

Quiz 1 : (8 a.m.) MAC3309 Mathematical Analysis

1. **(5 marks)** Let $x \in \mathbb{R}$ such that $0 < x < 1$. Prove that

 $x < \sqrt{x}$.

2. **(5 marks)** Let *A* = \int 2 $\frac{2}{n+1}$: $n \in \mathbb{N}$ \mathcal{L} . Find inf *A* and prove it.

Solution Quiz 1 : (8 a.m.) MAC3309 Mathematical Analysis

(*x −*

1. **(5 marks)** Let $x \in \mathbb{R}$ such that $0 < x < 1$. Prove that

 $x < \sqrt{x}$.

Proof. Let $x \in \mathbb{R}$ such that $0 < x < 1$. Then $x > 0$. By O3.1, we have

$$
x^2 = x \cdot x < 1 \cdot x = x.
$$

We obtain $x^2 - x < 0$. It follows that

$$
x^{2} - (\sqrt{x})^{2} < 0
$$
\n
$$
x - \sqrt{x}(x + \sqrt{x}) < 0.
$$

Since $x + \sqrt{x} > 0$, $(x + \sqrt{x})^{-1} > 0$. By O3.1 again,

$$
(x - \sqrt{x})(x + \sqrt{x})(x + \sqrt{x})^{-1} < 0 \cdot (x + \sqrt{x})^{-1}
$$

$$
x - \sqrt{x} < 0.
$$

We conclude that $x < \sqrt{x}$.

2. (5 marks) Let
$$
A = \left\{ \frac{2}{n+1} : n \in \mathbb{N} \right\}
$$
. Find **inf** A and prove it.
We see that $A = \left\{ 1, \frac{2}{3}, \frac{2}{4}, \frac{2}{5}, \dots \right\}$. Claim that **inf** $A = 0$.

Proof. We will prove that $\inf A = 0$ Let $n \in \mathbb{N}$. Then $n \geq 1$. So, $n + 1 > 0$. We obtain

$$
\frac{2}{n+1} > 0
$$

Thus, 0 is a lower bound of *A*.

Finally, we will show that 0 is the greatest lower bound of *A*. Assume that that there is a lower bound ℓ_0 of A such that

$$
\ell_0>0.
$$

By definition,

$$
\ell_0 \le \frac{2}{n+1} \quad \text{ for all } n \in \mathbb{N} \qquad (*)
$$

From $\frac{\ell_0}{2} > 0$. By Archimendean property (2), there is an $n_0 \in \mathbb{N}$ such that

$$
\frac{1}{n_0} < \frac{\ell_0}{2} \qquad \longrightarrow \qquad \frac{2}{n_0} < \ell_0
$$

Since $n_0 + 1 > n_0$,

$$
\frac{2}{n_0+1} < \frac{2}{n_0} < \ell_0
$$

This is contradiction to $(*)$. Therefore, $\inf A = 0$.

Quiz 1 : (1 p.m.) MAC3309 Mathematical Analysis

1. **(5 marks)** Let $x, y \in \mathbb{R}^+$. Prove that

$$
\sqrt{\frac{x}{y}} + \sqrt{\frac{y}{x}} \ge 2.
$$

2. **(5 marks)** Let *A* = \int 2*n* $\frac{2n}{n+1}$: $n \in \mathbb{N}$ \mathcal{L} . Find sup *A* and prove it.

Solution Quiz 1 : (1 p.m.) MAC3309 Mathematical Analysis

1. **(5 marks)** Let $x, y \in \mathbb{R}^+$. Prove that

$$
\sqrt{\frac{x}{y}}+\sqrt{\frac{y}{x}}\geq 2.
$$

Proof. Let $x, y \in \mathbb{R}^+$. In the fact that $(\sqrt{x} - \sqrt{y})^2 \ge 0$, we obtain

$$
x - 2\sqrt{x}\sqrt{y} + y \ge 0
$$

\n
$$
x + y \ge 2\sqrt{x}\sqrt{y}
$$

\n
$$
\frac{x}{\sqrt{x}\sqrt{y}} + \frac{y}{\sqrt{x}\sqrt{y}} \ge 2
$$

\n
$$
\sqrt{\frac{x}{y}} + \sqrt{\frac{y}{x}} \ge 2.
$$

Proof. We will prove that $\frac{\sup A}{\sup A}$ = 2 Let *n* ∈ N. Then *n* ≥ 1. From $0 < 2$ So, $0 + 2n < 2 + 2n$. We obtain

$$
2n < 2(n+1)
$$
\n
$$
\frac{2n}{n+1} < 2
$$

Thus, 2 is an upper bound of *A*.

Finally, we will show that 2 is the least upper bound of *A*. Assume that that there is an upper bound u_0 of A such that

 $u_0 < 2$.

By definition,

$$
\frac{2n}{n+1} \le u_0 \quad \text{ for all } n \in \mathbb{N} \qquad (*)
$$

From $\frac{2 - u_0}{2} > 0$. By Archimendean property (2), there is an $n_0 \in \mathbb{N}$ such that

$$
\frac{1}{n_0} < \frac{2-u_0}{2} \qquad \longrightarrow \qquad \frac{2}{n_0} < 2-u_0
$$

Since $n_0 + 1 > n_0$,

$$
\frac{2}{n_0+1} < \frac{2}{n_0} < 2 - u_0
$$
\n
$$
u_0 < 2 - \frac{2}{n_0+1} = \frac{2n_0}{n_0+1}.
$$

This is contradiction to $(*)$. Therefore, $\frac{\sup A = 2}{\sup A}$.

Quiz 2 (8 a.m.) MAC3309 Mathematical Analysis

1. **(5 marks)** Use the Definition to prove that

$$
\lim_{n \to \infty} \frac{2n}{n+1} = 2.
$$

2. **(5 marks)** Use the Definition to prove that

$$
\lim_{n \to \infty} \frac{2n^2}{n+1} = +\infty.
$$

Solution Quiz 2 (8 a.m.) MAC3309 Mathematical Analysis

Topic Limit of Sequences **Score** 10 marks **Time** 30 minutes (5*th* Week) **Semester** 2/2023 **Teacher** Assistant Professor Thanatyod Jampawai, Ph.D. Division of Mathematics, Faculty of Education, Suan Sunandha Rajabhat University

1. **(5 marks)** Use the Definition to prove that

$$
\lim_{n \to \infty} \frac{2n}{n+1} = 2.
$$

Proof. Let $\varepsilon > 0$. By Archimedean principle, there is an $N \in \mathbb{N}$ such that $\frac{1}{N} < \frac{\varepsilon}{2}$ $\frac{1}{2}$. Let $n \in \mathbb{N}$ such that $n \geq N$. We obtain $\frac{1}{n} \leq \frac{1}{N}$ $\frac{1}{N}$. Since $n + 1 > n$, $\frac{1}{n + 1}$ $\frac{1}{n+1} < \frac{1}{n}$ $\frac{1}{n}$. Hence,

$$
\left| \frac{2n}{n+1} - 2 \right| = \left| \frac{2n - 2(n+1)}{n+1} \right| = \frac{2}{n+1} < \frac{2}{n} \le \frac{2}{N} < \varepsilon.
$$

Thus, $\lim_{n\to\infty} \frac{2n}{n+1}$ $\frac{2n}{n+1} = \frac{1}{2}$ $\frac{1}{2}$.

2. **(5 marks)** Use the Definition to prove that

$$
\lim_{n \to \infty} \frac{2n^2}{n+1} = +\infty.
$$

Proof. Let $M \in \mathbb{R}$. By Arichimedean property, there is an $N \in \mathbb{N}$ such that

$$
N > \frac{M+2}{2}.
$$

It's equivalent to $2N - 2 > M$.

Let *n* ∈ N such that *n* ≥ *N*. Then $2n - 2 > 2N - 2$. Since $0 > -2$, $2n^2 > 2n^2 - 2$. We obtain

$$
\frac{2n^2}{n+1} > \frac{2n^2 - 2}{n+1} = \frac{2(n-1)(n+1)}{n+1} = 2n - 2 > 2N - 2 > M.
$$

Hence, $\lim_{n\to\infty} \frac{2n^2}{n+1}$ $\frac{2n}{n+1}$ = + ∞ .

 \Box

Quiz 2 (1 p.m.) MAC3309 Mathematical Analysis

1. **(5 marks)** Use the Definition to prove that

$$
\lim_{n \to \infty} \frac{2n}{n^2 + 1} = 0.
$$

2. **(5 marks)** Use the Definition to prove that

$$
\lim_{n \to \infty} \frac{1 - n^2}{n} = -\infty.
$$

Solution Quiz 2 (1 p.m.) MAC3309 Mathematical Analysis

Topic Limit of Sequences **Score** 10 marks **Time** 30 minutes (5*th* Week) **Semester** 2/2023 **Teacher** Assistant Professor Thanatyod Jampawai, Ph.D. Division of Mathematics, Faculty of Education, Suan Sunandha Rajabhat University

1. **(5 marks)** Use the Definition to prove that

$$
\lim_{n \to \infty} \frac{2n}{n^2 + 1} = 0.
$$

Proof. Let $\varepsilon > 0$. By Archimedean principle, there is an $N \in \mathbb{N}$ such that $\frac{1}{N} < \frac{\varepsilon}{2}$ $\frac{1}{2}$. Let $n \in \mathbb{N}$ such that $n \geq N$. We obtain $\frac{2}{n} \leq \frac{2}{N}$ $\frac{2}{N}$. Since $n^2 + 1 > n^2$, $\frac{1}{n^2 + 1}$ $\frac{1}{n^2+1} < \frac{1}{n^2}$ $\frac{1}{n^2}$. Hence,

$$
\left| \frac{2n}{n^2 + 1} - 0 \right| = \frac{2n}{n^2 + 1} = \frac{2n}{n^2} < \frac{2}{n} \le \frac{2}{N} < \varepsilon.
$$

Thus, $\lim_{n\to\infty} \frac{2n}{n^2+1}$ $\frac{2n}{n^2+1} = 0.$

2. **(5 marks)** Use the Definition to prove that

$$
\lim_{n \to \infty} \frac{1 - n^2}{n} = -\infty.
$$

Proof. Let $M \in \mathbb{R}$. By Arichimedean property, there is an $N \in \mathbb{N}$ such that

 $N > 1 - M$.

It's equivalent to $1 - N < M$. Let $n \in \mathbb{N}$ such that $n \geq N$. Then $-n \leq -N$. So, $1 - n \leq 1 - N$ Since $1 \leq n, 1 - n^2 \leq n - n^2$. We obtain

$$
\frac{1-n^2}{n} \le \frac{n-n^2}{n} = \frac{n(1-n)}{n} = 1 - n \le 1 - N < M.
$$

Hence, $\lim_{n\to\infty} \frac{1-n^2}{n}$ $\frac{n}{n} = -\infty$.

Quiz 3 (8 a.m.) MAC3309 Mathematical Analysis

1. **(5 marks)** Let $f(x) = (x - 1)(x - 2)(x - 3)$. Use the Definition to prove that

f is continuous at 2.

2. **(5 marks)** Use the Mean Value Theorem (MVT) to prove that

ln $x \leq x - 1$ for all $x \geq 1$.

Hints : Let $a > 1$ and consider a defined function on [1, a].

Solution Quiz 3 (8 a.m.) MAC3309 Mathematical Analysis

1. **(5 marks)** Let $f(x) = (x - 1)(x - 2)(x - 3)$. Use the Definition to prove that

f is continuous at 2.

Proof. Let $\varepsilon > 0$. Choose $\delta = \min\{1, \frac{\varepsilon}{24}\}$ such that $|x - 2| < \delta$. Then $|x - 2| < 1$.

So, $|x| - |2| \le |x - 2| < 1$. We obtain $|x| \le 3$.

By triangle inequility, it follows that

$$
|f(x) - f(2)| = |(x - 1)(x - 2)(x - 3) - 0|
$$

= |x - 1||x - 2||x - 3|
< $(|x| + 1)\delta(|x| + 3)$
< $(3 + 1)\delta(3 + 3)$
= 24 δ $< 24 \cdot \frac{\varepsilon}{24} = \varepsilon$.

Therefore, f is continuous at $x = 2$.

2. **(5 marks)** Use the Mean Value Theorem (MVT) to prove that

$$
\ln x \le x - 1 \quad \text{ for all } x \ge 1.
$$

Hints : Let $a > 1$ and consider function on [1, a].

Proof. Let $a > 1$ and $f(x) = \ln x - x$ on $[1, a]$. Then f is continuous on $[1, a]$ and differentiable on $(1, a)$. Then, $f'(x) = \frac{1}{x} - 1$. By the Mean Value Theorem (MVT), there is a $c \in (1, a)$ such that

$$
f(a) - f(1) = f'(c)(a - 1)
$$

$$
(\ln a - a) - (0 - 1) = \left(\frac{1}{c} - 1\right)(a - 1)
$$

$$
(\ln a - a) + 1 = \left(\frac{1 - c}{c}\right)(a - 1)
$$

From $1 < c < a$, $1 - c < 0$ and $a - 1 > 0$, we obtain

$$
\left(\frac{1-c}{c}\right)(a-1) < 0.
$$

So, ln *a − a* + 1 *<* 0. Therefore,

$$
\ln x \le x - 1 \quad \text{ for all } x \ge 0.
$$

Quiz 3 (1 p.m.) MAC3309 Mathematical Analysis

1. **(5 marks)** Let $f(x) = (x - 1)(x - 2)(x - 3)$. Use the Definition to prove that

f is continuous at 3.

2. **(5 marks)** Use the Mean Value Theorem (MVT) to prove that

 $\ln x < x$ for all $x \ge 1$.

Hints : Let $a > 1$ and consider a defined function on [1, a].

Solution Quiz 3 (1 p.m.) MAC3309 Mathematical Analysis

1. **(5 marks)** Let $f(x) = (x-1)(x-2)(x-3)$. Use the Definition to prove that

f is continuous at 3.

Proof. Let $\varepsilon > 0$. Choose $\delta = \min\{1, \frac{\varepsilon}{30}\}\$ such that $|x - 3| < \delta$. Then $|x - 3| < 1$.

So, $|x| - 3| \le |x - 3| < 1$. We obtain $|x| \le 4$.

By triangle inequility, it follows that

$$
|f(x) - f(3)| = |(x - 1)(x - 2)(x - 3) - 0|
$$

= |x - 1||x - 2||x - 3|
< $(|x| + 1)(|x| + 2|)\delta$
< $(4 + 1)(4 + 2)\delta$
= 30 δ < 30 · $\frac{\varepsilon}{30} = \varepsilon$.

Therefore, f is continuous at $x = 3$.

2. **(5 marks)** Use the Mean Value Theorem (MVT) to prove that

$$
\ln x < x \quad \text{for all } x \ge 1.
$$

Hints : Let $a > 1$ and consider function on [1, a].

Proof. Let $a > 1$ and $f(x) = \ln x - x$ on $[1, a]$. Then *f* is continuous on $[1, a]$ and differentiable on $(1, a)$. Then, $f'(x) = \frac{1}{x} - 1$. By the Mean Value Theorem (MVT), there is a $c \in (1, a)$ such that

$$
f(a) - f(1) = f'(c)(a - 1)
$$

$$
(\ln a - a) - (0 - 1) = \left(\frac{1}{c} - 1\right)(a - 1)
$$

$$
(\ln a - a) + 1 = \left(\frac{1 - c}{c}\right)(a - 1)
$$

From $1 < c < a$, $1 - c < 0$ and $a - 1 > 0$, we obtain

$$
\left(\frac{1-c}{c}\right)(a-1) < 0.
$$

So, $\ln a - a + 1 < 0$. It follows that $\ln a - a < -1 < 0$. Therefore,

$$
\ln x < x \quad \text{for all } x \ge 0.
$$

 \Box

Quiz 4 (8 a.m.) MAC3309 Mathematical Analysis

1. **(5 marks)** Let $f(x) = 6x(x - 1)$ where $x \in [0, 1]$ and

$$
P = \left\{ \frac{j}{n} : j = 0, 1, ..., n \right\}
$$

be a partition of $[0, 1]$. Find the **Riemann Sum** of f and $I(f)$.

2. **(5 marks)** Let *f* be integrable \mathbb{R} and \int_0^0 *−*1 $f(x) dx = 67$. Use the change variable to compute $\int e^e$ 1 $f(x \ln x - x) \cdot \ln x^2 dx$.

Solution Quiz 4 (8 a.m.) MAC3309 Mathematical Analysis

Topic Riemann sum & Change variable **Score** 10 marks **Time** 30 minutes (13*th* Week) **Semester** 2/2023 **Teacher** Assistant Professor Thanatyod Jampawai, Ph.D. Division of Mathematics, Faculty of Education, Suan Sunandha Rajabhat University

1. **(5 marks)** Let $f(x) = 6x(x - 1)$ where $x \in [0, 1]$ and

$$
P = \left\{ \frac{j}{n} : j = 0, 1, ..., n \right\}
$$

be a partition of $[0, 1]$. Find the **Riemann Sum** of f and $I(f)$.

Solution. Choose $t_j = \frac{j}{n}$ $\frac{J}{n}$ (the Right End Point) on the subinterval $[x_{j-1}, x_j]$ and $\Delta x_j = \frac{1}{n}$ $\frac{1}{n}$ for all $j = 1, 2, 3, ..., n$. We obtain the Riemann sum to be

$$
\sum_{j=1}^{n} f(t_j) \Delta x_j = \sum_{j=1}^{n} f\left(\frac{j}{n}\right) \cdot \frac{1}{n} = \frac{1}{n} \sum_{j=1}^{n} 6 \cdot \frac{j}{n} \left(\frac{j}{n} - 1\right)
$$

$$
= \frac{6}{n} \sum_{j=1}^{n} \left(\frac{j^2}{n^2} - \frac{j}{n}\right) = \frac{6}{n} \left[\frac{1}{n^2} \sum_{j=1}^{n} j^2 - \frac{1}{n} \sum_{j=1}^{n} j\right]
$$

$$
= \frac{6}{n} \left[\frac{1}{n^2} \cdot \frac{n(n+1)(2n+1)}{6} - \frac{1}{n} \cdot \frac{n(n+1)}{2}\right]
$$

$$
= \frac{(n+1)(2n+1)}{n^2} - \frac{3(n+1)}{n}
$$

Thus,

$$
I(f) = \lim_{\|P\| \to 0} \sum_{j=1}^{n} f(t_j) \Delta x_j = \lim_{n \to \infty} \frac{(n+1)(2n+1)}{n^2} - \frac{3(n+1)}{n} = 2 - 3 = -1 \quad \#
$$

2. **(5 marks)** Let *f* be integrable \mathbb{R} and \int_0^0 *−*1 $f(x) dx = 67$. Use the change variable to compute $\int e^e$ 1 $f(x \ln x - x) \cdot \ln x^2 dx$.

Solution. Let $\phi(x) = x \ln x - x$. Then $\phi'(x) = x \cdot \frac{1}{x} + 1 \cdot \ln x - 1 = \ln x$,

$$
\phi(1) = 1 \ln 1 - 1 = 0 - 1 = -1
$$
 and $\phi(e) = e \ln e - e = e - e = 0$.

By the change variable, we obtain

$$
\int_{1}^{e} f(x \ln x - x) \cdot \ln x^{2} dx = \int_{1}^{e} f(\phi(x)) \cdot 2 \ln x dx
$$

$$
= 2 \int_{1}^{e} f(\phi(x)) \cdot \phi'(x) dx
$$

$$
= 2 \int_{\phi(1)}^{\phi(e)} f(t) dt
$$

$$
= 2 \int_{-1}^{0} f(t) dt = 5 \cdot 67 = 134 \quad \#
$$

Quiz 4 (1 p.m.) MAC3309 Mathematical Analysis

1. **(5 marks)** Let $f(x) = 3x(x + 2)$ where $x \in [0, 1]$ and

$$
P = \left\{ \frac{j}{n} : j = 0, 1, ..., n \right\}
$$

be a partition of $[0, 1]$. Find the **Riemann Sum** of f and $I(f)$.

2. **(5 marks)** Let *f* be integrable \mathbb{R} and \int_1^1 0 $f(x) dx = 67$. Use the change variable to compute \int_0^1

$$
\int_0^1 f(e^x - xe^x) \cdot xe^x dx.
$$

Solution Quiz 4 (1 p.m.) MAC3309 Mathematical Analysis

Topic Riemann sum & Change variable **Score** 10 marks **Time** 30 minutes (13*th* Week) **Semester** 2/2023 **Teacher** Assistant Professor Thanatyod Jampawai, Ph.D. Division of Mathematics, Faculty of Education, Suan Sunandha Rajabhat University

1. **(5 marks)** Let $f(x) = 3x(x + 2)$ where $x \in [0, 1]$ and

$$
P = \left\{ \frac{j}{n} : j = 0, 1, ..., n \right\}
$$

be a partition of $[0, 1]$. Find the **Riemann Sum** of f and $I(f)$.

Solution. Choose $t_j = \frac{j}{n}$ $\frac{J}{n}$ (the Right End Point) on the subinterval $[x_{j-1}, x_j]$ and $\Delta x_j = \frac{1}{n}$ $\frac{1}{n}$ for all $j = 1, 2, 3, ..., n$. We obtain the Riemann sum to be

$$
\sum_{j=1}^{n} f(t_j) \Delta x_j = \sum_{j=1}^{n} f\left(\frac{j}{n}\right) \cdot \frac{1}{n} = \frac{1}{n} \sum_{j=1}^{n} 3 \cdot \frac{j}{n} \left(\frac{j}{n} + 2\right)
$$

$$
= \frac{3}{n} \sum_{j=1}^{n} \left(\frac{j^2}{n^2} + 2 \cdot \frac{j}{n}\right) = \frac{3}{n} \left[\frac{1}{n^2} \sum_{j=1}^{n} j^2 + \frac{2}{n} \sum_{j=1}^{n} j\right]
$$

$$
= \frac{3}{n} \left[\frac{1}{n^2} \cdot \frac{n(n+1)(2n+1)}{6} + \frac{2}{n} \cdot \frac{n(n+1)}{2}\right]
$$

$$
= \frac{(n+1)(2n+1)}{2n^2} + \frac{3(n+1)}{n}
$$

Thus,

$$
I(f) = \lim_{\|P\| \to 0} \sum_{j=1}^{n} f(t_j) \Delta x_j = \lim_{n \to \infty} \frac{(n+1)(2n+1)}{2n^2} + \frac{3(n+1)}{n} = 1 + 3 = 4 \quad \#
$$

2. **(5 marks)** Let *f* be integrable \mathbb{R} and \int_1^1 0 $f(x) dx = 67$. Use the change variable to compute \int_1^1 0 $f(e^x - xe^x) \cdot xe^x dx$. **Solution.** Let $\phi(x) = e^x - xe^x$. Then $\phi'(x) = e^x - (x \cdot e^x + 1 \cdot e^x) = -xe^x$,

$$
\phi(0) = e^0 - 0e^0 = 1 = 1 - 0 = 1
$$
 and $\phi(1) = e - e = 0$.

By the change variable, we obtain

$$
\int_0^1 f(e^x - xe^x) \cdot xe^x dx = -\int_0^1 f(\phi(x)) \cdot (-xe^x) dx
$$

= $-\int_0^1 f(\phi(x)) \cdot \phi'(x) dx$
= $-\int_{\phi(0)}^{\phi(1)} f(t) dt$
= $-\int_1^0 f(t) dt = \int_0^1 f(t) dt = 67 \quad \#$

Quiz 4 (Addition) MAC3309 Mathematical Analysis

1. **(5 marks)** Let $f(x) = 6(x - 1)(x + 1)$ where $x \in [0, 1]$ and

$$
P = \left\{ \frac{j}{n} : j = 0, 1, ..., n \right\}
$$

be a partition of $[0, 1]$. Find the **Riemann Sum** of f and $I(f)$.

2. **(5 marks)** Let *f* be integrable R and \int_{0}^{1+e} 1 $f(x) dx = 66$. Use the change variable to compute $\int e^e$ $f(\ln(xe^x)) \cdot \frac{1+x}{2}$ $\frac{1}{2x}$ dx.

1

Solution Quiz 4 (Addition) MAC3309 Mathematical Analysis

Topic Riemann sum & Change variable **Score** 10 marks **Time** 30 minutes (13*th* Week) **Semester** 2/2023 **Teacher** Assistant Professor Thanatyod Jampawai, Ph.D. Division of Mathematics, Faculty of Education, Suan Sunandha Rajabhat University

1. **(5 marks)** Let $f(x) = 6(x - 1)(x + 1)$ where $x \in [0, 1]$ and

$$
P = \left\{ \frac{j}{n} : j = 0, 1, ..., n \right\}
$$

be a partition of [0, 1]. Find the **Riemann Sum** of f and $I(f)$.

Solution. Choose $t_j = \frac{j}{n}$ $\frac{J}{n}$ (the Right End Point) on the subinterval $[x_{j-1}, x_j]$ and $\Delta x_j = \frac{1}{n}$ $\frac{1}{n}$ for all $j = 1, 2, 3, ..., n$. We obtain the Riemann sum to be

$$
\sum_{j=1}^{n} f(t_j) \Delta x_j = \sum_{j=1}^{n} f\left(\frac{j}{n}\right) \cdot \frac{1}{n} = \frac{1}{n} \sum_{j=1}^{n} 6\left(\frac{j}{n} - 1\right) \left(\frac{j}{n} + 1\right)
$$

$$
= \frac{6}{n} \sum_{j=1}^{n} \left(\frac{j^2}{n^2} - 1\right) = \frac{6}{n} \left[\frac{1}{n^2} \sum_{j=1}^{n} j^2 - \sum_{j=1}^{n} 1\right]
$$

$$
= \frac{6}{n} \left[\frac{1}{n^2} \cdot \frac{n(n+1)(2n+1)}{6} - n\right]
$$

$$
= \frac{(n+1)(2n+1)}{n^2} - 6
$$

Thus,

$$
I(f) = \lim_{\|P\| \to 0} \sum_{j=1}^{n} f(t_j) \Delta x_j = \lim_{n \to \infty} \frac{(n+1)(2n+1)}{n^2} - 6 = 2 - 6 = -4 \quad \#
$$

2. **(5 marks)** Let *f* be integrable R and \int_{0}^{1+e} 1 $f(x) dx = 66$. Use the change variable to compute $\int e^e$ 1 $f(\ln(xe^{x})) \cdot \frac{1+x}{2}$ $\frac{1}{2x}$ dx.

Solution. Let $\phi(x) = \ln(xe^x) = \ln x + \ln e^x = \ln x + x$. Then $\phi'(x) = \frac{1}{x} + 1 = \frac{1+x}{x}$,

 $\phi(1) = \ln 1 + 1 = 0 + 1 = 1$ and $\phi(e) = \ln e + e = 1 + e$.

By the change variable, we obtain

$$
\int_{1}^{e} f(\ln(xe^{x})) \cdot \frac{1+x}{2x} dx = \frac{1}{2} \int_{1}^{e} f(\ln(xe^{x})) \cdot \frac{1+x}{x} dx
$$

$$
= \frac{1}{2} \int_{1}^{e} f(\phi(x)) \cdot \phi'(x) dx
$$

$$
= \frac{1}{2} \int_{\phi(1)}^{\phi(e)} f(t) dt
$$

$$
= \frac{1}{2} \int_{1}^{1+e} f(t) dt = \frac{1}{2} \cdot 66 = 33 \quad \#
$$