, 25, 19, 22, 7\}
$$

\n
$$
\left\langle 2^{\frac{18}{18}} \right\rangle = \left\langle 2^{1} \right\rangle = \left\langle 2 \right\rangle = \mathbb{Z}_{27}^{\times}
$$

QUIZ 3 : MAT2303 ABSTRACT ALGEBRA

NAME.. **ID**..................................... **SECTION**.......................

- 1. **(3 points)** Determine $I =$ $\sqrt{ }$ $\frac{1}{2}$ \mathcal{L} $\sqrt{ }$ $\overline{1}$ 0 0 0 *a b c* 0 0 0 ן $\big| : a, b, c \in \mathbb{R}$ \mathbf{A} \mathbf{I} \mathbf{J} is right ideal or left ideal of $M_{33}(\mathbb{R})$.
- 2. **(3 points)** Show that Z[*√* $[3] = \{a + b\}$ *√* $3: a, b \in \mathbb{Z}$ is a subsring of \mathbb{C} . Show that \mathbb{Z} [*√* 3] has more than 4 elements which are units.
- 3. **(4 points)** Let $\varphi : \mathbb{Z} \to \mathbb{Z}_3$ be defined by $\varphi(x) = \bar{x}^3$. Show that φ is a ring homomorphism, find $Ker(\varphi)$ and *Im*(φ). Use the first isomorphism theorem to show that $\mathbb{Z}/3\mathbb{Z} \cong \mathbb{Z}_3$

SOLUTION QUIZ 3 : MAT2303

TOPIC Rings **SCORE** 10 points **QUIZ TIME** Fri 3 Nov 2017, 11th Week, Semester 1/2017 **TEACHER** Thanatyod Jampawai, Ph.D., Faculty of Education, Suan Sunandha Rajabhat University

1. **(3 points)** Determine
$$
I = \left\{ \begin{bmatrix} 0 & 0 & 0 \\ a & b & c \\ 0 & 0 & 0 \end{bmatrix} : a, b, c \in \mathbb{R} \right\}
$$
 is right ideal or left ideal of $M_{33}(\mathbb{R})$.
\n*Proof.* Let $\begin{bmatrix} x & y & z \\ s & r & t \\ u & w & p \end{bmatrix} \in M_{33}(\mathbb{R})$ and $\begin{bmatrix} 0 & 0 & 0 \\ a & b & c \\ 0 & 0 & 0 \end{bmatrix} \in I$. Then
\n
$$
\begin{bmatrix} 0 & 0 & 0 \\ a & b & c \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x & y & z \\ s & r & t \\ u & w & p \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ ax + bs + cu & ay + br + cw & az + bt + cp \\ 0 & 0 & 0 \end{bmatrix} \in I
$$

Thus, *I* is a right ideal of $M_{33}(\mathbb{R})$ but not a left ideal because

Hence, *I* is not an ideal of $M_{33}(\mathbb{R})$.

2. **(3 points)** Show that Z[*√* $3 = \{a + b\}$ *√* $3: a, b \in \mathbb{Z}$ is a subsring of \mathbb{C} . Show that \mathbb{Z} [*√* 3] has more than 4 elements which are units.

Proof. Let
$$
a + b\sqrt{3}
$$
, $x + y\sqrt{3} \in \mathbb{Z}[\sqrt{3}]$ where $a, b, x, y \in \mathbb{Z}$. Since $a + x, b + y \in \mathbb{Z}$,
\n
$$
(a + b\sqrt{3}) + (x + y\sqrt{3}) = (a + x) + (b + y)\sqrt{3} \in \mathbb{Z}[\sqrt{3}]
$$

Since $0 = 0 + 0\sqrt{3} \in \mathbb{Z}$ *√* 3], 0 *∈* Z[*√* 3 . For each $a + b$ *√* 3, we get

$$
(a + b\sqrt{3}) + (-a - b\sqrt{3}) = 0
$$

and *−a − b √* 3 *∈* Z[*√* 3]. Thus, (Z[*√* 3 , +) is an abelian group. It is obviously that (\mathbb{Z}) *√* $b\sqrt{3} \in \mathbb{Z}[\sqrt{3}]$. Thus, $(\mathbb{Z}[\sqrt{3}], +)$ is an abelian group. It is obviously that $(\mathbb{Z}[\sqrt{3}], \cdot)$ is associative because $\mathbb{Z}[\sqrt{3} \subseteq \mathbb{R}$. Next, we will show that $(\mathbb{Z}[\sqrt{3}], \cdot)$ is closed. It is easy to see that

$$
(a+b\sqrt{3})(x+y\sqrt{3}) = (ax+3by) + (ay+bx)\sqrt{3} \in \mathbb{Z}[\sqrt{3}]
$$

 \Box

Finally, let $x + y$ *√* 3 *∈* Z[*√* 3 be an inverse of $a + b$ *√* 3 *∈* Z[*√* 3] with $a \neq 0$ or $b \neq 0$, we have

$$
(a+b\sqrt{3})(x+y\sqrt{3}) = 1
$$

$$
(ax+3by)+(ay+bx)\sqrt{3} = 1+0\sqrt{3}
$$

So, $ax + 3by = 1$ and $ay + bx = 0$. Suppose $a = 0$. Then $3by = 1$ is imposible. Thus, $a \neq 0$. Then $y = -\frac{bx}{a}$ *a* and we get

$$
ax + 3b\left(-\frac{bx}{a}\right) = 1
$$

$$
x\left(\frac{a^2 - 3b^2}{a}\right) = 1
$$

$$
x = \frac{a}{a^2 - 3b^2} \in \mathbb{Z} \text{ and } y = -\frac{bx}{a} \in \mathbb{Z}
$$

- If $a = \pm 1$, then $x = \frac{\pm 1}{1-3i}$ 1*−*3*b*
- If $a = \pm 2$, then $x = \frac{\pm 2}{4 3i}$ 4*−*3*b*

Thus,

3. **(4 points)** Let $\varphi : \mathbb{Z} \to \mathbb{Z}_3$ be defined by $\varphi(x) = \bar{x}^3$. Show that φ is a ring homomorphism, find $Ker(\varphi)$ and *Im*(φ). Use the first isomorphism theorem to show that $\mathbb{Z}/3\mathbb{Z} \cong \mathbb{Z}_3$

Proof. Let $x, y \in \mathbb{Z}$. Then

$$
\varphi(x + y) = (\overline{x + y})^3 = (\bar{x} + \bar{y})^3 \n= \bar{x}^3 + 3\bar{x}^2\bar{y} + 3\bar{x}\bar{y}^2 + \bar{y}^3 = \bar{x}^3 + 0 + 0 + \bar{y}^3 \n= \bar{x}^3 + \bar{y}^3 = \varphi(x) + \varphi(y) \n\varphi(xy) = \overline{x}\overline{y}^3 = (\bar{x}\bar{y})^3 = \bar{x}^3\bar{y}^3 \n= \varphi(x)\varphi(y)
$$

Thus, φ is a ring homomorphism. Next, we find $Ker(\varphi)$ and $Im(\varphi)$. That is

$$
Ker(\varphi) = \{x \in \mathbb{Z} : \varphi(x) = \overline{0}\}
$$

$$
= \{x \in \mathbb{Z} : \overline{x}^3 = \overline{0}\}
$$

$$
= 3\mathbb{Z}
$$

$$
Im(\varphi) = \{y \in \mathbb{Z}_3 : \exists x \in \mathbb{Z}, \varphi(x) = y\}
$$

$$
= \{y \in \mathbb{Z}_3 : \exists x \in \mathbb{Z}, \overline{x}^3 = y\}
$$

$$
= \{0, 1, 2\} = \mathbb{Z}_3
$$

By the first isomorphism theorem, $\mathbb{Z}/Ker(\varphi) \cong Im(\varphi)$. That is

Z/3Z *∼*= Z³

QUIZ 4 : MAT2303 ABSTRACT ALGEBRA

- 1. **(3 points)** Find all maximal ideals and prime ideals of \mathbb{Z}_{2310}
- 2. **(3 points)** Find all irreducible elements in \mathbb{Z}_{15}
- 3. (4 points) Find all prime elements in \mathbb{Z}_8 by table

SOLUTION QUIZ 4 : MAT2303 (SEC2)

TOPIC Integral domain **SCORE** 10 points **QUIZ TIME** Thur 9 Nov 2017, 13th Week, Semester 1/2017 **TEACHER** Thanatyod Jampawai, Ph.D., Faculty of Education, Suan Sunandha Rajabhat University

- 1. **(3 points)** Find all maximal ideals and prime ideals of \mathbb{Z}_{2310} Since $2310 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11$, all prime divisors of 2310 are 2, 3, 5, 7, and 11. Thus, all maximal ideals and prime ideals are
	- $(2), (3), (5), (7), \text{and} (11)$
- 2. **(3 points)** Find all irreducible elements in \mathbb{Z}_{15} All non units are 3, 5, 6, 9, 10 and 12.

There is no irreducible elements in \mathbb{Z}_{15} .

3. **(4 points)** Find all prime elements in \mathbb{Z}_8 by table

All non units are 2, 4 and 6.

- Since $2 | x$ for $x = 0, 2, 4, 6$ (see 2 th row), if $2 | ab$, then $2 | a$ or $2 | b$. Thus, 2 is a prime element.
- Since $4 = 2 \cdot 2$, $4 \mid (2 \cdot 2)$ but $4 \nmid 2$ (see 4th row), 4 is not a prime element.
- Since $6 \mid x$ for $x = 0, 2, 4, 6$ (see 6 th row), if $6 \mid ab$, then $6 \mid a$ or $6 \mid b$. Thus, 6 is a prime element.

QUIZ 4 : MAT2303 ABSTRACT ALGEBRA

- 1. **(3 points)** Find all maximal ideals and prime ideals of \mathbb{Z}_{2418}
- 2. **(3 points)** Find all irreducible elements in \mathbb{Z}_{16}
- 3. **(4 points)** Find all prime elements in \mathbb{Z}_{10} by table

SOLUTION QUIZ 4 : MAT2303 (SEC1)

TOPIC Integral domain **SCORE** 10 points **QUIZ TIME** Fri 10 Nov 2017, 13th Week, Semester 1/2017 **TEACHER** Thanatyod Jampawai, Ph.D., Faculty of Education, Suan Sunandha Rajabhat University

- 1. **(3 points)** Find all maximal ideals and prime ideals of \mathbb{Z}_{2418} Since $2418 = 2 \cdot 3 \cdot 13 \cdot 31$, all prime divisors of 2418 are 2, 3, 13 and 31. Thus, all maximal ideals and prime ideals are
	- (2) , (3) , (13) and (31)
- 2. **(3 points)** Find all irreducible elements in \mathbb{Z}_{16} All non unit of \mathbb{Z}_{16} are 2, 4, 6, 8, 10, 12 and 14. Then

In the table, it appears 0, 4, 8 and 12. Hence, 2, 6, 10 and 14 are irreducible.

3. **(4 points)** Find all prime elements in \mathbb{Z}_{10} by table

All non units are 2, 4, 5, 6 and 8.

- Since $2 \mid x$ for $x = 0, 2, 4, 6, 8$ (see 2 th row), if $2 \mid ab$, then $2 \mid a$ or $2 \mid b$. Thus, 2 is a prime element.
- Since $4 \mid x$ for $x = 0, 2, 4, 6, 8$ (see 4 th row), if $4 \mid ab$, then $4 \mid a$ or $4 \mid b$. Thus, 4 is a prime element.
- Since $5 \mid x$ for $x = 0, 5$ (see 5 th row), if $5 \mid ab$, then $5 \mid a$ or $5 \mid b$. Thus, 5 is a prime element.
- Since $6 \mid x \text{ for } x = 0, 2, 4, 6, 8$ (see 6 th row), if $6 \mid ab$, then $6 \mid a \text{ or } 6 \mid b$. Thus, 6 is a prime element.
- Since $8 \mid x \text{ for } x = 0, 2, 4, 6, 8 \text{ (see 8 th row), if } 8 \mid ab, \text{ then } 8 \mid a \text{ or } 8 \mid b. \text{ Thus, } 8 \text{ is a prime element.}$