

Quiz 1 MAC3309 Mathematical Analysis

1. **(5 marks)** Let $x, y \in \mathbb{R}$. Prove that

 $\sqrt{x^2 + y^2} \le |x| + |y|$.

2. **(5 marks)** Let *A* = $\sqrt{ }$ $1 - \frac{2}{\cdot}$ $\frac{1}{n}$: $n \in \mathbb{N}$ \mathcal{L} . Find inf *A* and sup *A* with proving them.

Solution Quiz 1 MAC3309 Mathematical Analysis

1. **(5 marks)** Let $x, y \in \mathbb{R}$. Prove that

$$
\sqrt{x^2+y^2}\leq |x|+|y|.
$$

Solution. Let $x, y \in \mathbb{R}$. By the fact that $|x| \ge 0$ and $|y| \ge 0$, we have $2|x||y| \ge 0$. Then,

$$
|x|^{2} + 2|x||y| + |y|^{2} \ge |x|^{2} + |y|^{2}
$$

$$
(|x| + |y|)^{2} \ge x^{2} + y^{2}.
$$

It follows that $|x| + |y| \ge \sqrt{x^2 + y^2}$.

2. **(5 marks)** Let *A* = $\sqrt{ }$ $1 - \frac{2}{\cdot}$ $\frac{1}{n}$: $n \in \mathbb{N}$ \mathcal{L} . Find inf *A* and sup *A* with proving them. $A =$ \int $-1, 0, \frac{1}{2}$ $\frac{1}{3}, \frac{1}{2}$ $\left\{\frac{1}{2}, \ldots\right\}$. **Claim that** $\inf A = -1$ and $\sup A = 1$

Proof. $\inf A = -1$ Let *n* ∈ $\mathbb N$. Then *n* ≥ 1. So, $-2n \leq -2$. We obatin

$$
-2 \le -\frac{2}{n}
$$

-1 = -2 + 1 \le 1 - \frac{2}{n}.

Thus, *−*1 is a lower bound of *A*.

Let ℓ be a lower bound of *A*. For $n = 1$, we get $-1 \in A$. So, $\ell \le -1$. Hence, inf $A = -1$. $\sup A = 1$

Let $n \in \mathbb{N}$. Then $n \geq 0$. So, $-\frac{2}{n}$ $\frac{2}{n}$ < 0. We have

$$
1 - \frac{2}{n} < 1.
$$

Thus, 1 is an upper bound of *A*.

Assume that that there is an upper bound u_0 of A such that

$$
u_0<1.
$$

By definition,

$$
1 - \frac{2}{n} \le u_0 \quad \text{ for all } n \in \mathbb{N} \qquad (*)
$$

From $\frac{1 - u_0}{2} > 0$. By Archimendean property, there is an $n_0 \in \mathbb{N}$ such that

$$
\frac{1}{n_0} < \frac{1 - u_0}{2}
$$
\n
$$
\frac{2}{n_0} < 1 - u_0
$$
\n
$$
u_0 < 1 - \frac{2}{n_0}
$$

This is contradiction to $(*)$. Therefore, $\sup A = 1$.

Quiz 2 MAC3309 Mathematical Analysis

1. **(5 marks)** Use the Definition to prove that

$$
\lim_{n \to \infty} \frac{n}{2n+3} = \frac{1}{2}.
$$

2. **(5 marks)** Use the Definition to prove that

$$
\lim_{n \to \infty} \frac{n^2}{n+2} = +\infty.
$$

Solution Quiz 2 MAC3309 Mathematical Analysis

Topic Limit of Sequences **Score** 10 marks **Time** 30 minutes (5*th* Week) **Semester** 2/2022 **Teacher** Assistant Professor Thanatyod Jampawai, Ph.D.

Division of Mathematics, Faculty of Education, Suan Sunandha Rajabhat University

1. **(5 marks)** Use the Definition to prove that

$$
\lim_{n \to \infty} \frac{n}{2n+3} = \frac{1}{2}.
$$

Proof. Let $\varepsilon > 0$. By Archimedean principle, there is an $N \in \mathbb{N}$ such that $\frac{1}{N} < \varepsilon$. Let $n \in \mathbb{N}$ such that $n \geq N$. We obtain $\frac{1}{n} \leq \frac{1}{N}$ $\frac{1}{N}$. Since $4n + 6 > 4n$, $\frac{1}{4n - 1}$ $\frac{1}{4n+6} < \frac{1}{4n}$ $\frac{1}{4n}$. Hence, *n* $\frac{n}{2n+3} - \frac{1}{2}$ 2 $\Big| =$ $2n - (2n + 3)$ $2(2n+3)$ $= \frac{3}{4n}$ $\frac{3}{4n+6} < \frac{3}{4n}$ $\frac{3}{4n} < \frac{4}{4n}$ $\frac{4}{4n} = \frac{1}{n}$ $\frac{1}{n} \leq \frac{1}{N}$ $\frac{1}{N}$ < ε .

Thus, $\lim_{n\to\infty} \frac{n}{2n}$ $\frac{n}{2n+3} = \frac{1}{2}$ $\frac{1}{2}$.

2. **(5 marks)** Use the Definition to prove that

$$
\lim_{n \to \infty} \frac{n^2}{n+2} = +\infty.
$$

Proof. Let $M \in \mathbb{R}$. By Arichimedean property, there is an $N \in \mathbb{N}$ such that $M + 2 < N$. Let $n \in \mathbb{N}$ such that $n \geq N$. Then $n-2 > N-2$. Since $0 > -4$, $n^2 > n^2 - 4$. We obtain

$$
\frac{n^2}{n+2} > \frac{n^2-4}{n+2} = \frac{(n-2)(n+2)}{n+2} = n-2 > N-2 > M.
$$

Hence, $\lim_{n\to\infty} \frac{n^2}{n+1}$ $\frac{n}{n+2}$ = + ∞ .

 \Box

 \Box

Quiz 3 MAC3309 Mathematical Analysis

1. **(5 marks)** Let $f(x) = x^2 + x - 1$. Use the Definition to prove that

f is continuous at 1.

2. **(5 marks)** Use the Mean Value Theorem (MVT) to prove that

 $\arctan x \leq x$ for all $x \geq 0$.

Solution Quiz 3 MAC3309 Mathematical Analysis

Topic Continuity & the Mean Value Theorem (MVT) **Score** 10 marks **Time** 30 minutes (11*th* Week) **Semester** 2/2022 **Teacher** Assistant Professor Thanatyod Jampawai, Ph.D. Division of Mathematics, Faculty of Education, Suan Sunandha Rajabhat University

1. **(5 marks)** Let $f(x) = x^2 + x - 1$. Use the Definition to prove that

f is continuous at 1.

Proof. Let $\varepsilon > 0$. Choose $\delta = \min\{1, \frac{\varepsilon}{5}\}$ $\frac{\varepsilon}{5}$ such that $|x - 1| < \delta$. Then $|x - 1| < 1$.

So, $|x| - |2| \le |x + 2| < 1$. We obtain $|x| \le 3$.

It follows that

$$
|f(x) - f(1)| = |(x^2 + x - 1) - 1| = |x^2 + x - 2|
$$

= $|(x - 1)(x + 2)| = |x - 1||x + 2|$
< $\delta(|x| + 2) < \delta(3 + 2) < \frac{\varepsilon}{5} \cdot 5 = \varepsilon$.

Therefore, f is continuous at $x = 1$.

2. **(5 marks)** Use the Mean Value Theorem (MVT) to prove that

arctan $x \leq x$ for all $x \geq 0$.

Proof. Let $a > 0$ and $f(x) = \arctan x - x$ on $[0, a]$. Then f is continuous on $[0, a]$ and differentiable on $(0, a)$. Then, $f'(x) = \frac{1}{1+x^2} - 1$. By the Mean Value Theorem (MVT), there is a $c \in (0, a)$ such that

$$
f(a) - f(0) = f'(c)(a - 0)
$$

$$
(\arctan a - a) - (0 - 0) = \left(\frac{1}{1 + c^2} - 1\right)a
$$

$$
\arctan a - a = \left(\frac{-c^2}{1 + c^2}\right)a
$$

Since $1 + c^2 > 0$ and $-c^2 < 0$, $\frac{-c^2}{1+c^2}$ $\frac{-c^2}{1+c^2} < 0.$ So, $\left(\frac{-c^2}{1+c}\right)$ $1 + c^2$ \setminus $a ≤ 0$ because $a > 0$. Therefore,

$$
\arctan x \le x \quad \text{ for all } x \ge 0.
$$

 \Box

Quiz 4 MAC3309 Mathematical Analysis

1. **(5 marks)** Let

Show that f is **integrable** on $[0, 2]$

2. **(5 marks)** Let $f(x) = x^2$ where $x \in [0, 2]$ and

$$
P = \left\{ \frac{2j}{n} : j = 0, 1, ..., n \right\}
$$

be a partition of $[0, 2]$. Find the **Riemann Sum** of f and $I(f)$.

Solution Quiz 4 MAC3309 Mathematical Analysis

1. **(5 marks)** Let

$$
f(x) = \begin{cases} 2 & \text{if } 0 < x \le 1 \\ 1 & \text{if } 1 < x < 2. \end{cases}
$$

Show that f is **integrable** on $[0, 2]$

Solution. Let $\varepsilon > 0$. Case $\varepsilon \leq 1$. Choose $P = \left\{0, 1 - \frac{\varepsilon}{2}\right\}$ $\frac{\varepsilon}{2}, 1, 1 + \frac{\varepsilon}{2}$ $\frac{\varepsilon}{2}, 2$.

We obtain

$$
U(f, P) = 2\left(1 - \frac{\varepsilon}{2}\right) + 2\left(\frac{\varepsilon}{2}\right) + 2\left(\frac{\varepsilon}{2}\right) + 1\left(1 - \frac{\varepsilon}{2}\right)
$$

$$
L(f, P) = 2\left(1 - \frac{\varepsilon}{2}\right) + 2\left(\frac{\varepsilon}{2}\right) + 1\left(\frac{\varepsilon}{2}\right) + 1\left(1 - \frac{\varepsilon}{2}\right)
$$

$$
U(f, P) - L(f, P) = \frac{\varepsilon}{2} < \varepsilon.
$$

Case $\varepsilon > 1$. Choose $P = \{0, 1, 2\}$. Then

$$
U(f, P) = 2(1 - 0) + 2(2 - 1)
$$

$$
L(f, P) = 2(1 - 0) + 1(2 - 1)
$$

$$
U(f, P) - L(f, P) = 1 < \varepsilon.
$$

Thus, *f* is integrable on [0*,* 2].

2. **(5 marks)** Let $f(x) = x^2$ where $x \in [0, 2]$ and

$$
P = \left\{ \frac{2j}{n} : j = 0, 1, ..., n \right\}
$$

be a partition of $[0, 2]$. Find the **Riemann Sum** of f and $I(f)$.

Solution. Choose $t_j = \frac{2j}{n_j}$ $\frac{dy}{dx}$ (the Right End Point) on the subinterval $[x_{j-1}, x_j]$ and $\Delta x_j = \frac{2}{\epsilon}$ $\frac{2}{n}$ for all $j = 1, 2, 3, ..., n$. We obtain the Riemann sum to be

$$
\sum_{j=1}^{n} f(t_j) \Delta x_j = f\left(\frac{2}{n}\right) \frac{2}{n} + f\left(\frac{4}{n}\right) \frac{2}{n} + f\left(\frac{6}{n}\right) \frac{2}{n} + \dots + f\left(\frac{2n}{n}\right) \frac{2}{n}
$$

\n
$$
= \frac{2}{n} \left[\frac{2^2}{n^2} + \frac{4^2}{n^2} + \frac{6^2}{n^2} + \dots + \frac{(2n)^2}{n^2} \right]
$$

\n
$$
= \frac{2}{n^3} \left[2^2 + 4^2 + 6^2 + \dots + (2n)^2 \right]
$$

\n
$$
= \frac{2}{n^3} \left[2^2 (1^2 + 2^2 + 3^2 + \dots + n^2) \right]
$$

\n
$$
= \frac{8}{n^3} \left[1^2 + 2^2 + 3^2 + \dots + n^2 \right]
$$

\n
$$
= \frac{8}{n^3} \cdot \frac{n(n+1)(2n+1)}{6}
$$

\n
$$
= \frac{4(n+1)(2n+1)}{3n^2}
$$

Thus,

$$
I(f) = \lim_{\|P\| \to 0} \sum_{j=1}^{n} f(t_j) \Delta x_j = \lim_{n \to \infty} \frac{4(n+1)(2n+1)}{3n^2} = \frac{8}{3} \quad #
$$