

### Quiz 1 : (8 a.m.) MAC3309 Mathematical Analysis

| Topic           | Ordered field axiom, Supremum & Infimum        | Score 10 marks                    |
|-----------------|------------------------------------------------|-----------------------------------|
| $\mathbf{Time}$ | 30  minutes  (3th  Week)                       | Semester $2/2023$                 |
| Teacher         | Assistant Professor Thanatyod Jampawai, Ph.D.  |                                   |
|                 | Division of Mathematics, Faculty of Education, | Suan Sunandha Rajabhat University |
| Name            | ID                                             | Sec                               |
|                 |                                                |                                   |

1. (5 marks) Let  $x \in \mathbb{R}$  such that 0 < x < 1. Prove that

 $x < \sqrt{x}.$ 

2. (5 marks) Let  $A = \left\{ \frac{2}{n+1} : n \in \mathbb{N} \right\}$ . Find  $\inf A$  and prove it.



### Solution Quiz 1 : (8 a.m.) MAC3309 Mathematical Analysis

| Topic           | Ordered field axiom, Supremum & Infimume       | Score 10 marks                    |
|-----------------|------------------------------------------------|-----------------------------------|
| $\mathbf{Time}$ | 30  minutes  (3th  Week)                       | Semester $2/2023$                 |
| Teacher         | Assistant Professor Thanatyod Jampawai, Ph.D.  |                                   |
|                 | Division of Mathematics, Faculty of Education, | Suan Sunandha Rajabhat University |

1. (5 marks) Let  $x \in \mathbb{R}$  such that 0 < x < 1. Prove that

 $x < \sqrt{x}$ .

**Proof.** Let  $x \in \mathbb{R}$  such that 0 < x < 1. Then x > 0. By O3.1, we have

(

$$x^2 = x \cdot x < 1 \cdot x = x.$$

We obtain  $x^2 - x < 0$ . It follows that

$$x^{2} - (\sqrt{x})^{2} < 0$$
$$x - \sqrt{x}(x + \sqrt{x}) < 0.$$

Since  $x + \sqrt{x} > 0$ ,  $(x + \sqrt{x})^{-1} > 0$ . By O3.1 again,

$$(x - \sqrt{x})(x + \sqrt{x})(x + \sqrt{x})^{-1} < 0 \cdot (x + \sqrt{x})^{-1}$$
$$x - \sqrt{x} < 0.$$

We conclude that  $x < \sqrt{x}$ .

2. (5 marks) Let 
$$A = \left\{ \frac{2}{n+1} : n \in \mathbb{N} \right\}$$
. Find  $\inf A$  and prove it.  
We see that  $A = \left\{ 1, \frac{2}{3}, \frac{2}{4}, \frac{2}{5}, \ldots \right\}$ . Claim that  $\inf A = 0$ .

**Proof.** We will prove that  $\inf A = 0$ Let  $n \in \mathbb{N}$ . Then  $n \ge 1$ . So, n + 1 > 0. We obtain

$$\frac{2}{n+1} > 0$$

Thus, 0 is a lower bound of A.

Finally, we will show that 0 is the greatest lower bound of A. Assume that that there is a lower bound  $\ell_0$  of A such that

$$\ell_0 > 0.$$

By definition,

$$\ell_0 \le \frac{2}{n+1}$$
 for all  $n \in \mathbb{N}$  (\*)

From 
$$\frac{\ell_0}{2} > 0$$
. By Archimendean property (2), there is an  $n_0 \in \mathbb{N}$  such that

$$\frac{1}{n_0} < \frac{\ell_0}{2} \qquad \longrightarrow \qquad \frac{2}{n_0} < \ell_0$$

Since  $n_0 + 1 > n_0$ ,

$$\frac{2}{n_0+1} < \frac{2}{n_0} < \ell_0$$

This is contradiction to (\*). Therefore,  $\inf A = 0$ .



### Quiz 1 : (1 p.m.) MAC3309 Mathematical Analysis

| Topic           | Ordered field axiom, Supremum & Infimum        | Score 10 marks                    |
|-----------------|------------------------------------------------|-----------------------------------|
| $\mathbf{Time}$ | 30  minutes  (3th  Week)                       | Semester 2/2023                   |
| Teacher         | Assistant Professor Thanatyod Jampawai, Ph.D.  |                                   |
|                 | Division of Mathematics, Faculty of Education, | Suan Sunandha Rajabhat University |
|                 |                                                |                                   |
| Name            | ID                                             | Sec                               |

1. (5 marks) Let  $x, y \in \mathbb{R}^+$ . Prove that

$$\sqrt{\frac{x}{y}} + \sqrt{\frac{y}{x}} \ge 2$$

2. (5 marks) Let  $A = \left\{ \frac{2n}{n+1} : n \in \mathbb{N} \right\}$ . Find sup A and prove it.



### Solution Quiz 1 : (1 p.m.) MAC3309 Mathematical Analysis

| Topic           | Ordered field axiom, Supremum & Infimume       | Score 10 marks                    |
|-----------------|------------------------------------------------|-----------------------------------|
| $\mathbf{Time}$ | 30  minutes  (3th  Week)                       | Semester 2/2023                   |
| Teacher         | Assistant Professor Thanatyod Jampawai, Ph.D.  |                                   |
|                 | Division of Mathematics, Faculty of Education, | Suan Sunandha Rajabhat University |

1. (5 marks) Let  $x, y \in \mathbb{R}^+$ . Prove that

$$\sqrt{\frac{x}{y}} + \sqrt{\frac{y}{x}} \ge 2.$$

**Proof.** Let  $x, y \in \mathbb{R}^+$ . In the fact that  $(\sqrt{x} - \sqrt{y})^2 \ge 0$ , we obtain

$$\begin{aligned} x - 2\sqrt{x}\sqrt{y} + y &\geq 0\\ x + y &\geq 2\sqrt{x}\sqrt{y}\\ \frac{x}{\sqrt{x}\sqrt{y}} + \frac{y}{\sqrt{x}\sqrt{y}} &\geq 2\\ \sqrt{\frac{x}{y}} + \sqrt{\frac{y}{x}} &\geq 2. \end{aligned}$$

| 2. | (5 marks) Let $A = \left\{ \frac{2n}{n+1} : n \in \mathbb{N} \right\}$ . Find sup $A$ and pro-       | ove it. |
|----|------------------------------------------------------------------------------------------------------|---------|
|    | We see that $A = \left\{1, \frac{4}{3}, \frac{6}{4}, \frac{8}{5},\right\}$ . Claim that $\sup A = 2$ |         |

**Proof.** We will prove that  $\sup A = 2$ Let  $n \in \mathbb{N}$ . Then  $n \ge 1$ . From 0 < 2 So, 0 + 2n < 2 + 2n. We obtain

$$2n < 2(n+1)$$
$$\frac{2n}{n+1} < 2$$

)

Thus, 2 is an upper bound of A.

Finally, we will show that 2 is the least upper bound of A. Assume that that there is an upper bound  $u_0$  of A such that

 $u_0 < 2.$ 

By definition,

$$\frac{2n}{n+1} \le u_0 \quad \text{for all } n \in \mathbb{N} \qquad (*)$$

From  $\frac{2-u_0}{2} > 0$ . By Archimendean property (2), there is an  $n_0 \in \mathbb{N}$  such that

$$\frac{1}{n_0} < \frac{2-u_0}{2} \qquad \longrightarrow \qquad \frac{2}{n_0} < 2-u_0$$

Since  $n_0 + 1 > n_0$ ,

$$\frac{2}{n_0+1} < \frac{2}{n_0} < 2 - u_0$$
$$u_0 < 2 - \frac{2}{n_0+1} = \frac{2n_0}{n_0+1}.$$

This is contradiction to (\*). Therefore,  $\sup A = 2$ .



# Quiz 2 (8 a.m.) MAC3309 Mathematical Analysis

| Topic           | Limit of Sequences                             | Score 10 marks                    |
|-----------------|------------------------------------------------|-----------------------------------|
| $\mathbf{Time}$ | 30  minutes  (5th  Week)                       | Semester $2/2023$                 |
| Teacher         | Assistant Professor Thanatyod Jampawai, Ph.D.  |                                   |
|                 | Division of Mathematics, Faculty of Education, | Suan Sunandha Rajabhat University |
|                 |                                                |                                   |
| Name            | ID                                             | Sec                               |

1. (5 marks) Use the Definition to prove that

$$\lim_{n \to \infty} \frac{2n}{n+1} = 2.$$

2. (5 marks) Use the Definition to prove that

$$\lim_{n \to \infty} \frac{2n^2}{n+1} = +\infty.$$



#### Solution Quiz 2 (8 a.m.) MAC3309 Mathematical Analysis

TopicLimit of SequencesTime30 minutes (5th Week)TeacherAssistant Professor Thanatyod Jampawai, Ph.D.<br/>Division of Mathematics, Faculty of Education,

Score 10 marks Semester 2/2023

Suan Sunandha Rajabhat University

1. (5 marks) Use the Definition to prove that

$$\lim_{n \to \infty} \frac{2n}{n+1} = 2$$

**Proof.** Let  $\varepsilon > 0$ . By Archimedean principle, there is an  $N \in \mathbb{N}$  such that  $\frac{1}{N} < \frac{\varepsilon}{2}$ . Let  $n \in \mathbb{N}$  such that  $n \ge N$ . We obtain  $\frac{1}{n} \le \frac{1}{N}$ . Since n+1 > n,  $\frac{1}{n+1} < \frac{1}{n}$ . Hence,

$$\left|\frac{2n}{n+1} - 2\right| = \left|\frac{2n - 2(n+1)}{n+1}\right| = \frac{2}{n+1} < \frac{2}{n} \le \frac{2}{N} < \varepsilon.$$

Thus,  $\lim_{n \to \infty} \frac{2n}{n+1} = \frac{1}{2}$ .

2. (5 marks) Use the Definition to prove that

$$\lim_{n \to \infty} \frac{2n^2}{n+1} = +\infty.$$

**Proof.** Let  $M \in \mathbb{R}$ . By Arichimedean property, there is an  $N \in \mathbb{N}$  such that

$$N > \frac{M+2}{2}.$$

It's equivalent to 2N - 2 > M.

Let  $n \in \mathbb{N}$  such that  $n \ge N$ . Then 2n-2 > 2N-2. Since 0 > -2,  $2n^2 > 2n^2 - 2$ . We obtain

$$\frac{2n^2}{n+1} > \frac{2n^2 - 2}{n+1} = \frac{2(n-1)(n+1)}{n+1} = 2n - 2 > 2N - 2 > M.$$

Hence,  $\lim_{n \to \infty} \frac{2n^2}{n+1} = +\infty.$ 



# Quiz 2 (1 p.m.) MAC3309 Mathematical Analysis

| Topic           | Limit of Sequences                             | Score 10 marks                    |
|-----------------|------------------------------------------------|-----------------------------------|
| $\mathbf{Time}$ | 30  minutes  (5th  Week)                       | <b>Semester</b> 2/2023            |
| Teacher         | Assistant Professor Thanatyod Jampawai, Ph.D.  |                                   |
|                 | Division of Mathematics, Faculty of Education, | Suan Sunandha Rajabhat University |
|                 |                                                |                                   |
| Name            | ID                                             | Sec                               |

1. (5 marks) Use the Definition to prove that

$$\lim_{n \to \infty} \frac{2n}{n^2 + 1} = 0.$$

2. (5 marks) Use the Definition to prove that

$$\lim_{n \to \infty} \frac{1 - n^2}{n} = -\infty.$$



#### Solution Quiz 2 (1 p.m.) MAC3309 Mathematical Analysis

TopicLimit of SequencesTime30 minutes (5th Week)TeacherAssistant Professor Thanatyod Jampawai, Ph.D.<br/>Division of Mathematics, Faculty of Education,

Score 10 marks Semester 2/2023

Suan Sunandha Rajabhat University

1. (5 marks) Use the Definition to prove that

$$\lim_{n \to \infty} \frac{2n}{n^2 + 1} = 0.$$

**Proof.** Let  $\varepsilon > 0$ . By Archimedean principle, there is an  $N \in \mathbb{N}$  such that  $\frac{1}{N} < \frac{\varepsilon}{2}$ . Let  $n \in \mathbb{N}$  such that  $n \ge N$ . We obtain  $\frac{2}{n} \le \frac{2}{N}$ . Since  $n^2 + 1 > n^2$ ,  $\frac{1}{n^2 + 1} < \frac{1}{n^2}$ . Hence,

$$\left|\frac{2n}{n^2+1} - 0\right| = \frac{2n}{n^2+1} = \frac{2n}{n^2} < \frac{2}{n} \le \frac{2}{N} < \varepsilon.$$

Thus,  $\lim_{n \to \infty} \frac{2n}{n^2 + 1} = 0.$ 

2. (5 marks) Use the Definition to prove that

$$\lim_{n \to \infty} \frac{1 - n^2}{n} = -\infty.$$

**Proof.** Let  $M \in \mathbb{R}$ . By Arichimedean property, there is an  $N \in \mathbb{N}$  such that

N > 1 - M.

It's equivalent to 1 - N < M. Let  $n \in \mathbb{N}$  such that  $n \ge N$ . Then  $-n \le -N$ . So,  $1 - n \le 1 - N$ Since  $1 \le n, 1 - n^2 \le n - n^2$ . We obtain

$$\frac{1-n^2}{n} \le \frac{n-n^2}{n} = \frac{n(1-n)}{n} = 1 - n \le 1 - N < M.$$

Hence,  $\lim_{n \to \infty} \frac{1 - n^2}{n} = -\infty.$ 



# Quiz 3 (8 a.m.) MAC3309 Mathematical Analysis

| Topic           | Continuity & the Mean Value Theorem (MVT)      | Score 10 marks                    |
|-----------------|------------------------------------------------|-----------------------------------|
| $\mathbf{Time}$ | 30  minutes  (11th  Week)                      | Semester 2/2023                   |
| Teacher         | Assistant Professor Thanatyod Jampawai, Ph.D.  |                                   |
|                 | Division of Mathematics, Faculty of Education, | Suan Sunandha Rajabhat University |
|                 |                                                |                                   |
| Name            | ID                                             | Sec                               |

1. (5 marks) Let f(x) = (x-1)(x-2)(x-3). Use the Definition to prove that

f is continuous at 2.

2. (5 marks) Use the Mean Value Theorem (MVT) to prove that

 $\ln x \le x - 1 \quad \text{ for all } x \ge 1.$ 

*Hints* : Let a > 1 and consider a defined function on [1, a].



#### Solution Quiz 3 (8 a.m.) MAC3309 Mathematical Analysis

| Topic           | Continuity & the Mean Value Theorem (MVT)      | Score 10 marks                    |
|-----------------|------------------------------------------------|-----------------------------------|
| $\mathbf{Time}$ | 30  minutes  (11th  Week)                      | Semester 2/2023                   |
| Teacher         | Assistant Professor Thanatyod Jampawai, Ph.D.  |                                   |
|                 | Division of Mathematics, Faculty of Education, | Suan Sunandha Rajabhat University |

1. (5 marks) Let f(x) = (x-1)(x-2)(x-3). Use the Definition to prove that

f is continuous at 2.

*Proof.* Let  $\varepsilon > 0$ . Choose  $\delta = \min\{1, \frac{\varepsilon}{24}\}$  such that  $|x - 2| < \delta$ . Then |x - 2| < 1.

So,  $|x| - |2| \le |x - 2| < 1$ . We obtain  $|x| \le 3$ .

By triangle inequility, it follows that

$$\begin{aligned} |f(x) - f(2)| &= |(x - 1)(x - 2)(x - 3) - 0| \\ &= |x - 1||x - 2||x - 3| \\ &< (|x| + 1)\delta(|x| + 3) \\ &< (3 + 1)\delta(3 + 3) \\ &= 24\delta < 24 \cdot \frac{\varepsilon}{24} = \varepsilon. \end{aligned}$$

Therefore, f is continuous at x = 2.

2. (5 marks) Use the Mean Value Theorem (MVT) to prove that

$$\ln x \le x - 1$$
 for all  $x \ge 1$ .

*Hints* : Let a > 1 and consider function on [1, a].

*Proof.* Let a > 1 and  $f(x) = \ln x - x$  on [1, a]. Then f is continuous on [1, a] and differentiable on (1, a). Then,  $f'(x) = \frac{1}{x} - 1$ . By the Mean Value Theorem (MVT), there is a  $c \in (1, a)$  such that

$$f(a) - f(1) = f'(c)(a - 1)$$
$$(\ln a - a) - (0 - 1) = \left(\frac{1}{c} - 1\right)(a - 1)$$
$$(\ln a - a) + 1 = \left(\frac{1 - c}{c}\right)(a - 1)$$

From 1 < c < a, 1 - c < 0 and a - 1 > 0, we obtain

$$\left(\frac{1-c}{c}\right)(a-1) < 0.$$

So,  $\ln a - a + 1 < 0$ . Therefore,

$$\ln x \le x - 1$$
 for all  $x \ge 0$ 

| - | - | _ | - |  |
|---|---|---|---|--|
| L |   |   |   |  |
| L |   |   |   |  |
|   | - |   |   |  |



# Quiz 3 (1 p.m.) MAC3309 Mathematical Analysis

| Topic   | Continuity & the Mean Value Theorem (MVT)      | Score 10 marks                    |
|---------|------------------------------------------------|-----------------------------------|
| Time    | 30  minutes  (11th  Week)                      | <b>Semester</b> 2/2023            |
| Teacher | Assistant Professor Thanatyod Jampawai, Ph.D.  |                                   |
|         | Division of Mathematics, Faculty of Education, | Suan Sunandha Rajabhat University |
|         |                                                |                                   |
| Name    | ID                                             | Sec                               |

1. (5 marks) Let f(x) = (x-1)(x-2)(x-3). Use the Definition to prove that

f is continuous at 3.

2. (5 marks) Use the Mean Value Theorem (MVT) to prove that

 $\ln x < x$  for all  $x \ge 1$ .

*Hints* : Let a > 1 and consider a defined function on [1, a].



### Solution Quiz 3 (1 p.m.) MAC3309 Mathematical Analysis

| Topic           | Continuity & the Mean Value Theorem (MVT)      | Score 10 marks                    |
|-----------------|------------------------------------------------|-----------------------------------|
| $\mathbf{Time}$ | 30  minutes  (11th  Week)                      | Semester 2/2023                   |
| Teacher         | Assistant Professor Thanatyod Jampawai, Ph.D.  |                                   |
|                 | Division of Mathematics, Faculty of Education, | Suan Sunandha Rajabhat University |
|                 |                                                |                                   |

1. (5 marks) Let f(x) = (x-1)(x-2)(x-3). Use the Definition to prove that

f is continuous at 3.

*Proof.* Let  $\varepsilon > 0$ . Choose  $\delta = \min\{1, \frac{\varepsilon}{30}\}$  such that  $|x - 3| < \delta$ . Then |x - 3| < 1.

So,  $|x| - |3| \le |x - 3| < 1$ . We obtain  $|x| \le 4$ .

By triangle inequility, it follows that

$$\begin{aligned} |f(x) - f(3)| &= |(x - 1)(x - 2)(x - 3) - 0| \\ &= |x - 1||x - 2||x - 3| \\ &< (|x| + 1)(|x| + 2|)\delta \\ &< (4 + 1)(4 + 2)\delta \\ &= 30\delta < 30 \cdot \frac{\varepsilon}{30} = \varepsilon. \end{aligned}$$

Therefore, f is continuous at x = 3.

2. (5 marks) Use the Mean Value Theorem (MVT) to prove that

$$\ln x < x$$
 for all  $x \ge 1$ 

*Hints* : Let a > 1 and consider function on [1, a].

*Proof.* Let a > 1 and  $f(x) = \ln x - x$  on [1, a]. Then f is continuous on [1, a] and differentiable on (1, a). Then,  $f'(x) = \frac{1}{x} - 1$ . By the Mean Value Theorem (MVT), there is a  $c \in (1, a)$  such that

$$f(a) - f(1) = f'(c)(a - 1)$$
$$(\ln a - a) - (0 - 1) = \left(\frac{1}{c} - 1\right)(a - 1)$$
$$(\ln a - a) + 1 = \left(\frac{1 - c}{c}\right)(a - 1)$$

From 1 < c < a, 1 - c < 0 and a - 1 > 0, we obtain

$$\left(\frac{1-c}{c}\right)(a-1) < 0.$$

So,  $\ln a - a + 1 < 0$ . It follows that  $\ln a - a < -1 < 0$ . Therefore,

$$\ln x < x$$
 for all  $x \ge 0$ 



### Quiz 4 (8 a.m.) MAC3309 Mathematical Analysis

| Topic           | Riemann sum & Change variable                  | Score 10 marks                    |
|-----------------|------------------------------------------------|-----------------------------------|
| $\mathbf{Time}$ | 30  minutes  (13th  Week)                      | <b>Semester</b> 2/2023            |
| Teacher         | Assistant Professor Thanatyod Jampawai, Ph.D.  |                                   |
|                 | Division of Mathematics, Faculty of Education, | Suan Sunandha Rajabhat University |
|                 |                                                |                                   |
| Name            | ID                                             | Sec                               |

1. (5 marks) Let f(x) = 6x(x-1) where  $x \in [0, 1]$  and

$$P = \left\{\frac{j}{n} : j = 0, 1, \dots, n\right\}$$

be a partition of [0, 1]. Find the **Riemann Sum** of f and I(f).

2. (5 marks) Let f be integrable  $\mathbb{R}$  and  $\int_{-1}^{0} f(x) dx = 67$ . Use the change variable to compute  $\int_{1}^{e} f(x \ln x - x) \cdot \ln x^2 dx$ .



#### Solution Quiz 4 (8 a.m.) MAC3309 Mathematical Analysis

TopicRiemann sum & Change variableScoreTime30 minutes (13th Week)SemesterTeacherAssistant Professor Thanatyod Jampawai, Ph.D.<br/>Division of Mathematics, Faculty of Education,Suan Sur

Score 10 marks Semester 2/2023

Suan Sunandha Rajabhat University

1. (5 marks) Let f(x) = 6x(x-1) where  $x \in [0,1]$  and

$$P = \left\{\frac{j}{n} : j = 0, 1, \dots, n\right\}$$

be a partition of [0, 1]. Find the **Riemann Sum** of f and I(f).

**Solution.** Choose  $t_j = \frac{j}{n}$  (the Right End Point) on the subinterval  $[x_{j-1}, x_j]$ and  $\Delta x_j = \frac{1}{n}$  for all j = 1, 2, 3, ..., n. We obtain the Riemann sum to be

$$\sum_{j=1}^{n} f(t_j) \Delta x_j = \sum_{j=1}^{n} f\left(\frac{j}{n}\right) \cdot \frac{1}{n} = \frac{1}{n} \sum_{j=1}^{n} 6 \cdot \frac{j}{n} \left(\frac{j}{n} - 1\right)$$
$$= \frac{6}{n} \sum_{j=1}^{n} \left(\frac{j^2}{n^2} - \frac{j}{n}\right) = \frac{6}{n} \left[\frac{1}{n^2} \sum_{j=1}^{n} j^2 - \frac{1}{n} \sum_{j=1}^{n} j\right]$$
$$= \frac{6}{n} \left[\frac{1}{n^2} \cdot \frac{n(n+1)(2n+1)}{6} - \frac{1}{n} \cdot \frac{n(n+1)}{2}\right]$$
$$= \frac{(n+1)(2n+1)}{n^2} - \frac{3(n+1)}{n}$$

Thus,

$$I(f) = \lim_{\|P\| \to 0} \sum_{j=1}^{n} f(t_j) \Delta x_j = \lim_{n \to \infty} \frac{(n+1)(2n+1)}{n^2} - \frac{3(n+1)}{n} = 2 - 3 = -1 \quad \#$$

2. (5 marks) Let f be integrable  $\mathbb{R}$  and  $\int_{-1}^{0} f(x) dx = 67$ . Use the change variable to compute  $\int_{1}^{e} f(x \ln x - x) \cdot \ln x^2 dx$ .

**Solution.** Let  $\phi(x) = x \ln x - x$ . Then  $\phi'(x) = x \cdot \frac{1}{x} + 1 \cdot \ln x - 1 = \ln x$ ,

 $\phi(1) = 1 \ln 1 - 1 = 0 - 1 = -1$  and  $\phi(e) = e \ln e - e = e - e = 0$ .

By the change variable, we obtain

$$\int_{1}^{e} f(x \ln x - x) \cdot \ln x^{2} dx = \int_{1}^{e} f(\phi(x)) \cdot 2 \ln x dx$$
$$= 2 \int_{1}^{e} f(\phi(x)) \cdot \phi'(x) dx$$
$$= 2 \int_{\phi(1)}^{\phi(e)} f(t) dt$$
$$= 2 \int_{-1}^{0} f(t) dt = 5 \cdot 67 = 134 \quad \#$$



# Quiz 4 (1 p.m.) MAC3309 Mathematical Analysis

| Topic           | Riemann sum & Change variable                  | Score 10 marks                    |
|-----------------|------------------------------------------------|-----------------------------------|
| $\mathbf{Time}$ | 30  minutes  (13th  Week)                      | Semester $2/2023$                 |
| Teacher         | Assistant Professor Thanatyod Jampawai, Ph.D.  |                                   |
|                 | Division of Mathematics, Faculty of Education, | Suan Sunandha Rajabhat University |
|                 |                                                |                                   |
| Name            | ID                                             | Sec                               |

1. (5 marks) Let f(x) = 3x(x+2) where  $x \in [0,1]$  and

$$P = \left\{\frac{j}{n} : j = 0, 1, \dots, n\right\}$$

be a partition of [0, 1]. Find the **Riemann Sum** of f and I(f).

2. (5 marks) Let f be integrable  $\mathbb{R}$  and  $\int_0^1 f(x) dx = 67$ . Use the change variable to compute  $\int_0^1$ 

$$\int_0^1 f(e^x - xe^x) \cdot xe^x \, dx$$



#### Solution Quiz 4 (1 p.m.) MAC3309 Mathematical Analysis

TopicRiemann sum & Change variableTime30 minutes (13th Week)TeacherAssistant Professor Thanatyod Jampawai, Ph.D.<br/>Division of Mathematics, Faculty of Education,

Score 10 marks Semester 2/2023

Suan Sunandha Rajabhat University

1. (5 marks) Let f(x) = 3x(x+2) where  $x \in [0, 1]$  and

$$P = \left\{\frac{j}{n} : j = 0, 1, \dots, n\right\}$$

be a partition of [0, 1]. Find the **Riemann Sum** of f and I(f).

**Solution.** Choose  $t_j = \frac{j}{n}$  (the Right End Point) on the subinterval  $[x_{j-1}, x_j]$ and  $\Delta x_j = \frac{1}{n}$  for all j = 1, 2, 3, ..., n. We obtain the Riemann sum to be

$$\sum_{j=1}^{n} f(t_j) \Delta x_j = \sum_{j=1}^{n} f\left(\frac{j}{n}\right) \cdot \frac{1}{n} = \frac{1}{n} \sum_{j=1}^{n} 3 \cdot \frac{j}{n} \left(\frac{j}{n} + 2\right)$$
$$= \frac{3}{n} \sum_{j=1}^{n} \left(\frac{j^2}{n^2} + 2 \cdot \frac{j}{n}\right) = \frac{3}{n} \left[\frac{1}{n^2} \sum_{j=1}^{n} j^2 + \frac{2}{n} \sum_{j=1}^{n} j\right]$$
$$= \frac{3}{n} \left[\frac{1}{n^2} \cdot \frac{n(n+1)(2n+1)}{6} + \frac{2}{n} \cdot \frac{n(n+1)}{2}\right]$$
$$= \frac{(n+1)(2n+1)}{2n^2} + \frac{3(n+1)}{n}$$

Thus,

$$I(f) = \lim_{\|P\| \to 0} \sum_{j=1}^{n} f(t_j) \Delta x_j = \lim_{n \to \infty} \frac{(n+1)(2n+1)}{2n^2} + \frac{3(n+1)}{n} = 1 + 3 = 4 \quad \#$$

2. (5 marks) Let f be integrable  $\mathbb{R}$  and  $\int_0^1 f(x) dx = 67$ . Use the change variable to compute  $\int_0^1 f(e^x - xe^x) \cdot xe^x dx$ . Solution. Let  $\phi(x) = e^x - xe^x$ . Then  $\phi'(x) = e^x - (x \cdot e^x + 1 \cdot e^x) = -xe^x$ ,

$$\phi(0) = e^0 - 0e^0 = 1 = 1 - 0 = 1$$
 and  $\phi(1) = e - e = 0$ .

By the change variable, we obtain

$$\int_{0}^{1} f(e^{x} - xe^{x}) \cdot xe^{x} \, dx = -\int_{0}^{1} f(\phi(x)) \cdot (-xe^{x}) \, dx$$
$$= -\int_{0}^{1} f(\phi(x)) \cdot \phi'(x) \, dx$$
$$= -\int_{\phi(0)}^{\phi(1)} f(t) \, dt$$
$$= -\int_{1}^{0} f(t) \, dt = \int_{0}^{1} f(t) \, dt = 67 \quad \#$$



### Quiz 4 (Addition) MAC3309 Mathematical Analysis

| Topic           | Riemann sum & Change variable                  | Score 10 marks                    |
|-----------------|------------------------------------------------|-----------------------------------|
| $\mathbf{Time}$ | 30  minutes  (13th  Week)                      | Semester 2/2023                   |
| Teacher         | Assistant Professor Thanatyod Jampawai, Ph.D.  |                                   |
|                 | Division of Mathematics, Faculty of Education, | Suan Sunandha Rajabhat University |
|                 |                                                |                                   |
| Name            | ID                                             | Sec                               |

1. (5 marks) Let f(x) = 6(x-1)(x+1) where  $x \in [0,1]$  and

$$P = \left\{\frac{j}{n} : j = 0, 1, \dots, n\right\}$$

be a partition of [0, 1]. Find the **Riemann Sum** of f and I(f).

2. (5 marks) Let f be integrable  $\mathbb{R}$  and  $\int_{1}^{1+e} f(x) dx = 66$ . Use the change variable to compute  $\int_{1}^{e} f(\ln(xe^{x})) \cdot \frac{1+x}{2x} dx$ .



#### Solution Quiz 4 (Addition) MAC3309 Mathematical Analysis

Topic Riemann sum & Change variable Score Time 30 minutes (13th Week)Semester 2/2023 Teacher Assistant Professor Thanatyod Jampawai, Ph.D. Division of Mathematics, Faculty of Education,

Suan Sunandha Rajabhat University

10 marks

1. (5 marks) Let f(x) = 6(x-1)(x+1) where  $x \in [0,1]$  and

$$P = \left\{\frac{j}{n} : j = 0, 1, \dots, n\right\}$$

be a partition of [0, 1]. Find the **Riemann Sum** of f and I(f).

**Solution.** Choose  $t_j = \frac{j}{n}$  (the Right End Point) on the subinterval  $[x_{j-1}, x_j]$ and  $\Delta x_j = \frac{1}{n}$  for all j = 1, 2, 3, ..., n. We obtain the Riemann sum to be

$$\sum_{j=1}^{n} f(t_j) \Delta x_j = \sum_{j=1}^{n} f\left(\frac{j}{n}\right) \cdot \frac{1}{n} = \frac{1}{n} \sum_{j=1}^{n} 6\left(\frac{j}{n} - 1\right) \left(\frac{j}{n} + 1\right)$$
$$= \frac{6}{n} \sum_{j=1}^{n} \left(\frac{j^2}{n^2} - 1\right) = \frac{6}{n} \left[\frac{1}{n^2} \sum_{j=1}^{n} j^2 - \sum_{j=1}^{n} 1\right]$$
$$= \frac{6}{n} \left[\frac{1}{n^2} \cdot \frac{n(n+1)(2n+1)}{6} - n\right]$$
$$= \frac{(n+1)(2n+1)}{n^2} - 6$$

Thus,

$$I(f) = \lim_{\|P\| \to 0} \sum_{j=1}^{n} f(t_j) \Delta x_j = \lim_{n \to \infty} \frac{(n+1)(2n+1)}{n^2} - 6 = 2 - 6 = -4 \quad \#$$

2. (5 marks) Let f be integrable  $\mathbb{R}$  and  $\int_{1}^{1+e} f(x) dx = 66$ . Use the change variable to compute  $\int_{1}^{e} f(\ln(xe^{x})) \cdot \frac{1+x}{2x} \, dx.$ 

**Solution.** Let  $\phi(x) = \ln(xe^x) = \ln x + \ln e^x = \ln x + x$ . Then  $\phi'(x) = \frac{1}{x} + 1 = \frac{1+x}{x}$ ,  $\phi(1) = \ln 1 + 1 = 0 + 1 = 1$  and  $\phi(e) = \ln e + e = 1 + e$ .

By the change variable, we obtain

$$\begin{split} \int_{1}^{e} f(\ln(xe^{x})) \cdot \frac{1+x}{2x} \, dx &= \frac{1}{2} \int_{1}^{e} f(\ln(xe^{x})) \cdot \frac{1+x}{x} \, dx \\ &= \frac{1}{2} \int_{1}^{e} f(\phi(x)) \cdot \phi'(x) \, dx \\ &= \frac{1}{2} \int_{\phi(1)}^{\phi(e)} f(t) \, dt \\ &= \frac{1}{2} \int_{1}^{1+e} f(t) \, dt = \frac{1}{2} \cdot 66 = 33 \quad \# \end{split}$$