o

Math SSRU

MATHEMATICAL ANALYSIS

Division of Mathematics Faculty of Education
Suan Sunandha Rajabhat University

2022



MATHEMATICAL ANALYSIS

Thanatyod Jampawai
Assistant Professor of Mathematics

Suan Sunandha Rajabhat University

Division of Mathematics, Faculty of Education
Suan Sunandha Rajabhat University

Bangkok, Thailand

Update : November 2022



Contents

1 The Real Number System

1.1 Ordered field axioms . . . . . . . . . .. L
1.2 Well-Ordering Principle . . . . . . . .. . .
1.3 Completeness AXiom . . . . . . . . ..
1.4  Functions and Inverse functions . . . . . . . ... ... oL

2 Sequences in R

2.1 Limits of sequences . . . . . . ...
2.2 Limit theorems . . . . . . . . .
2.3 Bolzano-Weierstrass Theorem . . . . . . . . . . . ... Lo
2.4 Cauchy sequences . . . . . . . ..

3 Topology on R

3.1 Opensets . . . . .
3.2 Closed sets. . . . . . . e
3.3 Limit points . . . . . . .

4 Limit of Functions

4.1 Limit of Functions . . . . . . . . .
4.2 One-sided imit . . . . . . . .
4.3 Infinite Hmit . . . . . . . .

5 Continuity on R
5.1 Continuity . . . . . . . . e

5.2 Intermediate Value Theorem . . . . . . . . . . . . . ..



i

5.3  Uniform continuity

Differentiability on R
The Derivative
Differentiability theorem
Mean Value Theorem

Monotone function

Integrability on R
7.1 Riemann integral
7.2 Riemann sums

7.3 Fundamental Theorem of Calculus

Infinite Series of Real Numbers
Introduction
Series with nonnegative terms
Absolute convergence

Alternating series

CONTENTS



Chapter 1

The Real Number System

1.1 Ordered field axioms

FIELD AXIOMS.

There are functions + and -, defined on R?, that satisfy the following properties for every a, b, ¢ € R:

F1 Closure Properties a + b and a - b belong to R.

F2 Associative Properties a+(b+c)=(a+b)+c
a-(b-c)=(a-b)-c

F3 Commutative Properties a+b=b+aanda-b=0b-a

F4 Distributive Properties a-(b+c¢)=a-b+a-c
(b+c)-a=b-at+c-a

F5 Additive Identity There is a unique element 0 € R such that
O+a=a=a+0forallaeR.

F6 Multiplicative Identity There is a unique element 1 € R such that
l-a=a=a-1forallaeR.

F7 Additive Inverse For every x € R there is a unique —x € R such that
r+ (—z)=0=(—x)+=x.

F8 Multiplicative Inverse For every x € R\{0} there is a unique 2! € R such that
() =1= (") z

We shall frequently denote

1
a+(=b)bya—0, a-bbyab, a~!by — and a'b_lby%.
a
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The real number system R contains certain special subsets: the set of natural numbers
N:={1,2,3,...}

obtained by begining with 1 and successively adding 1’s to form 2 :=1+1, 3 := 2 + 1, etc,; the
set of integers

Z:=1{.,-2,-1012 .}
(Zahlen is German for number); the set of rationals (or fractions or quoteints)
Q:= {g:p,qEZandq%O}
and the set of irrationals
Q°:=R\Q.

Equality in Q is defined by
_P . : _
— == if and only if mgq = np.
n q
Recall that each of the sets N, Z, Q and R is a proper subset of the next; i.e.,

NCcZcQcCR.
Definition 1.1.1 Let a € R and n € N. Define

at=ga-a-..-q
—
n— coples
a and n are called base and exponent, respectively.
Definition 1.1.2 Let a be a non-zero real number. Define
0 B 1
a’=1 and a"=— forneN
an

Theorem 1.1.3 Let a,b € R and n,m € Z. Then

1. (ab)™ = a"b"

2. (%)n = Z—: where b #£ 0

4. — =a"""™ wherea #0

Proof. Excercise. O
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Theorem 1.1.4 Let a be a real number. Then
1. 0a=0 3. —(—a)=a

2. (-1)a=—a 4. (a™')™t = a where a # 0

Proof. Let a be a real number. We first consider
0a = (0+0)a (by F5)
= O0a + Oa ( by F4)

By F5, it implies that Oa = 0. This result leds to

0 = 0a (by 1. )
— (14 (~1))a (by F7)
=1la+(-1)a (by F4)
—a+(—1a ( by F6 )

By F7, (—1)a is an additive inverse of a. Thus, (—1)a = —a. This result leds to
0=a+(—a)
So, a is an inverse of —a. Thus, a = —(—a). For a # 0, by F8, we give
ac”t =1

Then, a is a multiplicative inverse of a=!. So, a = (a=!)7%.

Theorem 1.1.5 Let a and b be real numbers. Then

—(ab) = a(=b) = (—a)b.

Proof. Let a and b be real numbers. We consider

0=0b ( by 1. in Theorem 1.1.4)
= (a+(=a))b (by F7)
=ab+ (—a)b ( by F4)

Then, (—a)b is an additive inverse of ab. So, (—a)b = —(ab).

Similary, we will show that a(—b) = —(ab).
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Theorem 1.1.6 (Cancellation law) Let a, b and c be real numbers. Then
1. Cancellation law for addition if a+c=b+c, thena=nb.

2. Cancellation law for multiplication if ac=bc andc#0, thena=D>.

Proof. Let a, b and ¢ be real numbers. Assume that a + ¢ =0+ ¢. Then,

a=a+0 ( by F5)
=a+ (c+(—0)) (by F7)
=(a+c)+ (—c) ( by F2)
=(b+c)+ (—c) ( by assumption )
= b+ (c+ (—c)) (by F2)
=b+0 (by F7)
=b (by F5)

a=al ( by F6 )
= a(cc™?) (by F8)
= (ac)c! (by F2)
= (bc)c ™t ( by assumption )
= b(ec™) (by F2)
= bl (by F8)
=b ( by F6 )
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Theorem 1.1.7 (Integral Domain) Let a and b be real numbers.

If ab=0,then a=0 or b=0.

Proof. Let a and b be real numbers. Suppose ab = 0 and a # 0. By 1. in Theorem 1.1.4, we get
ab=0=a0

By cancellation for multiplication, b = 0. ]

ORDER AXIOMS.

There is a relation < on R? that has the following properties for every a,b,c € R.

O1 Trichotomy Property Given a,b € R, one and only one of
the following statements holds:
a<b b<a, or a=0b

O2 Trasitive Property a<band b<c imply a<ec

O3 Additive Property a<b imply a+c<b+c

O4 Multiplicative Property 0O4.1 a <band 0 < ¢ imply ac < bc
042 a<band ¢c <0 imply bec < ac

We define in other cases:

e By b > a we shall mean a < b.
e By a < b we shall mean a < b or a =b.
e If a < band b < ¢, we shall write a < b < c.

e We shall call a number a € R nonnegative if a« > 0 and positive if a > 0.
Example 1.1.8 Let x € R. Show that if 0 < x < 1, then 0 < 2?> < x

Proof. Let x be a real number such that 0 < x < 1. Then 0 < z and x < 1. By O4.1 and the fact

that = > 0, we obtain
0=0-z<zxz-x=2> and 22=zx-2<1l-z==x

By O2, it implies that

0 < 22 < =
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Example 1.1.9 Let z,y € R. Show that if 0 < x <y, then 0 < 2 < y?

Proof. Let x and y be real numbers such that 0 < x < y. Then x > 0 and y > 0. By O4.1, we

obtain
0z < z-z < y-x
0 < 22 < ay
and
0y < 2y < y-y
ry <yl
Then 0 < 2% < 2y and xy < y?. By Transitive Property, 0 < 22 < 3. [

Theorem 1.1.10 Let a,b,c and d be real numbers.

Ifa <bandc<d, then a+c<b+d.

Proof. Let a,b,c and d be real numbers. Assume that a < b and ¢ < d. By O3, we get
a+c<b+c and b+c<b+d.

By Transitive Property, a + ¢ < b+ d. [

Theorem 1.1.11 Let a,b,c and d be real numbers.

If0<a<band0<c<d, then ac < bd.

Proof. Let a,b,c and d be real numbers. Assume that 0 <a <band 0 < ¢ < d.
Then b > 0 and ¢ > 0. By O4.1, we get

ac < bec and be < bd.

By Transitive Property, ac < bd. O
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Theorem 1.1.12 Ifa € R, prove that
a#0 implies a® > 0.

In particular, —1 <0 < 1.

Proof. Let a be a real number. Assume that a # 0. By Trichotomy Property (O1), a > 0 or a < 0.
Case a > 0. By O4.1,a-a > 0-a. So, a®> > 0.
Case a < 0. By 04.2,a-a > 0-a. So, a? > 0.

Moreover, we see that 1 # 0. So, 1 = 12 > 0. By cancellation for addition,
14+ (=1) >0+ (-1).
From F7, we obtain 0 > —1. Thus, —1 <0 < 1. O

Example 1.1.13 If z € R, prove that x > 0 implies x~! > 0.

Proof. Let x € R such that # > 0. Then 27! # 0. By Theorem 1.1.12, (=) > 0. Thus,

v t=x-2 =2 ()2 >0-(z7H)?=0.

Example 1.1.14 If x € R, prove that v < 0 implies x=1 < 0.

Proof. Let x € R such that # < 0. Then z~! # 0. By Theorem 1.1.12, (z=')? > 0. Thus,

v t=x-2 =2 (a7 <0-(z7H)?=0.
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Theorem 1.1.15 Let a and b be real numbers such that 0 < a < b. Then

SHES

<

S =

1
Proof. Let a and b be real numbers such that 0 < a < b. Then ab > 0. So, p > 0.
a
By 0O4.1, we obtain

Q|-

Example 1.1.16 Let x and y be two distinct real numbers. Prove that

Tr+y

lies between x and y.

Proof. Let x and y be two distinct real numbers.
By Trinochomy rule, z # y. WLOG x <y. Thenz+z <z +yand x+y <y +y.

By transitive rule,

2r<z+y<y

T+
$<Ty<y
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ABSOLUTE VALUE.

Definition 1.1.17 (Absolute Value) The absolute value of a number a € R is a the number

;

a ifa>0
lal =< 0 ifa=20
—a ifa<0

Theorem 1.1.18 (Positive Definite) For all a € R,

1. la|] >0 2. la| =0 if and only if a =0

Proof. Let a be a real number.
1. Case a =0. Then |a| = 1[0 =0 > 0.
Case @ > 0. Then |a| = a > 0.
Case a < 0. Then |a| = —a = (—1)a > (—1)0 = 0.
Hence, |a| > 0.

2. It’s obviously by definition.

Theorem 1.1.19 (Multiplicative Law) For all a,b € R,

|ab] = |al|b].

Proof. Let a and b be real numbers.

Case a =0 or b=0. Then ab =0 and |a| = 0 or |b| = 0. So, |ab| = |0| = 0 = |a||b|.

Case a > 0 and b > 0. Then ab > 0, |a| = a and |b| = b. So, |ab| = ab = |al|b|.

Case a > 0 and b < 0. Then ab < 0, |a| = a and |b| = —b. So, |ab| = —ab = a(—b) = |al|b]|.

Case a < 0 and b > 0. Then ab < 0, |a| = —a and |b| = b. So, |ab| = —ab = (—a)b = |a||b|.

Casea < 0and b < 0. Then ab > 0, |a| = —a and |b] = —b. So, |ab| = ab = (—a)(—b) = |al|b|.

Hence, |ab| = |al|b].

]
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Theorem 1.1.20 (Symmetric Law) For all a,b € R,
la — bl = |b— al.

Moreover, |a| = | — al.

Proof. Let a and b be real numbers. By Multiplicative Law, it implies that
la = bl =| = (=a) + (=0)| = |(=1)(—=a) + (=1)b] = |(=1)(—a + b)|
=|-1|—a+b=1-|—a+bl=|—a+b=|b—al
For b = 0, we obtain |a| = | — al. O

T

1
—  forallxz # 0.

Example 1.1.21 Show that = 2]
x

Proof. Let x be a non-zero real number.

1 1 1

Case x > 0. Then |z| =z and — > 0. So, —’:———

1 1 1
Case © < 0. Then |z| = —z and — < 0. So, —‘:——:——

x r —x |z

]
Theorem 1.1.22 Let a,b € R. Show that
1. |a?| = a2 2. a<|dl P ‘C_L}:kil hem b - 0
13 0 when b #

Proof. Let a,b € R. By Theorem 1.1.12, a* > 0. So, |a?| = a*.
Case a=0. Then a =0<0= 10| = |a.
Case @ > 0. Then a < a = |al.
Case a < 0. Then —a > 0. So, a < 0 < —a = |al.
Thus, a < |a|. Use Multiplicative law and Example 1.1.21 to 3, we have
1 af

a 1
A=labH=lalb Y =lal-12|=la - = =2
‘b\ lab™"| = |al[b™"| = |a ‘b‘ |al o
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Theorem 1.1.23 Leta € R and M > 0. Then

la| < M if and only if —M <a< M

Proof. Let a € R and M > 0.
Assume that |a| < M. By definition, |a| = £a. Then

a<M and —a<M.

We obtain a > —M. Thus, —M <a < M.

Conversely, assume that —M < a < M. Then

—-M<qag and a< M.

So, M > —a. Thus, |a| = £a < M. O
Corollary 1.1.24 For alla € R, —la] <a <]al.
Proof. Choose M = |a| > 0 in Theorem 1.1.23, we obtain this Corollary. O
INTERVAL.
Let a and b real numbers. A closed interval is a set of the form

[a,b] :={x eR:a <z <b} (—o0,b] . ={z €R:z<b}

la,00) :={r €R:a <z} (—o00,00) =R,

and an open interval is a set of the form
(a,b) :={r €R:a<x <b} (—o0,b):={zeR:2z<b}
(a,00):={reR:a<x} (—o00,00) :=R.
By an interval we mean a closed interval, an open interval, or a set of the form
la,b) :={r eR:a<z<b} or (a,b:={zceR:a<z<b}

Notice, then, that when a < b, then intervals [a,b], [a,b), (a,b] and (a,b) correspond to line

segments on the real line, but when b < a, these interval are all the empty set.
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Example 1.1.25 Solve |x — 1| < 1 for x € R in interval form.
Solution. By Theorem 1.1.23, —1 <x —1 < 1. So,
0<x <2
Thus, z € (0,2).
Example 1.1.26 Show that if |z| <1, then |2*+ x| < 2.
Solution. Let |z| < 1. Then —1 <z < 1. So, 0 <z + 1 < 2. We obtain
—2<0<z+l<l — Jz+1l<2
Therefore,
2>+ 2| =|z(x+ 1) =|zllz + 1] < 1-2=2.

Example 1.1.27 Show that if |z — 1] <2, then E1| > 1.
Solution. Let |z —2| < 1. Then —1 <z —2 < 1. So, 1 < 2 < 3. We obtain

|z| > 1.

1
Therefore, — > 1.

|z]

Theorem 1.1.28 (Triangle Inequality) Let a,b € R. Then,

o+ b] < |af + [b].

Proof. Let a,b € R. By Corollary 1.1.24,

i
E)
IA
S
IA

lal

—bl < b < |l

Then, —(la| + |b]) < a+ b < |a| + |b]. Therefore, |a + b| < |a| + |b]. O
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Theorem 1.1.29 (Apply Triangle Inequality) Let a,b € R. Then,
1. la—b| < |a| + |b] 3. |a] — |b] < |a+ b]

2. lal = [b] < 'la —b| 4 lal = 1ol < la = bl

Proof. Let a,b € R.

1. By Triangle Inequality,

o — bl = a+ (=b) < |af + [ = 0] = |a] + [b].
2. By Triangle Inequality,
la| = |(a —b) + b] < |a —b|] +|b].
Thus, |a| — |b] < |a — b].

3. By 2,
la = [b] = la] = | = 0] < |a = (=b)] = |a +b].

4. By 2, |a| < |a —b| + |b]. By 3,
[b] = la = b < |bo+ (a = b)| = [a].

Then,
[b] — la = b] |a —b| +1b]
—la—b] < la|—]b] < [a—0]

A
EY
A

Thus, ||a| — |b|| < |a — b].

Example 1.1.30 Show that if |x —2| <1, then |z| < 3.

Solution. Let |z — 2| < 1. By 3 in Theorem 1.1.29,
lz| —2=|z| - 2| <|z—-2| <L

Therefore, |z| <1+2=3.
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Theorem 1.1.31 Let z,y € R. Then
1. x<y+4e foralle >0 ifand only if <y

2.x>y—e foralle >0 ifandonlyif >y

Proof. Let x,y € R.
1. Assume that x <y +¢ foralle > 0and z > y. Then x — y > 0. By assumption, we get
r<y+(r—y) ==

It is imposible. So,x < y +¢ for all e > 0 if and only if x <y Conversely, suppose that

there is an € > 0 such that z > y +¢. So,
r>2y+e>y+0=y
Thus, z > y. We conclude that if x > y, then x <y +¢ for all ¢ > 0.

2. Excercise.

Corollary 1.1.32 Let a € R. Then

la| <& foralle >0 if and only if a=0

Proof. Use Theorem 1.1.31 by x = |a| and y = 0. Thus,
la| <0+4¢ foralle >0 if and only if |a| <O0.

Since |a| > 0, |a| = 0. By positive definite, a = 0. The proof is complete. O
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Exercises 1.1

1. Let a,b € R. Prove that

1.1 —(a—b)=b—a 1.3 (—a)(=b) = ab

—a a

a
1.2 a(b—c):ab—ac 1.4 T:_—b:—gwhenb%o

2. Let a,b € R. Prove that

2.1 If a+b=a, then x = 0.
22 If ab="band b # 0, then a = 1.

23 Ifa ! =aand a# 0, thena=—1ora=1.
3. Let a,b,c,d € R. Prove that

3.1 ifa<b<0,then 0 < b* < a’

1 1
3.2 ifa<b<0,then - < —.
b a

3.3 ifa <band a>b, then a =0b.

3.4 if 0 < a < b, then \/a < V/b.

4. Solve each of the following inequality for z € R.
4.1 |1 —22| <3 4.3 |2* —x — 1| < 22
42 13—z <5 4.4 2% — x| <2

5. Prove that if 0 < a <1land b=1—+/1—a, then 0 < b < a.

6. Prove that if a > 2 and b=1—+/1 —a, then 2 < b < a.

7. Prove that |z| < 1 implies |22 — 1] < 2|z — 1].

8. Prove that —1 < z < 2 implies |2? + 2 — 2| < 4|z — 1].

9. Prove that |z| < 1 implies |2? — 2 — 2| < 3|z + 1].

10. Prove that 0 < |z — 1| < 1 implies |z + x — 2| < 8|z — 1]. Is this true if 0 < [z — 1| < 17
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11.

12.

13.

14.

15.

16.

17.

18.

CHAPTER 1. THE REAL NUMBER SYSTEM
Let x,y € R. Prove that if |x + y| = |z — y|, then z|y| + y|z| = 0.

Let z,y € R. Prove that if |2z + y| = |z + 2y|, then |zy| = 22

2
a®+ 2 S 9

vaz+1 "~

Let a € R. Prove that

Prove that
(a1by + a2b2)2 < (a% + a%)(b? + b%)

for all ay, as,b1,by € R
Let z,y € R. Prove that z >y —¢ foralle >0 if and only if = > y.
Suppose that x,a,y,b € R, |x — a| < ¢ and |y — b| < € for some £ > 0. Prove that

16.1 |zy — ab| < (Ja| + |b|)e + £

16.2 |2%y — a?b| < e(|al* + 2|ab|) + £2(|b| + 2]a|) + &2

The positive part of an a € R is defined by
+_ la| + a
@t =
and the negative part by
~_laf-a
a =
2

17.1 Prove that a = a™ —a™ and |a] = a™ +a”.

a a>0 0 ca>0

17.2 Prove that a' := and a =
0 :a<0 —a :a<0

a+b
2 )

Let a,b € R. The arithmetic mean of a,b is A(a,b) :=

the geometric mean of a,b € (0, 00) is G(a,b) := Vab,
2

and harmonic mean of a,b € (0,00) is H(a,b) := s
a

Show that
18.1 if a,b € (0,00). Then H(a,b) < G(a,b) < A(a,b).
182 if 0 <a <b. Then a < G(a,b) < A(a,b) <b.

18.3 if 0 < a <b. Then, G(a,b) = A(a,b) if and only if a = b.
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1.2 Well-Ordering Principle

Definition 1.2.1 A number m is a least element of a set S C R if and only if

meS andm < s foralls € S.

WELL-ORDERING PRINCIPLE (WOP).

Every nonempty subset of N has a least element.

SCNAS#2 — ImeSVse S, m<s.

Theorem 1.2.2 (Mathematical Induction) Suppose for each n € N that P(n) is a statement

that satisfies the following two properties:
(1) Basic step : P(1) is true
(2) Inductive step : For every k € N for which P(k) is true, P(k + 1) is also true.

Then P(n) is true for all n € N.

Proof. We will prove by contradiction. Assume that (1) and (2) are ture and there is an ng € N

such that P(ng) is false. Define
S ={neN:P(n)is false }.

Then, ng € S € N. By WOP, S has a least element, said m € S.
Since (1) is true, m # 1. Thenm >1orm —1>0. So, m —1 € N.

But m — 1 < m and m is the least element in S, so m — 1 ¢ S. Set
kE=m —1 € N. We obtain P(k) is true.

By (2), P(k+ 1) = P(m) is true. This contradicts m € S. O
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Example 1.2.3 (Gauss’ formula) Prove that

for alln € N.
1
2 1(1+1
Proof. For n =1, we get ;k =1= 3= ( 2+ ) So, (1) is true.
& 1
Assume that Z k= M Then,
k=1
U n(n+1) n (n+1)(n+2)
- 1) = (n+1 [— 1} - .
Zk Zk+ n+1 st =(@m+1) |5+ 5
So, (2) is true. By Mathematical Induction, Gauss’ formula is proved. H

Example 1.2.4 Prove that 2" > n for all n € N.

Proof. We will prove by induction on n. For n = 1, it is clear 2! > 1. Assume that 2" > n for

some n € N. By inductive hypothesis and the fact that n > 1,
ol —on. 9> 9 =n4+n>n+1.

So, 2" > n is true for n + 1. We conclude by induction that 2" > n holds for n € N. O]

BINOMIAL FORMULA.

Definition 1.2.5 The notation 0! =1 andn! =1-2---(n—1)-n for n € N (called factorial),

define the binomial coefficient n over k by

(n — k)lk!

o

for0<k<nandn=20,1,2,3,...

Theorem 1.2.6 Ifn,k € N and 1 < k <n, then

n+1 n n

k E—1 k
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Proof. Let n,k € Nand 1 < k <n. We obtain

n n n! n!
PR B W B pray g T TR R B T

B nlk N nl(n —k+1)
m—k+Dk=1% (n—-—Ek+1)(n—k)k

B nlk +n!(n—k+1)_n!k—|—n!(n—k+1)
(n—k+1Dk! (n—k+1k!  (n—Fk+1)k!

Cnlk+(n—k+1)]  nln+1) (n+1)!  [n+l

(n—k+k (h—k+DWk  (n—k+1)K L

Theorem 1.2.7 (Binomial formula) Ifa,b € R and n € N, then

n

n
(a+b)" = Z a™Fpk
=0 \ Kk

Proof. We will prove by induction on n. The formula is obvious for n = 1. Assume that the

formula is true for some n € N. By inductive hypothesis,

’I’L

(a4 )™ = (a + b)(a + b)" = m+m " an

n

_ Z n a k+1bk+z a’ kbk+1

=0 \ K
n n—1 n
_ an—i—l +Z a™ k+1bk + Z an—kbk—H +bn+l
k k
L[ bk L % n k1K 1
—ata Y (M) ey I g
—1 \ Kk k—1
_ gt Z n n n arR L et
1 k k—1
Thus, it follows from Theorem 1.2.6 that
n n+1
(a + b nt+l n+1 + Z an—k—lbk + bn+1 _ Z n+1 an+1—kbk
_ k
k=0

i.e., the formula is true for n 4+ 1. We conclude by induction that the formula holds for n € N. [
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Exercises 1.2

1.

2.

-

ot

=)

oo

©

Prove that the following formulas hold for all n € N.

& 4n? — 1
11> (3k—1)(3k +2) =3n’ + 6n” + n 132%-1 n(n—1)

k=1

3 n(n+1) a—1 1
1.2 Zk { ] 14> S =1-—, a#0

Use the Binomial Formula to prove each of the following.

n

n
2.1 2”22 for all n € N.
=1 \ k

2.2 (a+b)" > a" +aa"'b for all n € N and a,b > 0.

1 n
2.3 <1+—) > 2 for allm € N.
n

. Let n € N. Write

(x 4+ h)" — 2"
h

as a sum none of whose terms has an h in the dennominator.

Suppose that 0 < x; <1 and 2,41 =1 — /1 —x, for n € N. Prove that 0 < z,4; <z, <1
holds for all n € N.

Suppose that z; > 2 and z,,; = 1+ 2, — 1 for n € N. Prove that 2 < x,.1 <z, <
holds for all n € N.

. Suppose that 0 < x; < 2 and 2,41 = /2 + x, for n € N. Prove that 0 < z,, < x,11 < 2

holds for all n € N.

. Prove that each of the following inequalities hold for all n € N.

71 n<3" 72n?2<2"+1 7.3 n < 3"

. Let 0 < |a| < 1. Prove that |a|"™ < |a|™ for all n € N.

. Prove that 0 < a < b implies a™ < b™ for all n € N.
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1.3 Completeness Axiom
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SUPREMUM.
Definition 1.3.1 Let A be a nonempty subset of R.

1. The set A is said to be bounded above if and only if

there is an M € R such that a < M for alla € A

2. A number M is called an upper bound of the set A if and only if

a <M forallae A

3. A number s is called a supremum of the set A if and only if

s is an upper bound of A and s < M for all upper bound M of A

In this case we shall say that A has a supremum s and shall write s = sup A

Example 1.3.2 Fill the blanks of the following table.

Sets Bounded above | Set of Upper bound | Supremum
A=10,1] Yes 1, 00) 1
A=(0,1) Yes 1, 00) 1
A={1} Yes 1, 00) 1

A= (0,00) No @ None
A= (—00,0) Yes 0, 00) 0
A=N No 1%} None
A=7 No 1%} None
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Example 1.3.3 Show that sup A =1 where

1. A=[0,1] 2. A=(0,1)
Solution.

1. For A =10,1]. Since a <1 for all @ € A, 1 is an upper bound of A.
Let M be an upper bound of A. Then,

a<M forallac A

Since 1 € A, 1 < M. Thus, sup A = 1.

2. For A= (0,1). Since a < 1 <1 for all a € A, 1 is an upper bound of A.
Suppose that there is an upper bound M, of A such that M, < 1. Then,

a< My, forallae A

My+1 My+1
02+ < 1, so 0 +
an upper bound of A. Hence, there is no upper bound of A such that it is less that 1. We

But 0 < a < My <

belongs to A. It is imposible because M, is

conclude that sup A = 1.

Theorem 1.3.4 If a set has one upper bound, then it has infinitely many upper bounds.

Proof. Let My be an upper bound of a set A. We set
M :=My+k forall ke N.

Then, M > M, for all £k € N. So, M is another upper bound of A depending on k.
This reason shows that it has infinitely many upper of A. O
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Theorem 1.3.5 If a set has a supremum, then it has only one supremum.

Proof. Let s; and s, be suprema of the same of a set A. Then, s; and s, are upper bounds of A.

By definition of supremum, we obtain
s1 <8y, and s9 < sj.

Therefore, s1 = ss. L]

Theorem 1.3.6 (Approximation Property for Supremum (APS)) If A has a supremum

and € > 0 is any positive number, then there is a point a € A such that

supA—e<a<supA

Proof. We will prove by contradiction. Assume that A has an infimum, say s. Suppose that there

a positve g9 > 0 such that
a<s—ey or a>s forallaec A

In this case a > s, it is imposible beacause s is an upper bound of A.

From a < s — ¢q for all a € A, it means that s — g; is an upper bound of A. But
S—¢ep < S

It’s imposible because s is the least upper bound of A. O

Theorem 1.3.7 If A C N has a supremum, then sup A € A.

Proof. Assume that A C N has a supremum, say s. Apply APS to choose an x5 € A such that
s—1<x<s.

If g = s, then s € A. In this case s — 1 < xp < s. Apply again APS to choose z; € A such that

Ty < X1 < S

0 < zq1—2¢9 < s— .
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Since zg, 1 € N and zg # x1, x1 — 9 > 1. From s — 1 < g and z; < s, we get
(s —1)+x <z0+ s

So, r1 — xg < 1. It contradicts to 1 — xg > 1. Thus, this case is false. O

COMPLETENESS AXIOM.

If A is a nonempty subset of R that is bounded above, then A has a supremum.

Theorem 1.3.8 The set of natural numbers is not bounded above.

Proof. Suppose that N is bounded above. Since N is not a nonempty set by Completeness Axiom,

N has a supremum, say s. Then
n<s forallneN.
IfneN thenn+1€eN. So,n+1<s forallneN,ie.,
n<s—1 forallnéeN.

Thus, s — 1 is an upper bound of N. We obatain s < s —1 or 0 < —1. It is imposible. O

Theorem 1.3.9 (Archimedean Properties (AP)) For each x € R, the following statements

are true.
1. There is an integer n € N such that x < n.

1
2. If x > 0, there there is an integer n € N such that — < x.
n

Proof. Suppose that there is an x € R such that x > n for all n € N. It means that x is an upper
bound of N. This is contradiction Theorem 1.3.8. Thus, part 1 is proved.

1 1
Next, we assume that > 0. Then — € R. By 1, there is an n € N such that — < n. Thus,
x x

1
— <.
n

The proof of Archimedean Properties is complete. O
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Theorem 1.3.10 Let x € R. Then

1
\:1:]<E for alln € N if and only if x =0

1
Proof. Let x € R. Assume that x| < — for allm € N. Let ¢ > 0. By AP, there an N € N such
n

1
that — < e. By assumption, we obtain

N
|z| < = <
r| < = <e.
N
From Corollary 1.1.32 , it implies that x = 0. Conversely, it is obvious. O]

1
Example 1.3.11 Let A = {— ‘n € N}. Prove that sup A = 1.
n

1

Proof. For each n € N, we get n > 1. So, — < 1. Thus, 1 is an upper bound of A.
n

Let M be any upper bound of A. Then

a< M forall acA.

Fornzl,wehavelz%EA. So, 1 < M. Hence, sup A = 1. n

Example 1.3.12 Let A = { n 7" € N}. Prove that sup A = 1.

n -+

Proof. Since 0 <n <n+1 for all n € N, nL—l—1<1 for all n € N.
Thus, 1 is an upper bound of A.

Suppose that that there is an upper bound ug of A such that uy < 1.
Since ug < 1, 1 —ug > 0. By AP, there is ny € N such that

1
_<1—7,L0.
No

1 1
< —. We obtain

Since ng + 1 > ng > 0,
0 0 n0+1 o

1
n0+1

<1—wug

1 . U
n0+1_n0—|—1

U < 1 —

So, ug is not upper bound of A. This is contradiction. Therefore, sup A = 1. n
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Theorem 1.3.13 If x € R, then there is an n € Z such that

n—1<z<n.

Proof. Let x € R. If x = 0, we choose n = 1. We are done.
Case 1. x > 0. Define S = {n € N:n >z} CN. By AP, S # @. From WOP, S has the least

element, say ng. Since ng —1 < ng, ng —1 ¢ A. So, ng — 1 < z. Thus,
ng— 1<z <ng.

The proof is complete in this case.

Case 2. £ < 0. Then —x > 0. By Case 1, there is an m € N such that m — 1 < —x < m. Then
—-m<zxz<-m-+1.

If x = —m+ 1, we choose n = —m + 2. So,
n—1l=—-m+l=zr<norn—1<z<n.

If —-m <z < —m+1, wechoosen=—m+1. So,n—1 <z <n. Itimpliesthat n—1<x <n. O

Theorem 1.3.14 (Density of Rationals) If a,b € R satisfy a < b, then there is a rational
number r such that

a<r<hb.

Proof. Let a,b € R such that a < b. Then b —a > 0.
1

By AP, there is an N € N such that — < b — a. It follows that
n

na + 1 < nb.
By Theorem 1.3.13, there is an m € Z such that m — 1 < na < m. It implies that
na <m <na-+1<nb.

m
Set r := —. We obtain a < r < b. OJ
n
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Theorem 1.3.15 /2 is irrational.

Proof. Assume that v/2 is a rational number. Then there are two integers p and ¢ such that
V2= P when g # 0 and ged(p, q) = 1.
q

We have 2¢? = p?. It implies that p is an even number. Then there is an k& € Z such that p = 2k.
So,

2¢° = (2k)? = 4k?

q2 — 2]{32

It implies again that ¢ is an even number. Thus, ged(p, ¢) # 1. This is contradiction. O

Theorem 1.3.16 (Density of Irrationals) If a,b € R satisfy a < b, then there is an irrational
number t such that

a<t<hb.

a b

Proof. Let a,b € R such that a < b. Then — < —.

/ V2 V2
b

r € Q such that 4 < r < —. It follows that

V2 V2

By the Density of Rational, there is an

a<rv2<b.

If 7 # 0, then t := r/2 is irrational (see Exercise). It is done.
a b
Case r = 0. By the Density of Rational, there is an s € Q such that — < 0 < s < —. It follows
y y Q NG 7

that
a < svV2 <b.

Set t = sv/2, irrational. Thus, the proof is complete. m
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INFIMUM.
Definition 1.3.17 Let A be a nonempty subset of R.

1. The set A is said to be bounded below if and only if

there is an m € R such that m < a for alla € A

2. A number m is called a lower bound of the set A if and only if

m<a foralla€ A

3. A number { is called an infimum of the set A if and only if

¢ is a lower bound of A and m < { for all lower bound m of A

In this case we shall say that A has an infimum s and shall write ¢ = inf A
4. A is said to be bounded if and only if it is bounded above and below.

Example 1.3.18 Fill the blanks of the following table.

Sets Bounded below | Set of Lower bound | Infimum | Bounded
A=10,1] Yes (—00, 0] 0 Yes
A=1(0,1) Yes (—00,0] 0 Yes
A={1} Yes (—o00,1] 1 Yes
A= (0,00) Yes (—00,0] 0 No
A = (—00,0) No %) None No
A=N Yes (—o0, 1] 1 No
A=7Z No %) None No
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Example 1.3.19 Show that inf A =0 where
1. A=10,1] 2. A=(0,1)
Solution.

1. For A =10,1]. Since a > 0 for all a € A, 1 is a lower bound of A.
Let m be a lower bound of A. Then,

m<a forallaec A

Since 0 € A, 0 < M. Thus, inf A = 0.

2. For A= (0,1). Since a > 0 > 0 for all a € A, 0 is a lower bound of A.

Suppose that there is a lower bound mg of A such that mg > 0. Then,
mo<a forallaec A

But 0 < ? < mg < a, SO % belongs to A. It is imposible because mg is a lower bound
of A. Hence, there is no lower bound of A such that it is greater that 0. We conclude that
inf A =0.

1
Example 1.3.20 Let A = {— 'n € N}. Prove that inf A = 0.
n

1

Proof. For each n € N, we get n > 0. So, — > 0. Thus, 0 is a lower bound of A.
n

Suppose that that there is a lower bound mg of A such that mg > 0.

By AP, there is ny € N such that

1
— < Mmy.
no

So, mg is not lower bound of A. This is contradiction. Therefore, inf A = 0. O]
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1
Example 1.3.21 Let A = { 'n e N}. Prove that inf A = 3"

n -+
1 1 )

Proof. Let n € N. Thenn > 1. So, — <1or 1+ — <2. We obtain
n n

n
<

1 —_
1+1 n4l

DO | —

Thus, % is a lower bound of A.

Let mg be any lower bound of A. Then
mo <a forall a € A.

1 1
For n = 1, we have that — = —— belongs to A.
2 141

moy <

N | —

Therefore, inf A = % O]

Theorem 1.3.22 (Approximation Property for Infimum (API)) If A has an infimum and

e > 0 is any positive number, then there is a point a € A such that

infA<ag<infA+e.

Proof. Assume that A has an infimum, say £,. Suppose that there a positve €y > 0 such that
a</ly or a>/ly+¢eyforallac A

In this case a < {y, it is imposible beacause {; is a lower bound of A.

From a > ¢y + ¢g for all a € A, it means that ¢y + ¢ is a lower bound of A. But
by +e9 > Ly

It’s imposible because /j is the greatest lower bound of A. O]
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Exercises 1.3

1. Find the infimum and supremum of each the following sets.

1.1 A=10,2) 1.7 A:{1+(_1) :neN}
n
1.2 A={4,3,1,5}
n+1
13 A={zeR:|jz—1 <2} 1-8A:{ - ‘"EN}
14 A={xeR:|z+1| <1 2
{ w1y 1.9A:{n2+T:n€N}
15 A={1+(-1)":neN} net
1 )41
1.6A:{——(—1)”:neN} 1.10A:{”( s neN}
n n -+ 2

2. Find inf A and sup A with proving them.

21 A=[-1,1] 25A:{ n :nEN}
n—+ 2
22 A=(-12] 2.6 A:{n_Q:nEN}
n+2
2.3 A=(-1,00U(1,2) 2'7A:{ K neN}
n*+1
24 A=1{1,2,3} 28 A={(-1)":neN}
3. Let A= {1 ~ iy g in € N}. What are supremum and infimum of A 7 Verify (proof)
n

your answers.

W

. Let A= {2 — ‘n e N}. What are supremum and infimum of A 7 Verify (proof)

n2+1
YOUr answers.

5. If a set has one lower bound, then it has infinitely many lower bounds.

6. Prove that if A is a nonempty bounded subset of Z, then both sup A and inf A exist and
belong to A.

7. Prove that for each a € R and each n € N there exists a rational r,, such that

1
la —r,| < —.
n
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10.

11.

12.

13.

14.

15.

CHAPTER 1. THE REAL NUMBER SYSTEM
Let r be a rational number and s be an irrational number. Prove that

8.1 r 4+ s is an irrational number.

8.2 if r # 0, then rs is always an irrational number.

. Let VK € Q¢ and a,b, z,y € Z. Prove that

if a + VK =z +yVK, then « = z and b = .

Show that a lower bound of a set need not be unique but the infimum of a given set A is

unique.

Show that if A is a nonoempty subset of R that is bounded below, then A has a finite

infimum.
Prove that if x is an upper bound of a set A C R and x € A, then x is the supremum of A.

Suppose E, A, B C R and E = AU B. Prove that if F has a supremum and both A and B
are nonempty, then SupA and sup B both exist, and sup E is one of the numbers SupA or
sup B.

(Monotone Property) Suppose that A C B are nonempty subsets of R. Prove that

14.1 if B has a supremum, then sup A < sup B

14.2 if B has an infimum, then inf B < inf A
Define the reflection of a set A C R by
—A:={-z:2€ A}
Let A C R be nonempty. Prove that
15.1 A has a supremum if and only if —A has and infimum, in which case
inf(—A) = —sup A.
15.2 A has an infimum if and only if —A has and supremum, in which case

sup(—A) = —inf A.
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1.4 Functions and Inverse functions

Review notation f : X — Y that means a fuction form X to Y, each z € X is assigned a
unique y = f(z) € Y, there is nothing that keeps two x’s from being assigned to the same y, and

nothing that say every y € Y corresponds to some x € X, i.e., f is a fuction if and only if for each

(z1,91), (22, y2) belong to f,
if 1 = x5 , then yo = yo.
Definition 1.4.1 Let f be a function from a set X into a setY .

1. f is said to be one-to-one (1-1) on X if and only if
r1,29 € X and f(x1) = f(x2) imply x1 = 5.
2. f is said to take X ontoY if and only if
for each y € Y there is an x € X such that y = f(x).
Example 1.4.2 Show that f(x) =2z + 1 is 1-1 from R onto R.

Solution. Let x; and x5 be reals such that f(z1) = f(x2). Then,

233'1 +1 = 2$2+1
2.CE1:25L’2

1 = T2

—1
So, fis 1-1. Let y € R. Choose x = yT € R. Then,

f(a:):2x+1:2(yT_1)+1:y

Thus, f takes R onto R.
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Theorem 1.4.3 Let X and Y be sets and f: X — Y. Then f is 1-1 from X onto Y if and only

if there is a unique function g from'Y onto X that satisfies

1 flgy) =y, wyeyY

and

2. g(f(x)) =2, zeX

Proof. Suppose that f is 1-1 and onto. For each y € Y choose the unique z € X such that
f(z) =y, and define

9(y) =z

It is clear that g take Y onto X. By construction, 1 and 2 are satisfied.
Conversely, suppose that there a function ¢g from Y onto X that satisfies 1 and 2.

Let 1,29 € X and f(z1) = f(x2). Then it follows from 2 that

r1 = g(f(z1)) = 9(f(x2)) = 22.

Thus fis 1-1 on X. Let y € Y and choose = g(y). Then 1 implies that

Thus f takes X onto Y.
Finally, suppose that h is another function that satisfies 1 and 2, and y € Y. Choose z € X
such that f(z) =y. Then, by 2,

ie., h =g on Y. It follows that the function is unique. n
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If fis 1-1 from a set X onto a set Y, we shall say that f has an inverse function. We shall

call the function g given in Theorem 1.4.3 the inverse of f, and denote it by f~!. Then
f(F )=y and [ (f(z)) ==z
Example 1.4.4 Find inverse function of f(x) =2z + 1.
Solution. By Example 1.4.2, f is 1-1 from R onto R. Then,
[Re+1) = (fl2) =2
: r—1 :
Substitue x := — We obtain
—1 r—1
L) =f1(2-2 1) = .
Fa = (25 ) = 5

Example 1.4.5 Let f(z) =e* —e™ ™.

1. Show that f is 1-1 from R onto R.

2. Find a formula of f~(x).
Solution. Let x1, x5 € R such that x; # x3. WLOG x1 > z5. Then e™ > e”2.
Since —x1 < —x9, 677t < e~ "2, We obtain
€™ f e " > "l feT ™

flzg) =€ —e™™ > e —e™™ = f(xq)

Then f(x1) # f(x2). Thus fis 1-1 on R. Let y € R. Choose x = In (‘H— Vy2+4). Then

2

() g P 2 _,
N 2 RV

Fa) = eln(y+\/2m)

Thus, f takes R onto R. Consider
fHe" =) = [ (f(2) = =
Substitue z := In (“— ”;2“) We obtain

_1 ((;n(““;ﬂ) ~ 6—1n(w+;2+4)> (Ve

— €

/ 2

1 T+ Vet +4 2 I r+ V244
2 T+ Va2 +4 2

F4 () = In x+\/2x2 + 4
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Exercises 1.4

1. For each of the following, prove f is 1-1 from A onto A. Find a formula for f—1.
1.1 f(x)=3xz—-7 tA=R
1.2 f(r)=2>-22—1 : A= (1,00)

1.3 f(x)=3z—|z|+|x—2] :A=R

14 f(z) = 22| L A=R

15 f(z)=ex 1 A= (0,00)
1.6 f(z)=tanz tA=(-3.%)
1.7 f(z) = xQﬁ—l D A=[-1,1]

2. Let f(z) = 22" where z € R. Show that f is 1-1 on (0, c0).

3. Suppose that A is finite and f is 1-1 from A onto B. Prove that B is finite.
4. Prove that there a fuction f that is 1-1 from {2,4,6, ...} onto N.

5. Prove that there a fuction f that is 1-1 from {1, 3,5, ...} onto N.

6. Suppose that n € Nand ¢: {1,2,....n} — {1,2,...,n}.

6.1 Prove that ¢ is 1-1 if and only if ¢ in onto.

6.2 Suppose that A is finite and f : A — A. Prove that

fis 1-1 on A if and only if f takes A onto A.

7. Let f:{1,2,...,n} = {1,2,...,n} be a 1-1 function. Show that Zf(x) =nl.

r=1



Chapter 2

Sequences in R

2.1 Limits of sequences

An infinite sequence (more briefly, a sequence) is a function whose domain in N. A sequence

f whose term are x,, := f(n) will be defined by

1,22, T3, ... OF {Tplpeny or {z,}22, or {z,}.

Example 2.1.1 Use notation to represents the following sequences.
1. 1,2,3, ... represents the sequence {n}tnen

2. 1,-1,1,-1

s T Ly by

. represents the sequence {(=1)"}

1
Example 2.1.2 Sketch graph of {x,} and guess x, if n go to infinity where z,, = —
n

Y

1 .
0.9
0.8
0.7
0.6
0.5 .
0.4
0.3
0.2 J
0.1 ° . .

>

By the graph, we will see that x,, approaches to ZERO as n go to infinity.
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Definition 2.1.3 A sequence of real numbers {x,} is said to converge to a real number a € R

if and only if for every € > 0 there is an N € N such that
n>N implies |r,—a|<e.
We shall use the following phrases and notations interchangeably:
(a) {z,} converges to a; (d) z, — aasn — oo
(b) z, converges to a; (e) the limit of {z,} exists and equals a.

(¢) lim z, = a;

n—oo
Y
[ ]
[
[ R « T T mm------
[
a : e

Q=€ ——fF - oo e T --oo-----o-

% % % % % % % % % % X

1 2 3 N N+1

Theorem 2.1.4 lim k& = k where k is a constant.
n—oo

Proof. Let k be a constant and € > 0. We can choose whatever N € N such that for each n > NV,

we always obtain

|k —k|=0<e.

So, lim k = k. O

n—0o0

1
Example 2.1.5 Prove that — — 0 as n — o0.
n

1
Proof. Let € > 0. By AP, there is an NV € N such that N <e.

1 1
Let n € N such that n > N. Then — < N We obtain
n

1

-0 —
N

n

S|

< < €.

1 ’ B

1
Thus, — — 0 as n — oo. O
n
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Example 2.1.6 Prove that lim no_y
n—oo 1, +

1
Proof. Let ¢ > 0. By AP, there is an N € N such that N < e.

1 1 1
Let n € N such that n > N. Thenn+1>n > N. So, < — < —. We obtain
n+1 n~— N
n n—(n+1) -1 1 1 1
1 = << —<
n+1 ‘ n+ 1 ‘ n—l—l’ ntl n=-N"°
Thus, D s lasn— oo O
n+1
1
Example 2.1.7 Prove that 2—n—>0asn—>oo
1
Proof. Let € > 0. By AP, there is an N € N such thatﬁ<5.
1 1 1
Let n € N such that n > N. By Example 1.2.4, 2" > n. 80,2—<— N We obtain
n n
1 1 1 1
— == << <
on ‘ 7 “pSNE
1
Thus,2—n—>0asn—>oo. O

1
Example 2.1.8 Prove that lim — =0

n—oo N2

1
Proof. Let ¢ > 0. Then /¢ > 0. By AP, there is an N € N such that N < +/E.

1 1
Let n € N such that n > N. Since n > N > 0, n? > N2. Then—gﬁ We obtain

n2
1 1 1
rE TS C A
1
Thus, — — 0 as n — oo. O
n
Example 2.1.9 Prove that lim (\/n+ — \/ﬁ> =0
n—oo
1
Proof. Let ¢ > 0. Then €2 > 0. By AP, there is an N € N such that — v < g2,
1 1
Let n € N such that n > N. Sincen > N >0, v/n > +VN. Then — < —.
> > vn 1 1\/5 ~
Since vn+1>0, vVn+1++/n>+/n. Then ——— < —. We obtain
Vi n Vn+l+yn /n
Vn+1-—yn
Vn+1—+/n— Vn+1 —_—
v = — V) vn+1—+/n

1 1 1
<—=< —=<e¢
T Vntl +\/_ Vn T /N
Thus, vn+ 1 — v/n — 0 as n — oo. O
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Example 2.1.10 If x, — 1 asn — co. Prove that
22, +1— 3 as n — oo.

Proof. Assume that z,, — 1 as n — oo.

Let € > 0. By assumption, there is an N € N such that
€

n >N implies ]xn—1]<2

Let n € N such that n > N. Then

(220 +1) — 3| = [2(2n — 1)| = 2|y — 1] <2-§:g.
Thus, 2z, +1 — 3 as n — oo. O
Example 2.1.11 If z, — —1 as n — co. Prove that

(2,)> = 1 asn — oo.

Proof. Assume that z, — —1 as n — oo.

Given € = 1. There is an N; € N such that
n> Ny implies |z, + 1] < 1.

Then, |z,| — 1] = |z, — | = 1| < |2y — (=1)| = |z, + 1] < 1. So, |z,| < 2.
Let € > 0. By assumption, there is an Ny € N such that

£

3

Let n € N. Choose N = max{Ni, No}. For each n > N, we obtain

n > Ny implies |z, + 1] <

(@) = 1] = |(2n — D(@n + D] = |20 — |z + 1]
€

3<(2+1)§:5.

<l + 1) -

Thus, (z,)> — 1 as n — oo. O
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Example 2.1.12 Assume that x, — 1 as n — co. Show that

1
— =1 asn — 0.
T,

Proof. Assume that x,, — 1 as n — oc.

1
Given € = 5 There is an Ny € N such that

1
n>N; implies |z, —1|< 3

1
Then 1 = [1 — 2, + 2, < |1 — x| + |z,| < 5 + |24]. So, 3 < |z,|. We get <2.

|2

Let € > 0. There is an Ny € N such that

n >N, implies |z, —1|< g
Let n € N. Choose N = max{N, No}. For each n > N. We obtain

1
2y — 1| <2- 5 =e.

< .
|| 2

— 1
T

1 ‘_'1—.%

Tn

1
Thus, — — 1 as n — oo.

n

Example 2.1.13 Assume that x, — 1 as n — oco. Show that

1+ (2,)*
T, +1

—1asn— o0

Proof. Assume that z,, — 1 as n — oo.

Given € = 1. There is an N; € N such that
n > N; implies |z, — 1| <1
Then |z,| — 1 < |z, — 1| < 1. So, |z,| < 2. We consider

2=2—a,+ap|=1—zp+ 14z, < |1 —xp| + |1+ 2, <1+ |1+ 2]

1< |14 x|
1
—— < 1.
11+ z,|

Let € > 0. There is an N, € N such that

n> Ny implies |z, —1|< %

41
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42
Let n € N. Choose N = max{Ni, No}. For each n > N. We obtain
1+ (z,)? = (xn)? —xn | |xp(z, —1)
T, +1 I T N |
|z ||z, — 1 152 1 |
Ll - = xn - . :Un —
T e+ 1 [zn + 1
€
<2.1-=-=¢.
= 5 €
1 n)?
Hence, Thus, M — 1lasn — oo.

T

Theorem 2.1.14 A sequence can have at most one limit.

Proof. Assume that a sequence {x,} converges to both a and b. We will show that a = b by

Corollary 1.1.32. Let € > 0. By assumption, there are Ny, Ny € N such that

n > N; implies |z, —a| < 5

and
n > Ny implies |z, —b| < g

Choose N = max{Ny, N»}. For each n > N, we obtain
€

la—b = l(a =) + (20 = B)| < Jzw —a + loa —b] < S+ 5 ==,

Hence, a — b =0 or a = b. We conclude that the sequence {z,} can have at most one limit

Example 2.1.15 Show that the limit {(—1)"},en has no limit or does not exist (DNE).

Proof. Suppose that (—1)" — 1 as n — oco. Given € = 1. There is an N € N such that
n >N implies |[(—1)"—a| <1.
Since (—1)" =41, |1 —a| <land |1 +a|] =|—1—al <1. We have

2=[1+1l=|1-a)+(1+a)<|[1—a|+[l+al<1+1=2

It is imposible because 2 < 2. Thus, {(—1)"},en has no limit.

]
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SUBSEQUENCES.

Definition 2.1.16 By a subsequence of a sequence {x}nen, we shall mean a sequence of the

form
{Tn, tren, where each np € N and ny < ng < ns < ...
Example 2.1.17 Give examples for two subsequences of the following sequences.

Sequences Subsequences

L,—1,1,-1,1,—1,... | 1,1,1,...

—1,-1,-1,...

{n}nen 1,3,5,...

2,4,6, ...

Consider {z,}. We may interest a formula of n; depending on k. Choose a subsequence {x,, }

where ny =2k — 1 for k =1,2,3,.... Then

{:Um,a:nz, 7 } = {xl, I3, s, }

Theorem 2.1.18 If {x, },en converges to a and {xy, }ren is any subsequence of {x, }nen, then

Tp, converges to a as k — oo.

Proof. Assume that z,, — a as n — oco. Let {z,, } be a subsequence of {z,}.

Let € > 0. By assumption, there is an N € N such that
n> N implies |z, —a| <e.
Since n;, € N and n; < ng < ng < ..., it is clear that
ng >k forall ke N.

Let k£ € N such that £ > N. We have n,, > k> N. So,
|zp, —al <e.

Thus, z,, converges to a as k — oo. O
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Example 2.1.19 Show that the limit {cos(nm)}nen has no limit.
Solution. Choose two subsequences of {cos(nm)},en to be

n, =2k and n; =2k — 1.

If ng = 2k, then cos(ngm) = cos(2km) = 1. So, cos(2km) — 1 as k — 0.
If n, = 2k — 1, then cos(nym) = cos(2k — 1)m = —1. So, cos(2k — 1)m — —1 as k — 0.

We will see that two subsequences coverges to different limits. Thus, {cos(nm)},en DNE.

BOUNDED SEQUENCES.
Definition 2.1.20 Let {z,} be a sequence of real numbers.

1. {z,} is said to be bounded above if and only if

there is an M € R such that x, < M for alln € N

2. {x,} is said to be bounded below if and only if

there is an m € R such that m < x, foralln €N

3. {x,} is said to be bounded if and only if it is both above and below or

there a K >0 such that |z,| < K forallneN

Example 2.1.21 Show that the following sequence is bounded above or bounded below or bounded.

Sequences Bounded below Bounded above Bounded

{n}nen Yes No No

l1<nforalnéeN

{—n}nen No Yes No

—n<1lforallneN

{(=1)"}nen Yes Yes Yes

—1< (=" forallneN| (=1)"<1lforallneN||[(-1)"| <1 forallneN
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Theorem 2.1.22 (Bounded Convergent Theorem (BCT)) Every convergent sequence is
bounded.

Proof. Assume that z, — a as n — o0o. Given € = 1. There is an N € N such that
n>N implies |z, —a| < 1.
Then, |z,| — |a| < |v, —a| < 1. So, |z, <1+ lal.
Choose K = max{|z1|, |z2],|z3], ..., |zn|, 1 + |a|}. We obtain
|z, < K  forallneN.

Thus, z,, is bounded. O
Example 2.1.23 Show that the limit {n},en does not exist.
Solution. Suppose that {n},en converges. By BCT, there is a K > 0 such that

n=|n| <K forallnéeN (2.1)

Since K € R, by AP, there is an N € N such that K < N. By (2.1), n = N, we have N < K.
It is imposible because

N <K < N.
Thus, {n},eny DNE.
Example 2.1.24 Assume that x, — 1 as n — oco. Use BCT to prove that
(2,)> = 1 asn — oc.
Proof. Assume that x,, — 1 as n — oo. By BCT, there is a K > 0 such that

|z, < K  forallneN.

Let € > 0. By assumption, there is an N € N such that

g
K+1

n>N implies |z, —1|<
Let n € N such that n > N, we obtain
(@) = 1] = (20 — D(@n + D] = |20 — |2 + 1]
§< (K+1)KL+1 —c.
Thus, (z,)> — 1 as n — oo. O

< (Jzn| +1)
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Exercises 2.1

1.

2.

10.

11.

Prove that the following limit exist.

1 5
1.1 3+ — as n — oo 1.5 4—271 as n — oo
n n
1 3
1.22(1—— as n — oo 1.6 mT— — as n — 00
n NG
2 1
1.3 nt as n — 00 1.7M as n — 0o
l—n n?+1
n?—1 n
14 as n — oo 1.8 as n — 0o
n2 n3+1

Suppose that z,, is sequence of real numbers that converges to 2 as n — oo.

Use Definition 2.1.3, prove that each of the following limit exists.

1
212-2,20 asn—o0 2.4 1—>1 as n — 00
Ty —
22 3x,+1—7 asn— o
2+ 22
2.3 (£,)>+1—5asn — oo 25 — =3 asn oo

. Assume that {z,} is a convergent sequence in R. Prove that lim (x, — x,41) = 0.

n—oo

. If x, — a as n — oo, prove that x, .1 — a as n — oo.

. If z, — 400 as n — oo, prove that x, 1 — +00 as n — oo.

Prove that {(—1)"} has some subsequences that converge and others that do not converge.
Find a convergent subsequence of n + (—1)3"n.

Suppose that {b,} is a sequence of nonnegative numbers that converges to 0, and {z,} is a

real sequence that satisfies |z,, — a| < b, for large n. Prove that z,, converges to a.
x
Suppose that {z,} is bounded. Prove that —- — 0 as n — oo for all & € N.
n
Suppose that {x,} and {y,} converge to same point. Prove that x, —y, — 0 as n — oo

Prove that x,, — a as n — oo if and only if x,, —a — 0 as n — oc.
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2.2 Limit theorems

Theorem 2.2.1 (Squeeze Theorem) Suppose that {z,}, {y.}, and {w,} are real sequences.

If x, = a and y, — a as n — oo, and there is an Ng € N such that
xnéwngyn fOT alanNO;

then w, — a as n — o.

Proof. Let {z,}, {yn}, and {w,} be real sequences. Assume that z,, — a and y,, — a as n — oo

and there is an Ny € N such that
T <w, <y, foralln> N
Let € > 0. By assumption, there are Ny, Ny € N such that

n>N; implies |z, —al|<e or a—e<z,<a+e¢
and

n > Ny implies |y, —al|<e or a—e<y,<a+e.

Let n € N. Choose N = max{Ny, N1, No}. For each n > N, we obtain
a—e<zTp<w, <y, <a-+te.

It implies that |w, — a| < . We conclude that w,, — a as n — oc. O

Example 2.2.2 Use the Squeeze Theorem to prove that

(2
lim sin(n?)

n—00 omn

=0.

Solution. By the sine fucntion property,

—1 <sin(n?) <1 foralln € N.

1 1
lim —— =0and lim — =0.
n—oo 2N n—oo 2T
. sin(n?)
By the Squeeze Theorem, we conclude that lim = 0.

n—o00 on
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Theorem 2.2.3 Let {x,}, and {y,} be real sequences. If x,, — 0 and {y,} is bounded, then

TplYn — 0 as n — oo.

Proof. Let {x,}, and {y, } be real sequences. Assume that z,, — 0 as n — oo and {y, } is bounded.

Then there is a K > 0 such that
lyn| < K for all n € N,

Let € > 0. By assumption, there is an N € N such that

€
> N  impli nl =z, — 0] < —.
n > implies  |z,| = |z | %
Let n € N. For each n > N, we obtain
Tt — O = |2alyn] < = - K = ¢
nyn - n yn K - .
Hence, x,y, — 0 as n — oo. ]

1
Example 2.2.4 Show that lim M

n—00 n2

=0.
Solution. By the cosine fucntion property,
|cos(14+n)] <1 forallneN.

So, {cos(1 +n)} is bounded. From

1
n—oo 1,

1
By Theorem 2.2.3, we conclude that lim M

n—00 n2

=0.
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Theorem 2.2.5 Let A C R.

1. If A has a finite supremum, then there is a sequence x, € A such that

Tp, —supA  as n — oo.

2. If A has a finite infimum, then there is a sequence x, € A such that

T, —IinfA as n— oco.

Proof. Exercise for 1. We will prove 2. Suppose A has a finite infimum. By API, there is z € A
such that

infA<z<infA+e foralle>0.

We construct a sequence {x,} by

g1 =1, dr; € Asuchthat infA<z; <infA+1
1 1
5225, dzo € A such that InfA < axy gian+§
1 1
5325, dxs € A such that infA < 3 §ian+§
1 . . 1
€p = —, dx, € Asuch that infA <z, <infA+ —
n n

Thus, {z,} is a sequence in A and satisfies
. . 1
infA<uxz, <infA+ —
n
By the Squeez Theorem,
L . . . 1
lim infA < lim 2, < lim (mfA + —)
n—o00 n—o00 n—o00 n
infA < lim z,, <inf A

n—oo

Therefore, lim x, = inf A. ]

n—o0
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Theorem 2.2.6 (Additive Property) Suppose that {x,} and {y,} are real sequences.
If {x,} and {y,} are convergent, then

lim (z, + y,) = lim z, + lim y,.
n—oo n—oo n—oo

Proof. Assume that x, — a and y, — b as n — oco. Let ¢ > 0. By assumption, there are

Ny, Ny € N such that

n > N; implies |z, —a| < °

2
and
n > Ny implies |y, —b| < %

Let n € N. Choose N = max{N, No}. For each n > N, we obtain

g €
) — (@ D) = (o~ 0) + (e~ D) < o —al + o — bl < 5+ 5 ==
Thus, lim (x, +y,) =a+b= lim z, + lim y,. O

Theorem 2.2.7 (Scalar Multiplicative Property) Let o € R. If {x,} is a convergent sequence,
then

lim (az,) = a lim z,.
n—oo n—oo

Proof. Assume that x,, — a as n — oo.

Let ¢ > 0 and @ € R. Then |a|+1 > |a| > 0. So, ’ |’O;|_ 7 < 1. By assumption, there isan N € N
!
such that
n> N implies |z, —z| < ——.
Let n € N. For each n > N, we obtain
€ o]
lax, —ax| = |a|lz, — 2| <|af - = e<l-e=e.

la|+1  Jo|+1

Thus, lim (az,) = aa =« lim x,.
n—oo n—oo
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Theorem 2.2.8 (Multiplicative Property) Suppose that {x,} and {y,} are convergent se-

quences. Then

lim (z,y,) = (lim xn> <lim yn> )
n—o0

n—oo n—oo

Proof. Assume that z,, — a and y, — b as n — oco. By BCT, {xz,} is bounded, i.e., there is a

K > 0 such that
|z, < K forall n € N.

Let € > 0. By assumption, there are Ny, Ny € N such that

€
n > N; implies |z, —a| < ———
and
n > Ny implies |y, —b| < 2;

Let n € N. Choose N = max{Nj, No}. For each n > N, we obtain

|$nyn —ab| = |xn(yn —b) + (zn — a)b| < |2p||yn — b| + |xn - a||b|

€€ |5 e €
<K- — b=t < -+ --1l=¢
2K (|b|+1)| =5t e 3tz T
Thus, hm TpYn, = ab = lim x, - lim y,. O
n—oo n—oo

Theorem 2.2.9 (Reciprocal Property) Suppose that {z,} is a convergent sequence.

. 1 1
lim — = —
n—00 Iy, lim z,

n—oo

where lim x,, # 0 and z,, # 0.
n—oo

Proof. Assume that {z,,} converges to a such that a # 0.

2
Given € = ﬂ There is an Ny € N such that
a
|al

n>N; implies |z, —a| < -— 5
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a a
Then |a| = |a — z, + 2| < |z — a| + |2,] < |7| + |z,|. So, % < |xyl, ie.,

1 2
< =
|zn| ~ lal
Let € > 0. There is an Ny € N such that
- Jal?
n > Ny implies |z, —a| < €

Let n € N. Choose N = max{Ny, No}. For each n > N, We obtain

1 1] |a—=, 1 |z, —al 2 ‘an—g
T, a ar, | = |zn| |a| la| 2|al '
1 1
Therefore, lim — = — ) O
n—oo I, lim x,
n—oo

Theorem 2.2.10 (Quotient Property) Suppose that {x,} and {y,} are convergent sequences.

Then .
lim z,
. xn n—oo
lim — = 7> —
n—00 1Y, lim y,
n—oo

where lim y, # 0 and y,, # 0.
n—oo

Proof. The proof of Theorem is result from Multiplicative Property and Reciprocal Property. [

2
-3
Example 2.2.11 Find the limit lim l
n—oo 1+ 3n?
Solution.
o n?4+n-3 Conf(1+Li-3)
lim ————— = lim e
1+1- 3
= lim T n?
. . . 1
lim 1+ lim — —3 lim —
n—o00 n—oo 1 n—oo 1

n—oo M n—oo
_140-3(0)
043
1
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Theorem 2.2.12 (Comparison Theorem) Suppose that {z,} and {y,} are convergent se-

quences. 1If there is an Ny € N such that
Tn < Yn  for alln = No,

then
lim z, < lim y,.
n—oo n—oo

In particular, if x, € [a,b] converges to some point c, then ¢ must belong to [a,b].

Proof. Let x,, — a and y,, — b as n — 0co. Assume that there is an Ny € N such that
Tn <y, forall n> Ny.

Suppose that lim z,, > lim y,, i.e., a > b. Then a—0b0 > 0. By assumption, there is an Ny, N, € N
n—0o0

n—o0
such that
. . a—>b
n>N; implies |z, —a| < 5
and
—b
n > Ny implies |y, —b| < ¢ 7
For each n > max{ Ny, N1, Ny}, it follows that
<b+a_b— a_b<
Yn 5 a 5 Tn

which contradics the assumption. Thus, a < b.

We conclude by previous proof that if a < x,, < b, a < c <b. m
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DIVERGENT.
Definition 2.2.13 Let {z,} be a sequence of real numbers.

1. {z,} is said to be diverge to +oo, written x,, — +00 as n — oo or lim z, = 400
n—o0

if and only if for each M € R there is an N € N such that
n>N implies =z, > M.

2. {x,} is said to be diverge to —oo, written x,, — —oo as n — oo or lim z, = —oc0

n— o0
if and only if for each M € R there is an N € N such that
n>N implies x, <M.

Example 2.2.14 Show that lim n = 400

n—0o0

Proof. Let M € R. By AP, there is an N € N such that M < N.
Let n € N such that n > N. We obtain

n>N>M.

Thus, lim n = 4o0. 0
n—oo
2

Example 2.2.15 Prove that lim no_ 400
n—oo | +n

Proof. Let M € R. By AP, there is an N € N such that M +1 < N.
Let n € N such that n > N. Then n —1 > N — 1. Since 0 > —1, n? > n? — 1. We obtain

2 21 -1 1
LA :(n )(n+):n—1>N—1>M.
14+n 14+n 14+n

2

n
Hence, lim = +00. ]
n—oo | +n
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4n?

Example 2.2.16 Prove that lim

n—oo — ZN

Proof. Let M € R. By AP, there is an N € N such that —%M - % < N. It is equivalent to
—1—-2N < M.
Let n € N such that n > N. It is clear that 2n — 1 > 0 and —2n < —2N. Since 0 < 1,

—4n® < —4n® + 1.

We obtain
dn?  —4n? - —4n*4+1  (1—-2n)(1+2n)
1—2n 2n-—1 on—1 on — 1
=—1-2n<-1-2N< M
4 2
Therefore, lim L —00
n—oo 1 — 2n

Example 2.2.17 Suppose that {x,} is a real sequence such that x, — +00 as n — oo.

If x, # 0, prove that

Proof. Assume that x,, # 0 and x,, — +00 as n — oo.

Let € > 0. By assumption, there is an N € N such that

1
n >N implies x, > —.
€

From 1 > 0, for all n > N it follow that
€

Hence, lim — = 0.
n—oo Iy,

95
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Theorem 2.2.18 Let {z,} and {y,} be a real sequence and x, # 0. If {y,} is bounded and

T, — 400 orx, — —00 as n — oo, then

Proof. Let {y,} be bounded and z,, # 0. There is a K > 0 such that
lyn| < K for allm € N,

Case 1. Assume that z,, — +00 as n — oo. Let ¢ > 0. By assumption, there is an N € N such

that

K
n >N implies =z, > —.
€

1 €

=—<—.
|z, x, K
Let n € N such that n > N. We obtain

Then z,, > 5 > 0. It follows that
€

Yn 1 £
Tn

|.Z‘n| K €.

Case 2. Assume that z,, — —oc as n — oo. Let ¢ > 0. By assumption, there is an N € N such

that
K
n >N implies =z, <-——.
€
K K €
Since —— < 0, |z,| > — > 0. It follows that < —.
€ £ |z, K
Let n € N such that n > N. We obtain
Yn 1 3
==y — <K -—=c¢.
. |Yn| P e
By two cases, we conclude that lim In _ 0. O
n—o00 Iy,
sinn

— 0 asn — 0.

Example 2.2.19 Show that
n

Solution. By property of sine, we have

|sinn| <1 foralln € N.

Since n — as n — 0o, we obtain by Theorem 2.2.18

sinn

lim

n—oo n

=0.
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Theorem 2.2.20 Let {x,} be a real sequence and o > 0.

1. If x, — 400 as n — oo, then lim (ax,) = +00.

n—00

2. If x,, » —o0 as n — oo, then lim (az,) = —oo.
n—oo

Proof. 1. Assume that z,, — +00 as n — oc.

Let M € R and a > 0. By assumption, there is an N € N such that
M
n >N implies x, > —.
o

Let n € N such that n > N. We obtain

M
ar, > o — = M.
Q

Thus, lim ax, = +oc.
n—oo

2. Exercise. L

Theorem 2.2.21 Let {x,} and {y,} be real sequences. Suppose that {y,} is bounded below and
T, — +00 asn — oo. Then

lim (z,, + y,) = +00.

n—oo

Proof. Suppose that {y,,} be bounded below and z,, — +00 as n — oo. There is an m € R such

that
m <y, forallnéeN.
Let M € R. By assumption, there is an N € N such that
n >N implies =z, > M —m.

Let n € N such that n > N. We obtain
Tp + Yn > (M —m) +m = M.

Thus, lim (x, + y,) = +00. O
n— o0
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Theorem 2.2.22 Let {x,} and {y,} be real sequences such that
Yn > K for some K >0 and all n € N.
It follows that
1. if x, = +00 as n — oo, then Jin;o(xnyn) = 400

2. if v, - —00 as n — oo, then lim (z,y,) = —o0
n—oo

Proof. Let {x,} and {y,} be real sequences such that
yp > K for some K > 0 and all n € N.

1. Exercise.
2. Assume that z,, — —oc0 as n — oco. Let M € R.

Case M = 0. There is an NV € N such that
n >N implies =z, <O0.

Let n € N such that n > N. Since y,, > K > 0, we obtain
Tp - Yn < 0= M.

Case M > 0. There is an N € N such that

M
n >N implies =z, < % < 0.

Let n € N such that n > N. Since y, > K > 0, —y, < —K < 0. We obtain

M M
-(—yn)<?-(—K):—M<O<M.

Case M < 0. There is an NV € N such that

M
n >N implies =z, < V% < 0.

Let n € N such that n > N. Since y, > K >0, —y, < —K < 0. We obtain

M —M —M
. — Yy = — - (— — - (—K) =M.

Thus, lim z,y, = —oo. ]
n—oo
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Exercises 2.2

1. Prove that each of the following sequences coverges to zero.

' (1)
n _1\n
12 n — . —
x 21 1.5 z, -
1 _1\n
n+1 on

2. Find the limit (if it exists) of each of the following sequences.

2n(n+1 Mz — 1
2.1 x":(Q—l) 2.4 %:n—
n® + n+1
1+n—3n?
2.2xn:m 2.5 x, =vVn+2—+/n
n®+n+5
2.3 wn:m 2.6 xn:\/m—n

3. Prove that each of the following sequences coverges to —oco or +oo.

2 241

31 x,=n 3‘4xn:n—|—
n+1
_ 1—n2

3.2 xp=—n 3.5 x, = i
n

n

3.3 x, = 3.6 z,=—
n

n
14+ +/n
4. Let A CR. If A has a finite supremum, then there is a sequence x,, € A such that

T, —supA as n — oo.
5. Prove that given x € R there is a sequence r,, € Q such that r, — z as n — oc.
6. Use the result Excercise 1.2, show that the following

6.1 Suppose that 0 <z; <1land z,,;1 =1—+/1—x, forn € N.

If x,, - x as n — oo, prove that z =0 or 1.
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6.2 Suppose that 1 > 0 and z,,1 = /2 + x, for n € N.

If x, —» x as n — oo, prove that = = 2.

. Let {z,,} be a real sequence and a > 0. If z,, - —oc0 as n — oo, then lim (ax,) = —oc0.

n—00

. Let {z,,} and {y,} be real sequences such that y, > K for some K > 0 and all n € N.

Prove that if z,, - —00 as n — oo, then lim (z,y,) = —oc.
n—oo

. Let {z,,} and {y,} are real sequences. Suuppose that {y,} is bounded above and z,, - —o0

as n — o0o. Prove that

lim (z, + y,) = —o0.
n—o0

Interpret a decimal expansion 0.ajasas... as

[o¢]
. Qg
0.ajaqas3... = lim E —
n—o0 — 10%

Prove that

10.1 0.5 = 0.4999... 10.2 1 =0.999...
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2.3 Bolzano-Weierstrass Theorem

61

MONOTONE.

Definition 2.3.1 Let {x,}nen be a sequence of real numbers.

1. {z,} is said to be increasing if and only if x1 < w9 < x3 < ... or

Tn S Tn+1

for alln € N.

2. {x,} is said to be decreasing if and only if x1 > w9 > x3 > ... or

T, Z Tn+1

for all n € N.

3. {x,} is said to be monotone if and only if it is either increasing or decreasing.

If {x,} is increasing and converges to a, we shall write z,, T a as n — 0.

If {z,} is decreasing and converges to a, we shall write z,, | a as n — 0.

Example 2.3.2 Determine whether {z,}nen is increasing or decreasing or NOT both.

Sequences Decreasing Increasing Monotone
{n}nen Yes No No
1<2<3<
No Yes No
{l} 1>5>52>.
" J nen
{1}nen Yes Yes Yes
1<1<1< 1>1>1>
{(=1)"}nen No No No
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Theorem 2.3.3 (Monotone Converegence Theorem (MCT)) If {x,} is increasing and

bounded above, or if it is decreasing and bounded below, then {x,} has a finite limit.

Proof. Assume that {x,} is increasing and bounded above. By the Completeness Axiom, the

supremum
a = sup{x, : n € N} exists and is finite.

Let € > 0. By APS, there is an N € N such that a —e¢ < zy < a.

Since {x,} is increasing, xy < xz, for all n > N. From z, < a for all n € N. It follows that
a—ec<z,<a foralln>N.

So, —e < x, —a < 0 < e. We obtain |z,, — a| < £. We conclude that z, — a as n — oco.

Exercise for the case that {z,} is decreasing and bounded below. ]

Theorem 2.3.4 If |a| < 1, then a" — 0 as n — oo.

Proof. Let |a| < 1.
Case 1 a = 0. Then a™ = 0 for all n € N, and it follows that a™ — 0 as n — oo.

Case 2 a # 0. Then |a| > 0. We obtain
0<la"™ <la|*<1 forallneN.

So, {|a|"} is decreasing and bounded below by 0 . By MCT, |a|* — L as n — oo.
Suppose that L # 0. Then

L= lim |a|""" = lim |a|"|a| = |a| lim |a|" = |a|L.
n—00 n—00 n—00
We have |a| = 1 which contradics |a| < 1. Thus, L = 0. O
: o 3+ 1
Example 2.3.5 Find the limit of ETT &

Solution.

iyl 3B+ (3 3
im ———— = lim ———5— s = -
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Definition 2.3.6 A sequence of sets {1, }nen s said to be nested if and only if
LODOLDOI3D ... or I, C1I, foralln eN.
Example 2.3.7 Show that I, = [X,1] is nested.
Proof. Let n e Nand z € I,,;;. Then 1 <z < #1 Since n + 1 > n,
L1

< —.
“n+1 n

1< <

Then x € I,,. Thus, I,;1 C I,,. We conclude that {I,,},en is nested. O

Theorem 2.3.8 (Nested Interval Property) If {I,}.cn is a nested sequence of nonempty closed
bounded intervals, then

E:ﬂ[n::{x:xefnforallnEN}

neN

contains at least one number. Moreover, if the lengths of these intervals satisfy |I,| — 0 as n — oo,

then E contains exactly one number.

Proof. Let I, = [a,,b,] be nested. Then
[ani1,bns1] C [an, by] for all n € N.

We obtain a1 < as < ag < ...and by > by > b3 > ... So, {a,} is increasing and bounded above by
a; and {b,} is decreasing bounded below by b;. By MCT, there are a and b such that a,, — a and

b, — bas n — oco.

L

L 4

ap ay ag ‘ a l; ‘ b3 by by

Since a,, < b, for all n € N, it also follows from the Comparison Theorem that

a, <a<b<hb,.

Hence, a number z belongs to I, for all n € N if and only if a <z <b. We obtain E = [a, b].
Suppose that |I,| — 0 as n — oo. Then b, — a, — 0 as n — oo, and we have by Addition

Property that a — b = 0. In particular, £ = [a, a] = {a} contain exactly one number. O
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Theorem 2.3.9 (Bolzano-Weierstrass Theorem) Every bounded sequence of real numbers has

a convergence subsequence.

Proof. Let {x,} be a bounded sequence. Choose a,b € R such that
Tp € [a,b] forall n € N.

Set Iy = [a,b]. Divide Iy into two halves, Iy = [a, “F2] U [E2 b]. So, at least one of these half

intervals contains x,, for infinitely many n. Call it [;, and choose n; > 1 such that x,, € I;. Notice

that

I b—a
=020
2 2

Suppose that Ip D I} D I, O ... D I, and natural numbers n; < ny < ... < n,, have been chosen
such that for each 0 < k < m,

b—a

Zp, €I, andz, €I for infinitely many n. (2.2)

To choose I, 11, divide I,,, = [a, byy] into two halves, I, = [ay,, “’"‘;bm] U [“m;’bm ,bi]. So, at least
one of these half intervals contains x,, for infinitely many n. Call it [,,,,1, and choose 1,11 > n,,

such that x,, ., € I,41. Since
|Im| . bm — Qp,
2 omil

’Ierl‘ =

it follows by induction that there is a nested sequence {Ij } ren of nonempty closed bounded intervals
that satisfy (2.2) for all £ € N. By Nested Interval Property, there is an x € R that belongs to I}
for all k£ € N. Since = € I, we have by (2.2) that

b—a
Og\xnk—x|§|fk|§2—k for all k£ € N.

Thus by the Squeeze Theorem, z,, — x as k — oo. O
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Exercises 2.3

10.

11.

. Prove that

_ (n® +22n + 65) sin(n?)
n?+n+1

Ty =

has a convergence sunsequence.

. If {x,} is decreasing and bounded below, then {z,} has a finite limit.

Suppose that £ C R is nonempty bpunded set and sup £ ¢ E. Prove that there exist a
strictly increasing sequence {x,} (x; < 23 < x3 < ...) that converges to sup £ such that

T, € E for all n € N.

Suppose that {z,} is a monotone increasing in R (not necessarily bounded above). Prove

that there is extended real number z such that x, — x as n — oo.

Suppose that 0 < z; <1 and x,.1 =1 —+/1 — 2, for n € N. Prove that

Tn41
Tnd0asn— oo and 2E

1
— —,asn — 0o
Ty 2

. If a > 0, prove that a» — 1 as n — oo. Use the resulte to find the limit of {BRTH}

Let 0 <z, <3 and x,.1 = V22, + 3 for n € N. Prove that x,, T 3 as n — oo.

Suppose that x1 > 2 and z,,; = 1+ +/x, — 1 for n € N. Prove that z,, | 2 as n — co. What

happens when 1 < x; <27

. Prove that )
1 if x>0
lim 277 =0 if 5 =0
n—o0
-1 ifzrx<O
\
I+ Tp-1
Suppose that o € R and z,, = — for n € N. Prove that z,, — 1 as n — oo.
Let {x,} be a sequence in R. Prove that

11.1 if z, | 0, then z,, > 0 for all n € N.
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12.

13.

14.
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11.2 if x, 10, then z,, < 0 for all n € N.

Let 0 < y; < 21 and set

Tn + Yn
2

and Y11 = /Tpln, TforneN

Tnt1 =

12.1 Prove that 0 <y, < x,, for all n € N.

12.2 Prove that v, is increasing and bounded above, and x,, is decreasing and bounded below.
1 — U
271

12.4 Prove that lim z, = lim y,. (the common value is called the arithemetic-geometric
n—oo n—o0

12.3 Prove that 0 < z,11 — Ynt1 < forn e N

mean of x; and ¥;.)

Suppose that zo =1,y =0
Ty = Tp_1+ 2yn—17
and
Yn = Tpn—1 + Yn-1

for n € N. Prove that 22 — 2y2 = £1 for n € N and

x
V2 as n— oo
Yn

(Archimedes) Suppose that zo = 2v/3, yo = 3,

20— 1Yp—
T, = ¢, and Yy, = \/Thyn_1 forn eN.
Tn-1 + Yn—1
14.1 Prove that =, | x and y, 1T y, as n — oo, for some x,y € R.

14.2 Prove that x = y and
3.14155 < x < 3.14161.

(The actual value of z is 7.)
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2.4 Cauchy sequences

Definition 2.4.1 A sequence of points x,, € R is said to be Cauchy if and only if every e > 0
there is an N € N such that

n,m >N imply |z, — T, <e.

1
Example 2.4.2 Show that {—} is Cauchy.
n

Proof. Let € > 0. By AP, there is an N € N such that % <

Let m,n € N such that n,m > N. Then, % < xand L <

1 1 1
S-—l<>+
n m n

1
Thus, {—} is Cauchy. O]
n

Theorem 2.4.3 The sum of two Cauchy sequences is Cauchy.

Proof. Let {z,} and {y,} be Cauchy. Let ¢ > 0. There are Ny, No € N such that

m,n >Ny imply |z, —x,| < g

and

€
m,n > Ny imply |yn—ym]<§.

Choose N = max{Ny, No}. For m,n > N, we obtain
|("En + yn) - (xm + ym)| = |<xn - xm) + (yn - ym)|
< |33n - xm| + |yn - ym|
cEifo
2 2

Thus, {z, + y,} is Cauchy. O
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Theorem 2.4.4 If {x,} is convergent, then {x,} is Cauchy.

Proof. Assume that z, — a as n — oo. There are an N € N such that

n> N implies |z, —al| < g.

Let n,m € N such that n,m > N. We obtain

20— 2| = (20— @) = (20— Q)| < |2 —al + |o —a] < S+ 5 =&,

Hence, {z,} is Cauchy. O

Theorem 2.4.5 (Cauchy’s Theorem) Let {x,} be a sequence of real numbers. Then

{z,} is Cauchy if and only if {x,} converges to some point in R.

Proof. Assume that {z,} is Cauchy. Given ¢ = 1. There is an Ny € N such that
|zm —xn,| <1 for all m > Ny.

Then, |z,,| <1+ |zx,| for m > Ny. Thus, {2, } is bounded by
M = max{|z1], |za|, ..., |Tng—1], L + |T N, |}

By Bolzano-Weierstrass Theorem, {x,,} has a convergent subsequence {x,, } by x,, — aasn — oo.

Let € > 0. There is an N; € N such that

k> N; implies |z, —a| < g

Since {z,} is Caucy, thereis an Ny € N such that

R €
m,n > Ny implies |z, —x,| < 3

Let n € N. Choose N = max{Ny, N1, No}. For each n > N, we have ny > N since nj > n. Then,
we obtain

3

228.

9
2= al = |0 = 20y) + (5, = ) < Jon = |+, —a] < 5+

Thus, {z,} converges to a.

Coversely, it is clear by Theorem 2.4.4. n
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Example 2.4.6 Prove that any real sequence {x,} that satisfies

1
|Ty — Tpar| < o0 n €N,

18 convergent.

1
Proof. Let € > 0. By AP, there is an N € N such that N < €.
1 1
Let n,m € N such that n,m > N. Then — < N By the fact that n < 2" for all n € N,
n

1 1 1
we get on < —. Suppose that m > n. Then m —n > 0. So, 1 — pr— < 1. We obtain
n n m—n

|mn - me| - |In — Tn+1 + Tn4+1 — Tp42 + Tp42 — + Tp—1 — xm|

S |xn - anrl’ + ’xn+1 - $n+2| +oe 4+ |xm71 - xm|

om 2n+1 Tt 2m71

1 1 1
et |:—+—+..+ :|

27171 2 22 oQm—n

Thus, {z,} is Cauchy. Therefore, {x,} is convergent.

69
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Exercises 2.4

. Use definition to show that {xz,} is Cauchy if

n

1
S 1.2 z, =
1.1 xn—n2 T ntl

. Prove that the product of two Cauchy sequences is Cauchy.

. Prove that if {z,} is a sequence that satisfies

|xn|§1+—n
1+n+ 2n?

for all n € N, then {z,} is Cauchy.

. Suppose that z, € N for n € N. If {z,} is Cauchy prove that there are numbers a and N

such that xz, = a for all n > N.

. Let {a,} be a sequence in R such that there is an N € N satisfying the statement:

1
if n,m > N, then |z, —2,| < z for all kK € N.

Prove that {a,} converges.

n
lim g x), exists and is finite.

. Let {z,} be Cauchy. Prove that {z,} converges if and only if at least one of its subsequence

converges.

k

n—oo

. Prove that lim Z (1) exists and is finite.
k=1

. Let {z,} be a sequence. Suppose that there is an a > 1 such that

|Tpr1 — zg] < a*

for all £k € N. Prove that z,, — = for some = € R.

. Show that a sequence that satisfies x,,.1 — x,, — 0 is not necessarily Cauchy.



Chapter 3

Topology on R

3.1 Open sets

Open sets are among the most important subsets of R. A collection of open sets is called a
topology, and any property (such as convergence, compactness, or continuity) that can be dened

entirely in terms of open sets is called a topological property.

Definition 3.1.1 A set E C R is open if for every x € E there exists a § > 0 such that
(x—6,z+6) CE.

In other word,

Eisopen < VYreFE3§>0,(z—0z+J)CFE
and

E is not open < Jx € EVi>0, (x —d,x2+0) L E.

Since the empty set has no element, by definition it imples that & is open. For E = R, we

obatin
VeeR 30 >0, (xr — 9,2 +9) C R is true.

It follows that R is open.
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Example 3.1.2 Show that interval (0, 1) is open.

1—
Proof. Let x € (0,1). Choose § = min {E, x}

20 2
1l—x
I |
0 T/ 1
L
x
We obtain (z — 0,z + ) C (0,1). Hence, (0, 1) is open. O

Theorem 3.1.3 Intervals (a,b), (a,00) and (—o0,b) are open.

Proof. 1. Let x € (a,b). Choose § = min{x ; a’ b;x

}. We obtain (z — 0,z 4+ J) C (a,b).
Hence, (a,b) is open.

2. Let x € (a,00). Choose § = r—a

. We obtain (x —d,z+9) C (a,00). Hence, (a,c0) is open.

b—=x

3. Let x € (—o0,b). Choose 6 = . We obtain (x — 0,z + J) C (—o0,b). Hence, (—o0,b) is

open.

Example 3.1.4 Show that [0, 1) is not open.

Proof. Suppose that [0,1) is open. Given x = 0, there is a § > 0 such that
(—0,0) € [0,1).

Since —§ < —g <0, —g € (—0,9). It implies that —g € [0,1) which is imposible. ]
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Theorem 3.1.5 Let A and B be open. Prove that AU B and AN B are open.
Proof. Let A and B be open.
1. Let x € AU B. Then z € A. There is a 6 > 0 such that (z — 0,z +9) C A.
Since AC AUB, (z —d,z+9) C AU B. Thus, AU B is open.
2. Let t € AN B. Then x € A and x € B. There are 6,0 > 0 such that
(x =61, 2+ 8) CAand (z — dy,x + ) C B.
Choose § = min{dy,d2}. We obtain (z — d,2 +0) C AN B. Thus, AN B is open.
O
Theorem 3.1.6 Let Ay, Ao, .., A, be open sets. Then
1. CJ Ay = A UAU ... UA, is open.
k=1
2. ﬁ A=A NAN...NA, is open.
k=1
Proof. Excercise O]
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NEIGHBORHOOD.
Next, we introduce the notion of the neighborhood of a point, which often gives clearer, but

equivalent, descriptions of topological concepts than ones that use open intervals.
Definition 3.1.7 A set U C R is a neighborhood of a point x € R if
(x—=6,x4+6) CU  for some d > 0.

For example = = 1, we have (0, 2), [0,2] and [0, 2) to be neighborhoods of 1.

Theorem 3.1.8 A set E C R is open if every x € E has a neighborhood U such that U C E.

Proof. If every x € E has a neighborhood U such that U C FE, then there is a § > 0 such that
(x =0,z +6)CUCE.

Hence, £ C R is open . O

Theorem 3.1.9 A sequence {x,} of real numbers converges to a limit x € R if and only if for

every neighborhood U of x there exists N € N such that x,, € U for alln > N.

Proof. Assume that x,, — x as n — oo. Let U be a neighborhood of z. There is a € > 0 such that
(x—e,x+¢e)CU.

By assumption, there is an N € N such that n > N implies |z,, — z| < €.

It follows that © — e < z,, < v +¢. Thus, x, € (t —e,2+¢) CU for all n > N.

Conversely, assume that for every neighborhood U of x there exists N € N such that z,, € U for
all n > N. Let € > 0. Fixed z. Then (x — ¢,z + ¢) is a neighborhood of =.

By assumption, there exists N € N such that =, € (z — e, 2 + ¢) for all n > N. We have
|z, —a| <e foralln> N.

Therefore, x, — x as n — oo. ]
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Exercises 3.1

. Show that interval [a, b], [a,b) and (a, b], are not open.
. Show that interval [a, c0) and (—oo, b] are not open.
. Give two neighborhoods of z = 2.

. Let A and B be subsets of R. Suppose that A and B are open.

Determine whether A\ B is open.

. Let U C R be a nonempty open set. Show that supU ¢ U and infU ¢ U.

. Let Ay, Ao, .., A, be open sets. Prove that

6.1 U A=A UAU...UA, is open.

k=1

6.2 ﬂ A=A NAyN...NA, is open.

k=1

. Find a sequence I,, of bounded, and open interval that

I, C I, for each n € N and ﬂ I, = @.

n=1
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3.2 Closed sets

Definition 3.2.1 A set F' C R is closed if

Fe=R\F={zxe€R:x¢F} is open.

Since @° =R and R = @ ( @ and R are open), @ and R are closed sets.
Example 3.2.2 Show that interval [0, 1] is closed.
Solution. Consider [0, 1]° = (—00,0) U (1,00). By Theorem 3.1.3 and 3.1.5, we obtain
(—00,0) U (1,00) is open.
We conclude that [0, 1] is closed.
Example 3.2.3 Show that [0, 1) is neither open nor closed.
Solution. Consider [0,1)¢ = (—o00,0) U [1,00). Choose x = 1. Then
(1-06,140) Z (—00,0)U[1,00) for all § > 0.

So, (—00,0) U[1,00) is not open. We conclude that [0, 1) is neither open nor closed.

Theorem 3.2.4 Let A and B be closed. Prove that AU B and AN B are closed.

Proof. Let A and B be closed. Then A° and B¢ are open. By Theorem 3.1.5, it implies that
A¢N B¢ and A°U B¢ are open.

Since (AU B)® = A°N B and (AN B)° = A°U B¢,
(AU B)¢ and (AN B)¢ are open.

We conclude that AU B and AN B are closed. O]
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Theorem 3.2.5 Let Ay, As, .., A, be closed sets. Then

1. U A=A UAU .. UA, is closed.

k=1

2. ﬂ A=A NAsN...NA, is closed.
k=1

Proof. Let Ay, Ay, .., A, be closed sets. Then Af, AS, .., AS are open. We consider
(UA,J = (A UAU . UA) = ASNASN ... NAS
k=1

(ﬂAk> = (A NAN..NA) =ASUASU ... UAS
k=1

By theorem 3.1.6, it follows that

(U Ak) and (ﬂ Ak> are open.
k=1 k=1

The proof of Theorem is complete. O
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Exercises 3.2

. Show that interval [a, b], [a,00) and (—o0,b] are closed.
. The set of rational numbers Q C R is neither open nor closed.

. Show that every closed interval I is a closed set.

N1 1
s ﬂ (——, nt ) open or closed ?

n n
n=1

1 n—1
s U {—, o } open or closed 7

R} n n

. Suppose, for n € N, the intervals I,, = [a,, b,] are such that I, C I,. If

a =sup{a, :n € N} and b=inf{b, :n € N},

show that ﬂ I, = a,b)].

n=1

. Find a sequence I, of closed interval that I,,,; C I, for each n € N and m I, = @.

n=1

. Suppose that U C R is a nonempty open set. For each x € U, let

Jo= (v —e,2+40),
where the union is taken over all ¢ > 0 and ¢ > 0 such that (z —e,2+6) C U.

8.1 Show that for every x,y € U, either J,NJ, = &, or J, = J,,.

8.2 Show that U = U J:, where B C U is either finite or countable.

zeB
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3.3 Limit points

Definition 3.3.1 A point x € R is called a limit point of a set A C R if for every ¢ > 0 there

exists a € A, a # x, such that a € (x —e,x +¢€) or

[(z—e,2)U(z,z+¢)|NA#@.

We denote the set of all limit points of a set A by A’.

-
1

Definition 3.3.2 Let A C R. Then x € R is an interior point of A if there exists an 6 > 0

such that
(x —6,z+d) C A.

The set of all interior points of A is called the interior of A, denoted A°.

Definition 3.3.3 Suppose A CR. A point x € A is called an tsolated point of A if there exists

an 6 > 0 such that
AN(z—d,x+0)={x}.

A~
[ 5%
&
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Example 3.3.4 Fill the blanks of the following table.

Set Set of limit points | Set of interior points | Set of isolated points
0, 1] 0, 1] (0,1) 1%
(0,1) 0,1] (0,1) %)
[0,1) [0, 1] (0,1) 1%
(0,1 U {3} [0,1] (0,1) {3}
{1} % Z {1}
N %) %) N
Q R R %)

Example 3.3.5 Show that 0 is a limit point of (0,1).

1
Proof. Let € > 0. By AP, there is an NV € N such that N <e.

1
Choose a = N1 We have,

+1
L < L <
N+1 - N"—F%
It implies that N1 € (—e,e). Since N+1>1,0< Nl < 1. We obatin
1
0,1).
N+1€(’)

We obtain
[(—e,0)U(0,2)] N(0,1) # 2.

Thus, 0 is a limit point of (0, 1). ]
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Theorem 3.3.6 Let A and B be sets. If A C B, then A’ C B’.

Proof. Let A and B be sets such that A C B. Let © € A’. Then, for all £ > 0, we obtain
(z—e,x)U(z,z+e)|NA#D.

Since A C B,
(z—e,x)U(x,z+¢)|NB+#a.

So, x € B'. We conclude that A’ C B'.

Theorem 3.3.7 Let A be a closed subset of R. Then A’ C A.

Proof. Assume that A is closed. Then A€ is open.
Let z € A" or x be a limit point of A.
Suppose that x ¢ A. Then € A°. There is an € > 0 such that

(x —e,x+e) C A
It follows that (zr — e,z +¢) N A= @. Since z ¢ A,
[(z—e,2)U(x,z4+¢)|NA=2.

So, x is not a limit point of A which is imposible. Thus, z € A.
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CLOSURE.
Definition 3.3.8 Given a set A C R, the set A= AU A’ is called the closure of A.

Example 3.3.9 Fill the blanks of the following table.

Set Set of limit points | Closure
[0,1] [0,1] [0,1]
(0,1) [0,1] [0,1]
[0,1) [0,1] [0,1]

(0,1] U {3} 0, 1] 0,1]U {3}

{1} 2 {1}

N @ N
Q R R

Theorem 3.3.10 Let A and B be subsets of R. If AC B, then A C B.

Proof. Let A and B be sets such that A C B. By Theorem 3.3.6, it implies that A’ C B'.
We conclude that A= AUA’ C BUB' = B. O

Theorem 3.3.11 Let A CR. Then A is closed.

Proof. Let x € (A)° = (AU A")°. Then x ¢ A and x ¢ A’. There is an £ > 0 such that
(x—cg,x+e)NA=[z—¢c,x)U(z,x+e)|NA=0.
Since z ¢ A, (v —e,x+e)NA=|[(z—¢e,7)U(z,z+¢)]N A. Use the fact that A C A, we obtain

(x—e,x+e)NA=0.

So, (x —e,x +¢) C (A). Thus, (A)¢ is open. We conclude that A is closed. O
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Theorem 3.3.12 Let A CR. Then A is closed if and only if A = A.

Proof. Assume that A is closed. By Theorem 3.3.7, A’ C A. It follows that
A=AUA CA

From definition of closer, A C AU A’ = A. Thus, A = A.
Coversely, assume that A = A. By Theorem 3.3.11, A is closed. Hence, A is also closed. O

Theorem 3.3.13 A set F' C R is closed if and only if

the limit of every convergent sequence in F' belongs to F.

Proof. Let F be a closed set. Assume that {x,} is a sequence in F'. We will prove by contradiction.
Assume that x,, — a asn — oo and a ¢ F. Then a € F°.

Since F° is open, there § > 0 such that (a — d,a + ) C F*°. So,
(a—=6,a+d)NF =02 (3.1)
From z, — a as n — oo, (¢ = ¢) there is an N € N such that

n> N implies |z, —a| <9.

Then z,, € (a — d,a + 0). But z,, € F, this is contradiction to (3.1). Thus, a € F.

Coversely, we will prove in Excercise. O
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Exercises 3.3

. Identify the limit points, interior point and isolated points of the following sets:

1.1 A=(0,1)U {3} 1.4 A=(0,1)U[3,4]
1.2 A=10,1] L5A:{%meN}
1.3 A=1,00) 1.6 A=[0,1]NQ

. Find A’, A° and A where

21 A=(0,1) 24 A=(0,1)U{2,3}
2.2 A=10,1] 25A:{%uneN}
2.3 A=0,00) 26 A=Q

. Let A and B be two subset of R. Show that (AU B) = A'"U B'.

. Let A and B be two subset of R. Determine whether

41 (ANB) =A'NB

42 AUB=AUB

43 ANB=ANB
44 (AUB)° =AU DB°
45 (ANB)°=A°NB°

4.6 if AC B, then A C B.

. Prove that A° is open.
. Prove that A is open if and only if A = A°.

. Suppose z is a limit point of the set A. Show that for every £ > 0, the set

(x — e,z +¢)N A is infinite.

. Suppose that A, C R for each k£ € N, and let B = U A;,. Show that B = U Ay,

k=1 k=1

. If the limit of every convergent sequence in F' belongs to F' C R, prove that F' is closed.



Chapter 4

Limit of Functions

4.1 Limit of Functions

Definition 4.1.1 Let E C R and f : E — R be a function and let a € R be a limit point of E.
Then f(x) is said to converge to L, as x© approaches a, if and only if

for every € > 0 there is a 6 > 0 such that for all z € F,
0<|z—a|l<d implies |f(x)—L|<e.
In this case we write
:lciE}r(llf(:c):L or  f(x)—> L asx — a.

and call L the limit of f(x) as x approaches a.
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Example 4.1.2 Suppose that f(x) =2z + 1. Prove that
lim f(z) = 3.

r—1

Proof. Let ¢ > 0. Choose § = % > 0. Let z € R such that 0 < |z — 1] < . We obtain
|f(z) =3 =|2x+1)=3|=]2(x—1)| =2z — 1] <20 =e.
Thus, f(z) - 3 asz — 1. O

Example 4.1.3 Let f(z) = V22 where x € R. Prove that f(z) — 0 as z — 0.

Proof. Let € > 0. Choose § =¢ > 0. Let z € R such that 0 < |z| < 6. We obtain
[f(z) = 0] = [Va2 = 0] = 2| <e.

Thus, V22 — 0 as z — 0. O

1
lim x cos (—) = 0.
x—0 x

Proof. Let ¢ > 0. Choose § =¢ > 0. Let z € R such that 0 < |z| < 0.

Example 4.1.4 Prove that

Use the property of cosine that

cos (1)‘ <1 for all = # 0.

X

1 1
x Cos (—) —O‘ = |z cos (—)‘ = |z|
T T

1
Thus, x cos (—) —0asz —0. O

Xz

We obtain

1
cos(—)’§|a:]-1:\x|<5:€.
T
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Example 4.1.5 Prove that

lim 22 = 9.
r—3

Proof. Let ¢ > 0. Choose § = min {1, ;} Let z € R such that 0 < |z — 3| < .
Then 0 < |z — 3| < 1. By Triangle inequality, |z| — 3 < |z — 3| < 1. So, |z| < 4. We obtain

|2 = 9| = |(z + 3)(z — 3)| = |o + 3||z — 3| < (|z] +[3])6 < (4—1—3); =e.
Thus, v/ — 0 as © — 0. O

1
Example 4.1.6 Prove that f(z) = — — 1 as x — 1.
T

1
Proof. Let ¢ > 0. Choose § = min {5, g} Let z € R\{0} such that 0 < |z — 1] <.

1
Then 0 < |z — 1| < 3 By Triangle inequality,
1
l=1—z+4+z| <|1—2z|+ |z <§+|x].

1 1
So, |x| > o It follows that — < 2. We obtain

]
1 1-— 1
——1‘:‘ Tl e 1<20<2- S =c
x x || 2
1
Thus, f(x) = — as z — 1. O
T

Theorem 4.1.7 (Limit of Constant function) The limit of a constant function is equal to the

constant.

Proof. Let K be a constant. Define f(x) = K for all x € R.

Let a € R and € > 0. Whatever a positive d, we obtain for all x € R,
0<|zr—al<d impliess |[K—-K|=0<e.

We conclude that lim K = K. O

T—ra
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Theorem 4.1.8 (Limit of Linear function) Let m and ¢ be constant such that f(x) = mx + ¢
for all x € R. Then

lim (max + ¢) = ma + c.
r—a

Proof. Let ¢ > 0. Choose 6§ = | |€+ ] > (. Let x € R such that 0 < |z — a| <.
m
We obtain by m! < 1 that
Im| +

|[f() = (ma + ¢)| = [(mz + ¢) = (ma + ¢)| = |m(z - a)]

<l-e=c¢€.

€
= |ml|lz — a| < |ml|d = |m] -
[m| | < |m| H|m,+1

Thus, f(z) = (ma+c) as © — a. O

Theorem 4.1.9 Let E C R and f,g: E — R be functions and let a € R be a limit point of E. If
f(x) =g(x) for all z € E\{a} and f(x) — L asx — a,

then g(x) also has a limit as x — a, and

lim f(x) = lim g(z).

r—a Tr—ra

Proof. Assume that f(z) = g(z) for all x € E\{a} and f(z) — L as = — a.

Let € > 0. There is a § > 0.
Vee E,0<|z—a|l|<d — |f(x)—L|<e.

From 0 < |z — a| < ¢, it implies that x # a. So, f(x) = g(z) on the condition. We obtain
Vee B,0<|r—al<d — |g(z)—L| <e.

Thus, g(z) — L as z — a. O

—

Example 4.1.10 Prove that f(x) = has a limit as © — 1.

Solution. We see that g(z) = x + 1. We have
?—1 (z—1)(z+1)

= = = 1= for all 1
fay= T DO e foralia
By Theorem 4.1.9, it follows that

Lot —-1 . .
lim = lim f(x) = lim g(x) = lim(z + 1) = 2.

z—1 1 — 1 z—1 rz—1 r—1
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Theorem 4.1.11 (Sequential Characterization of Limit (SCL)) Let ECR and f : E - R
be a function and let a € R be a limit point of E. Then

lim f(x) =L  exists

T—ra

if and only if f(x,) — L as n — oo for every sequence x, € E\{a} that converges to a asn — oc.

Proof. Assume that the limit of f(x) exists and equals to L and assume that a sequence z,, € F\{a}

that converges to a as n — oco. Let ¢ > 0. There is a 6 > 0 such that for all z € F|
0<|r—a|l<d implies |[f(x)—L|<e. (4.1)
There is an N € N such that

n> N implies |z, —a| <.

Since x,, # {a} and |z, — a| < § for all n > N, we obtain by (4.1)
|f(z,) —L| <e forallm > N.

Coversely, assume that f(x,) — L as n — oo for every sequence x,, € E\{a} that converges
to a as n — oo. Suppose that f(z) does not converge to L as x approaches to a.

There is an ¢y > 0 such that
V6>0,0<|r—al < and |f(z)— L| > e. (4.2)

1 1
Choose § = — for all n € N. Then 0 < |z — a| < —. By Squeeze Theorem, x,, — a as n — oc.
n n

By assumption, f(x,) — L as n — oo, i.e., there N € N
n >N implies |f(z)— L| < e

which contradics (4.2). Therefore, f(z) converges to L as x approaches to a.
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Example 4.1.12 Prove that

1
oS (—) if ©#0
flx) = .
0 if =0
has no limit as v — 0.
Solution. Choose two sequence as follow
S 50 and  f(z) = cos(Znm) - 1
Tn = 5o an r,) = cos(2nm ,
1
Yn = n—T1)r —0 and f(y,) = cos(2n—1)r — —L

Then f(z,) and f(y,) converge to distinct limits. By SCL, we conclude that f has no limit as
x — 0.
Next, we will use the SCL together Theorems of limit for addition, mutiplication, scalar mul-

tiplication and quotient in order to proof Theorem 4.1.13.

Theorem 4.1.13 Let a € R, ECR and f,g: E — R be functions and let a € R be a limit point

of E. If f(z) and g(z) converge as x approaches a, then so do
(f +9)(@). (af)(2). (f9)(x) and ({)(z).
In fact,
1 lim(f + g)(x) = lim f(2) + lim g(x)

2. lim(af)(x) = alim f(z)

3. lim(fg)(z) = lim f(z) lim g(z)

(] i /(@) - |
4. hin (—) (x) = Tm (2] when the limit of g(x) is nonzero.
v=a \ g im g(x)

T—ra

Example 4.1.14 Show that lim 2* = a® fo all a € R.

T—ra

Solution. Use Theorem 4.1.13 to give

limz?=limz -z =Ilimz-limz=a-a=d’.
r—ra r—ra r—a r—ra
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Theorem 4.1.15 Suppose that E C R and f : E — R is a function. Let a € R be a limit point of
E. Then,

lim |f(z)|=0 if and only if lim f(z) =0.
T—ra T—ra

Proof. Exercise. O

Theorem 4.1.16 (Squeeze Theorem for Functions) Suppose that E CR and f,g,h: E — R
are functions. Let a € R be a limit point of E. If

g(x) < f(x) < h(z)  for all x € E\{a},

and lim g(x) = lim h(x) = L, then the limit of f(x) exists, as v — a and

Tr—a T—a
lim f(z) = L.
Proof. Use SCL and the Squeeze Thorem (Theorem 2.2.1). O

Corollary 4.1.17 Suppose that E C R and f,g: E — R are functions. Let a € R be a limit point
of E and M > 0. If
lg(x)] <M forallze E\{a} and lim f(z)=0,
T—a

then
lim f(x)g(x) = 0.

r—a

Proof. Assume that |g(z)| < M for all x € E\{a} and lim f(z) = 0.

Case f(z) =0. Then f(z)g(x) = 0. It follows that lim f(z)g(z) = 0.

Case f(x) # 0. Then |f(z)| > 0. So, lim M|f(z)| = 0. We obtain
r—a

0 <lg(x)f(2)| = lg(@)[|f ()| < M|f(z)].

By the Squeeze Theorem for Functions, it imlies that lim |g(x)f(x)| = 0.

T—ra

From Theorem 4.1.15, we conclude that lim f(z)g(x) = 0. O
T—a
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1
Example 4.1.18 Show that lim x cos (—) =0
x—0 T

Solution. By property of sine,

1
CoS (—)‘ <1 for all = # 0.

X

1
We have lim x = 0. By Corollary 4.1.17, lim x cos <—) = 0.
z—0 z—0 xT

Theorem 4.1.19 (Comparision Theorem for Functions) Suppose that E C R and
fyg: E — R are functions. Let a € R be a limit point of E. If f and g have a limit as x approaches

a and
f(z) <g(z), z€ E\{a},

then
lim f(z) < lim g(z).

Tr—ra T—ra

Proof. Use SCL together the Comparison Theorem (Theorem 2.2.12), we will this theorem. [
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Exercises 4.1

. Use Definition 4.1.1, prove that each of the following limit exists.

1.1 limz? =1 1.3 lim 2 +1=0.
r—1 r——1
. 2 . xr — 1

1.2 imaz*—2z+1=3 1.4 lim =—1
z—2 x%[){[’+]_

. Decide which of the following limit exist and which do not.

2.1 lim sin (l) 2.2 lim zsin (1> 2.3 lim tan (1)
z—0 x x—0 €T z—0 x

. Evaluate the following limit using result from this section.

2422 1

3.1 lim %< 3.3 limasin [ —
z—1 x?’—x x—0 1:2
32 lim Y 3.4 lim 22 cos (—)
=T LT+ T z—0 T

1
. Prove that lim 2" sin (—) exists for all n € N.

z—0 €T

. Show that limz™ =a" fo all a € R and n € N.

T—ra

. Prove that lim |f(z)| = 0 if and only if lim f(z) = 0.
r—a

T—ra

. Prove Squeeze Theorem for Functions.
. Prove Comparision Theorem for Functions.

. Suppose that f is a real function.

9.1 Prove that if
lim f(z) =L

T—ra

exists, then |f(z)| — |L| as x — a.

9.2 Show that there is a function such that as z — a, |f(x)| — |L| but the limit of f(z)

does not exist.
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4.2 One-sided limit

What is the limit of f(z) :=Vax —1asz — 1.

Y

4

3 y=+vz—1
"

2 //

A reasonable answer is that the limit is zero. This function, however, does not satisfy Definition
4.1.1 because it is not defined on an OPEN interval containg a = 1. Indeed, f is defined only for

x > 1. To handle such situations, we introduce one-sided limits.
Definition 4.2.1 Let a € R.

1. A real function f said to converge to L as x approaches a from the right if and only if
f defined on some interval I with left endpoint a and every € > 0 there is a § > 0 such that
a+9d €l and for all z € 1,

a<x<a+d implies |f(x)—L|<e.

In this case we call L the right-hand limit of f at a, and denote it by

fla™):=L=: lim f(x).

z—a™t
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2. A real function f said to converge to L as x approaches a from the left if and only if f
defined on some interval I with right endpoint a and every € > 0 there is a 0 > 0 such that

a+d €l and for allz € 1,
a—6 <z <a implies |f(x)—L|<e.
In this case we call L the left-hand limit of f at a, and denote it by

fla™):=L=: lim f(x).

r—a~

Example 4.2.2 Prove that lim vx —1=0.

z—1t

Proof. Let ¢ > 0. Choose § =% > 0. Let > 1 such that 0 < 2 — 1 < §. We obtain
f(x)—0l=Vz—1-0=vz—1<Vi=c

Thus, vz —1 — 0as v — 1T, O

Example 4.2.3 If f(z) = ’i—‘, prove that f has one-sided limit at a = 0 but glﬁlir(l) f(x) =0 DNE.

Solution. Let ¢ > 0. We can choose any d > 0. Let z € R\{0} such that —6 < = < 0.
Then |z| = —z. We obtain

|z —
—0l=1Z (=1 = —(-D=|-1+1=0<e.
£@) =0 = | = ()| = | = = ()| =] -1+ 1 =0 <
Thus, lim f(z) = —1. Similarly, lim f(x) exists and equals 1.
z—0~ z—0~
Choose two sequence as follow
1
r, = — —0 and f(z,) =1 — 1,
n
1
Yo = —— —0 and f(y,) = -1 — —1.
n

Then f(x,) and f(y,) converge to distinct limits. By SCL, we conclude that f has no limit as

z — 0.
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Theorem 4.2.4 Let f be a real function. Then the limit

lim f(z)

Tr—a

exists and equals to L if and only if

L= lim f(x)= lim f(z).

z—a™t T—a~

Proof. Assume that f(x) — L as © — a. Let ¢ > 0. There is a 6 > 0 such that

O0<|z—al<d and |f(z)—L|<e. (4.3)
If a < x <a+4, it satisfies (4.3) which implies | f(z) — L| < €. Thus, lim f(z) = L.
r—ra
If a — 6 <z < a, it satisfies (4.3) which implies |f(z) — L| < e. Thus, lim f(z) = L.

Tr—a

Conversely, assume that L = lim f(z) = lim f(x). Let € > 0. There are d1, 2 > 0 such that

T—ra r—a~

a<zr<a+d — |f(x)—L|l<e (4.4)
and
a—dh<zr<a — |f(r)—L|<e. (4.5)

Choose § = min{dy,d1}. If |x — a| < 0, it satisfies (4.4) and (4.5) which imply
|f(z) — L| <e.

Therefore, lim f(x) = L. O
T—ra

x+1 if © >0
Example 4.2.5 Use Theorem 4.2.4 to show that f(x) = has limit at a = 0.

2c+1 if z<0

Solution. We see that

lim f(z)= lim (z+1)=1= lim (2z + 1) = lim f(x).

z—0t r—0t z—0— z—0—

By Theorem 4.2.4, we conclude that lir% flz)=1
T—



4.2. ONE-SIDED LIMIT 97

Exercises 4.2

1. Use definitons to prove that lim f(z) exists and equal to L in each of the following cases.

r—a™t
1.1 f(z) =222 +1, a=1,and L = 3.
-1

1.2 f(a:):ﬁ_—ﬂ, a=1,and L = 1.

1.3 f(x) =3z —5, a=2,and L = 1.
2. Use definitons to rove that lim f(x) exists and equal to L in each of the following cases.

r—a~

2.1 f(z) =1+ 22, a=1,and L = 2.

2.2 f(x) =+v1—22, a=1,and L =0.

2.3 f(z) Lo 1,and L =0

. x) = a=1, an =0.
1+z’ ’

3. Evauate the following limit when they exist.

31 lim =~ t1 3.3 lim+(x2 + 1)sinz

r—0+ 12 — 2 rom
3 3 2 . COS T
3.2 lim x?,—w—'— 34 hI}rl— 1 —sinx
z—1— a0 —1 T3
v1-— 2

4. Prove that Vo8t — V2

- ~— asx — 0T,
sin x 2

5. Determine whether the following functions are limit at a.

)
3xr+1 ifx>1
5.1 f(x) = and a=1
r+3 ifr<l

\

(
2 —2x if x>0
5.2 f(x) =< and a=0

1—2 fxz<0

6. Suppose that f:[0,1] = R and f(a) = lim f(z) for all z € [0, 1]. Prove that

T—ra

f(q) =0 for all ¢ € QN [0,1] if and only if f(x) =0 for all z € [0, 1].
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4.3 Infinite limit

The definition of limit of real functions can be expanded to include extended real numbers.
Definition 4.3.1 Let E CR and f: E — R be a function.

1. We say that f(x) — L as x — oo if and only if there exists a ¢ > 0 such that (¢c,00) C E
and for every € > 0, there is an M € R such that

x>M implies |f(z)—L| <e.

In this case we shall write lim f(x) = L.
T—00

2. We say that f(x) — L as x — —oc if and only if there exists a ¢ > 0 such that (—o0, —c) C E

and for every € > 0, there is an M € R such that
x < M implies |f(x)—L|<e.

In this case we shall write lim f(x) = L.
Tr——00

1
Example 4.3.2 Prove that lim — = 0.

r—00 I

1
Proof. Let ¢ > 0. Choose M = — > 0. If x > M > 0, it implies
€

1 0 1 - 1
——0l==-< ===
x r M
1
We conclude that lim — = 0. [
r—00 I
Example 4.3.3 Prove that lim x; exists and equals to 1.
T—00 I

2
Proof. Let ¢ > 0. Choose M = Z > 0. If x > M > 0, it follows that + +1 > x > M. So,
1

1
< —. We obtain

z+1 M
z—1 -2 1 2
r+1 z+1 r+1 M
o —1
We conclude that lim = 1. O
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Example 4.3.4 Prove that lim =
T—00 ;1;‘2 —+ 1

1
Proof. Let ¢ > 0. Choose M = 7 > 0. If x > M > 0, it follows that 2> > M? > 0. So,

£
1 1
s < ek We obtain

1 1 1 1
— =< = =c.
241 »?2+1 22 M?
1

We conclude that lim =0. [

T—00 {,(,’2—|— 1

1
Example 4.3.5 Prove that lim — = 0.

r——00 I

1
Proof. Let ¢ > 0. Choose M = —— < 0. lf z < M <0, it implies —x > —M > 0. We obtain
€

1 1 1
—_ — 0 = — _— =
T ‘ - M c
o1
We conclude that lim — = 0. O
T——00 I
Example 4.3.6 Prove that lim T
T——00 I + 1
1 1 e
Proof. Let ¢ > 0. Choose M = —1 — —. Then M +1 = —— < 0. If x < M, it implies

S £

1 1
l+x <1+ M<0. So, 0 < — < — . We obtain
r+1 M+1

T 1 1 - 1
r+1 lz+1 —(z+1) —(M+1)
We conclude that lim A 1. O

z——00 T + 1
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Definition 4.3.7 Let E CR and f : E — R be a function.

1. We say that f(x) — 400 as © — a if and only if there is an open interval I containing a

such that I\{a} C E and for every M > 0 there is a § > 0 such that
0<|z—a|l<d implies f(z)> M.

In this case we shall write lim f(z) = +o00.
T—ra

2. We say that f(x) — —o0 as x — a if and only if there is an open interval I containing a

such that I\{a} C E and for every M < 0 there is a § > 0 such that
O0<|r—a|l<é implies f(x)< M.

In this case we shall write lim f(z) = —oo.
T—ra

Obviousl modification define f(r) — +oo as x — at and v — a~, and f(x) = +oo as v — +oo.

1
Example 4.3.8 Prove that lim — = +o0.
z—0 ’,ﬁlj“

1
Proof. Let M > 0. Choose 6 = e 0. If 0 < |z| < 9, it follows

1 1
— > — =M.
[~ 9
o1
Thus, lim — = 4o0. O
z—0 |q;|
Example 4.3.9 Prove that lim i —00.
z—1+ 1 —x
1 . 1 1 1 1
Proof. Let M < 0. Choose ) = —— > 0. [f 0 < x—1 < 4, it follows = < . So, < —=
M 0 x-—1 1—x )
We obatin
x 1 1 1
=—1 —— =M.
1—=x +1—x<0+1—x< )
Thus, lim S —00. ]

=1+ 1 —2x



4.3. INFINITE LIMIT 101

Exercises 4.3

1. Use definitons to prove that lim+ f(z) exists and equal to L in each of the following cases.
r—a

1
1.1 = =3 d L= .
fla)= 0 =3, and L = +oo
1
1.2 f(x) = ——, a=0,and L = —o0c.
x
2. Use definitons to prove that lim f(z) exists and equal to L in each of the following cases.
Tr—a—
x
2.1 f(x):$2_4, a=2 and L = —o0.
292 f) = — 1, and L= +
1 _ x27 )

3. Use definition to prove that the follwing limits

X
51 Tim 22 g 3.4 lim —— = +o0
3.2 1 =5 5 i -
222 + 1 ]
3.3 lim =~ 1 _ 9 3.6 lim - — oo
z—o0 1 — 12 z—=2— T — 2

4. Evauate the following limit when they exist.

o 3x2—13x+4 4.4 lim arctanzx
41 lim —m8m gl
z—ooo 1 —1x — 12
5 .
49 lim L T*+2 A5 lim DB
=00 T3 — 1 — 2 r—o00 T2
. IB -1 . 2 .
4.3 lim 5 46 lim z°sinz
r——00 % + 2 T——00

sin(z + 3) —sin3
T

5. Prove that

converges to 0 as z — oo.
6. Prove the following comparision theorems for real functions.
6.1 If f(z) > g(x) and g(x) — oo as & — a, then f(x) — oo as x — a.

6.2 If f(z) <g(x) < h(z) and L = lim f(x) = lim h(z), then g(x) — L as z — oo.

T—r00 T—00
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7. Recall that a polynomial of degree n is a functon of the form
P(z) = ap2™ + ap 2™ '+ -+ a1 + ag
where a; € R for j =0,1,...,n and a, # 0.

7.1 Prove that lim 2" = a" for n =0,1,2, ...
T—a
7.2 Prove that if P is a polynomial, then
lim P(x) = P(a)

Tr—a

for every a € R.

P
7.3 Suppose that P is a polynomial and P(a) > 0. Prove that (z) — o0 as T — at,
T —a
P(x)
r—a

— —oo as x — a~, but

lim P(z)

rT—=a L — A

does not exist.

8. Cauchy. Suppose that f: N — R. If

lim f(n+1)— f(n) =1L,

n—0o0

prove that lim
n—oo n

exists and equals L.



Chapter 5

Continuity on R

5.1 Continuity

Definition 5.1.1 Let E be a nonempty subset of R and f: E — R.

f is said to be continuous at a point a € E if and only if given € > 0 there is a 6 > 0 such that
lt—a|<dandz € E  imply |f(x)— f(a)| <e.
Example 5.1.2 Let f(z) = 2z — 1 where x € R. Prove that f is continuous at v = 1.

Proof. Let ¢ > 0. Choose § = % > 0. Let € R such that |x — 1] < J. We obtain
[f(2) = F) =22z = 1) = 1[ = 2(z =) = 2|z = 1] <20 = &.
Thus, f is continuous at x = 1. O

Example 5.1.3 Let f(z) = 2* where x € R. Prove that f is continuous at v = 2.

Proof. Let ¢ > 0. Choose § = min {1, %} Let z € R such that |z — 2| < §.

We obtain |z] — 2 < |z — 2| < 1. It follows |z| < 3. So,
€
If(z) = f(2)| = |2° — 4] = |z + 2|]x — 2| < (Jz| +2)6 < (3—1—2)5 =e.

Thus, f is continuous at x = 2. O



104 CHAPTER 5. CONTINUITY ON R
Example 5.1.4 Let f(x) = \/x where x € (0,00). Prove that f is continuous at 1.

Proof. Let ¢ > 0. Choose § =¢. Let x € (0,00) such that |z — 1| < .

1
Since /x +1 > 1, NG < 1. We obtain
() = f(D] = Vz -1
Vo +1 x—1 1
(Ve=1) Ve +1 Ve +1 | | Ve +1 c
Thus, f is continuous at x = 2. O

Example 5.1.5 Let f(z) = 3 — 2* where x € [—1,2] U {3}. Prove that f is continuous at x = 3

Proof. Let € > 0. Choose 6 = 0.5. Let z € [—1,2] U {3} such that |z — 3] < 6 = 0.5. It follows
x = 3. We obtain

|f(z) = f3)=1fB) - fB)=0<e.
Thus, f is continuous at x = 3. u

Example 5.1.6 Prove that the function

18 discontinuous at 0.

Proof. Suppose that f is continuous at 0. Given € = 1. There is a 0 > 0 such that
|z] <dand x € R imply |f(x)] =|f(x) — f(0)] < 1. (5.1)

For 0 < x < 9, we obtain by (5.1) such that

1= 2= 8 ) <1

X

It is imposible. Thus, f is discontinuous at 0. [
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Theorem 5.1.7 Let I be an open interval that contain a point a and f: I — R. Then

f is continuous at a € I if and only if f(a) = lim f(x).
T—a

Proof. Let I = (c¢,d) such that contain a point a.
d—a

O
Q
Qo

Set 9o = min{a — ¢,d — a}. Choose § < §y. Then |z — a| < § implies z € I.
Therefore, conditions
|t —a|<dand z €I imply |f(z)— f(a)|<e
is identical to
0<|zr—a|l<d implies |f(z)— f(a)|l<e.

We conclude that f is continuous at a € [ if and only if f(a) = lim f(z). O

Tr—a

1
Example 5.1.8 Let f(x) = x cos (—) where © # 0. If f is continuous at 0, what is f(0) defined?
T

Solution. Use Example 4.1.18 and Theorem 5.1.7 in order to define

F£(0) = lim 2 cos <1) ~0.

z—0 €T

Thus, we define f(0) = 0 that makes f be continuous at 0.

ar+1 ifx>1
Example 5.1.9 Find a such that the function f(x) = is continuous at 1.

2r+3  ifx<1

Solution. From f is continuous at 1, we obtain

f) = dim f(z) = lim f(2)
z—1t z—1—
a+1 = lim(ax+1) = lim (22 +3)
z—1t z—1—
a+1 = a+1 = )

Hence, a = 4.
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Theorem 5.1.10 Suppose that E is a nonempty subset of R, a € E, and f : E — R. Then the

following statements are equivalent:
1. f is continuous at a € E.

2. If x,, converges to a and x,, € E, then f(x,) — f(a) as n — oc.

Proof. The proof Theorem is complete by Theorem 5.1.7 and SCL. n

Example 5.1.11 Use Theorem 5.1.10 to find lim ,/ n

Solution. Let f(z) = y/x where z € (0,00). By Example 5.1.4, f is continuos at 1. Set

_on
Con+1

Ty

Then lim z, = 1 by Example 2.1.6. By Theorem 5.1.7, it implies that
n—oo
n

fzn) = n+1

— f(1)=1.

Next, we will use Theorem 5.1.10 together Theorems of limit for addition, mutiplication, scalar

multiplication and quotient in order to proof Theorem 5.1.12.

Theorem 5.1.12 Let E be a nonempty subset of R and f,g : E — R and o € R. If f, g are

continuous at a point a € E, then so are

f+g, fg and af

Moreover, f/g is continuous at a € E when g(a) # 0.
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CONTINUITY OF COMPOSITION.

Definition 5.1.13 Suppose that A and B are subsets of R and that f : A — R and g : B — R.
If {f(z) : x € A} C B, then the composition of g with f is the function

(go f)(x) :=g(f(x)), =zeA

A

Theorem 5.1.14 Suppose that A and B are subsets of R and that f : A = R and g : B — R with
{f(x):x € A}y C B. If f is continuous at a € A and g is continuous at f(a) € B, then

go f is continuous at a € A
and moreover,

lim(g o f)(z) = g (lim f(z))

T—ra T—ra

Proof. Assume that f is continuous at a € A and ¢ is continuous at f(a) € B.

Let € > 0. There is a 4; > 0 such that
ly— fla) <drandy e B imply [g(y) —g(f(a))| <e. (5.2)
There is a d9 > 0 such that
lz —al <dpandz € A imply |f(z)— f(a)|] <. (5.3)

For each = € A such that |x — a| < da, it implies | f(z) — f(a)| < 61. Set y = f(x).
We obtain by (5.2) that |g(f(z))—g(f(a))| < e. We conclude that go f is continuous at a € A. [
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Example 5.1.15 Show that lirq V2x — 1 exists and equals to 1.
T

Solution. Let g(z) = v/ and f(z) = 2o — 1. Then f is continous at 1 and g is continuous at
f(1) = 1. By Theorem 5.1.14,

lim(go f)(@) = g (lim f(2)) = g (lim(22 — 1)) = g(1) = 1.

CONTINUITY ON A SET.
Definition 5.1.16 Let E be a nonempty subset of R and f: E — R.
f s said to be continuous on FE if and only if f is continuous at every a € E.
Note that if f is continuous on E, then f is continuous on nonempty subset of E.

Example 5.1.17 Show that f(x) = x? is continuous on R.

_c
2al+1]
Let = € R such that |z — a| < 6. We obtain |z| — |a| < |z —a| < 1. Tt follows

Proof. Let a € R and € > 0. Choose 6 = min ¢ 1,

lz| <1+ |al.
We obtain
[f(z) = fla)| = |2* — @®| = |z + al|z — a
< (Jel +1a3 < (Jal + 1 +]ah gy =
Thus, f is continuous on R. O

Theorem 5.1.18 (Continuity of linear function) Let m and c be constants and let
f(z) = mzx + ¢ where x € R.

Prove that f is continuous on R

Proof. Let a € R and € > 0. Choose § = > 0. Let € R such that |z —a| < §. We obtain

Im| +1

[f(z) = fa)] = |[(mz + ¢) = (ma + ¢)| = |ml|z — a

< |m|d < |m| - <l-e=e.

€
|m| 4+ 1

Thus, f is continuous at R. O
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Example 5.1.19 Show that h(z) = (3z + 1)? is continuous on R.

Solution. Let f(z) = 22 and g(x) = 3z + 1. By Example 5.1.17 and Theorem 5.1.18, f and g are

continuous on R. We conclude by Theorem 5.1.14 that
h(z) = f o g(x) = (3z + 1)? is continuous on R.

Example 5.1.20 Prove that
2v+4  ifx>—1
flz) =
3r+5 ifr<—1

is continuous on R.

Solution. We see that f is a linear function on (—1,00) U (—1,00). By Continuity of Linear

function, f is continuous on (—1,00) U (—1,00). From

f(-1)=2= lim (3z+5)= lim (2z+4),

r——1+ T——1—

it follows that f is continuous at —1. We conclude that f is is continuous on R.

ar+1 ifx>2
Example 5.1.21 Find a such that the function f(x) = is continuous on R.

r+a if v <2

Solution. From f is continuous at 2, we obtain

[@) = dm @) = lim f()
x—2t 27
2a+1 = lim(ax+1) = lim (z+a)
x—27F x—2~
20 +1 = 2a +1 = 2+a.

Hence, a = 1.
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Exercises 5.1

1. Use definition to prove that f is continuous at a.

1.1 f(x)=2"4+1 anda=1. 1.3 f(x) _1 and a = 1.
x

1.2 f(z) =2 and a = —1. L4 f(z) = 22+ 1

2. Determine whether the following functions are continuous at a.

1-2¢z ifz>1
2.1 f(x) = and a=1

\2—3x if z<1
(

x?—1 if x>0
22 f(z) = and a=0

\\/1—33 if <0

3. Use definition to prove that f is continuous at E.

3.1 f(z) =a° and F = R.

32 f(x)=v1—x and E = (—o0, 1).
1

3.3 f(:r:):x2+1 and £ = R.

4. Use limit theorem to show that the following function are continuous on [0, 1].

4.1 f(x) =322 +1 4.3 f(x)=vV2—-1z
11—z 1
42 f@) = 7 T = 76

(

ar + 3 fz<1

5. Find a and b such that the function f(z) =< + +p if 1 <2 <2 is continuous on R.

2 —2 ifx>2

\

6. If f: [a,b] — R is continuous, prove that sup |f(x)]| is finite.
z€|a,b|

7. Show that there exist nowhere continuous functions f and g whose sum f + g is continuous

on R. Show that the same is ture for product of functions.
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8. Let
cos(1) ifx #£0

1 ifz=0
is continuous on (—o0, 0) and (0, o), discontinuous at 0, and neither f(07) nor f(07) exists.
8.1 Prove that f is continuous on (—o00,0) and (0, c0) discontinuous at 0.

8.2 Suppose that g : [0, 2] — R is continuous on (0, 2) and that there is a positive constant

C > 0 such that

l9(z)| < Cy/x for all z € (0, 2),

Prove that f(x)g(x) is continuous on [0, 2].

9. Suppose that a € R, that [ is an open interval containing a, that, f,g: I — R, and that f
is continuous at a.
9.1 Prove that ¢ is continuous at a if and only if f + ¢ is continuous at a.
9.2 Make and prove an analogous atstement for the product fg. Show by example that

hypothesis about f added cannot be dropped.

10. Let f : A — R be a continuous function. Suppose that F C A and is open. Determine
whether {f(z) : x € E} is open.

11. Let f(z) = 2™ where n € N. Prove that f is continuous on R
12. Suppose that f: R — R satisfies f(z +y) = f(z) + f(y) for each z,y € R.

12.1 Show that f(nz) = nf(x) for all z € R and n € Z.

12.2 Prove that f(qx) = ¢f(z) for all x € R and ¢ € Q.

12.3 Prove that f is continuous at 0 if and only if f is continuous on R.

12.4 Prove that f is continuous at 0, then there is an m € R such that f(z) = ma for all

z € R.

1 1
13. Assume that lim M

= 1 and f(z) = €” is continuous on R. Show that lim (1 —I—[l?)% =e.
n—0 €T x—0
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5.2 Intermediate Value Theorem

Definition 5.2.1 Let E be a nonempty subsets of R. A function f : E — R is said to be bounded
on E if and only if there is an M > 0 such that

|f(x)| <M  forallz e E
For a example f(x) = sinx, by sine property that
|sinz] <1 forall z € R.

So, f is bounded by 1 on R.
Next, let f: I — R be a function. We define

sup f(z) :=sup{f(x) : x € I'}

zel

inf f(z) == inf{f(z) : z € I}

zel

For example sup z° =1 and inf 2? =0.
.Z’E[O,l) xe[o’l)

Theorem 5.2.2 (Extreme Value Theorem (EVT)) If I is a closed, bounded interval and

f I — R is continuous on I, then f is bounded on I. Moreover, if

M =sup f(x) and m= glcrelgf(x),

zel

then there exist point x,,,xy € I such that

flen) =M and  f(z,) =m.

Proof. Suppose that f is not bounded in I. Then there exist x,, € I such that
|f(zp)| >n forneN (5.4)

Since I is bounded, we know by the Bolzano-Weierstrass Theorem that {z,} has a convergent
subsequence, say x,, — a as k — 00. Since [ is closed, we also know by the Comparison Theorem
that a € I and f(a) € R. By (5.4), we obtain

fla) = lim |f(zy, )] > lim ng > lim k= oo
which contradics f(a) € R. Thus, f is bounded in I.

We will prove that M and m are finite real numbers. Suppose that
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f(z) < M =sup f(x) forallzel.

zel
Then the function
1
g(x) = —————— is continuous on [.
D= i@
So, ¢ is bounded on I. There i a C' > 0 such that |g(x)| = g(z) < C for all z € I. It follows that
Fla) < M~
T - —.
- C

We obtain
1
M:supf(x)SM—5<M.

zel

It is imposible. Thus, there is an z; € I such that f(x)) = M. A similar argument proves that

there is an x,, € I such that f(x,,) = m. O

Lemma 5.2.3 (Sign-Preserving Property) Let f : [ — R where I is open. If f is continuous

at a point o € I and f(xq) > 0, then there are positive numbers € and § such that

|v —xo| < implies  f(x) > €.

Proof. Assume that f is continuous at a point zg € I and f(xg) > 0.

Given ¢ = @. There is a 6 > 0 such that
’.CL’ — iL'o| <dandz €l anly ‘f(x) _ f(xo)’ < f(§0>
It follows that
f (o) 3f(wo)
2 < f(-T) < 5
Thus, f(z) > f(wo) —c -
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Theorem 5.2.4 (Intermediate Value Theorem (IVT)) Let f : [a,b] — R be continuous.
If yo lies between f(a) and f(b), then

there is an xy € (a,b) such that f(zo) = yo.

Proof. We may suppose that f(a) < yo < f(b). Consider
E={z€la,b]: f(x) <yo}

Since a € E and E C [a,b], E is a nonempty bounded subset of R. Thus, by the Completeness
Axiom, zg = sup F is a finite real number. Since yp is equals neither f(a) nor f(b), zo cannot
equal to a or b. Hence, zg € (a,b).

It remains to show that f(z¢) = yo. By Theorem 2.2.5, there is a sequence z,, € E such that
Ty, — sup E = x9as n — oo.

Since f is continuous and the definition of E, by the Comparison Theorem and Theorem 5.1.10

we obtain
f(xo) = lim f(zn) < yo.
Finally, we will prove that f(xy) = yo, suppose to the contrary that f(zg) < yo. Set

g(z) =yo— f(x) where z € E.

Then ¢ is continuous and g(xg) > 0. Hence, by Lemma 5.2.3, we can choose positive numbers &

and ¢ such that
|r —xo| < implies g(x) >¢e > 0.

For any z, it satisfies g < & < g + ¢ also satisfies yo — f(z) = g(z) > 0 or f(x) < yo which

contradics the fact that o = sup E. O
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Corollary 5.2.5 Let f : [a,b] — R be continuous.
1. If f(a) > 0 and f(b) < 0, then there is an ¢ € (a,b) such that f(c) = 0.

2. If f(a) <0 and f(b) > 0, then there is an ¢ € (a,b) such that f(c) = 0.

Proof. 1t is obviously by the IVT. O
Example 5.2.6 Show that there is a real number such that 2> = x + 1.

Solution. Let f(z) =2? —x — 1. Then f(1) = —1 <0 and f(2) =2 > 0.
Since f is continuous on (1,2), we obatin by Corollary 5.2.5 that there is an ¢ € (1,2) such that

A —c—1=f(c)=0.
Thus, there exists a real number ¢ such that ¢ = ¢ + 1.

Example 5.2.7 Prove that Inx = 3 — 2z has at least one real root and find the approrimate root

to be the midpont of an interval [a,b] of length 0.01 that contain a root.

Solution. Let f(z) =Inz + 2z — 3. Consider each values of f(x) by calculator

z | f(x) Interval | Length of Interval
2 | 1.6931

1| -1 1,2] 1

1.4 | 0.1365

1.3 | —0.1376 | [L1.3,1.4] 0.1

1.35 | 0.00010

1.34 | —0.02733 | [1.34, 1.35] 0.01

Since f is continuous on (1.34,1.35), we obatin by Corollary 5.2.5 that there is an ¢ € (1.34,1.35)
such that
Inc+2c—3= f(c) =0.

Thus, there exists a real number ¢ such that Inc =3 — 2c.
We may approximate the root by choosing midpoint ¢ = 1.345 of (1.34,1.35). It follows that
f(c) = —0.0136 which has error 0.01.
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Exercises 5.2

For these exercise, assume that sinx, cosx and e” are continuous on R and Inx is continuous on
R+

1. For each of the following, prove that there is at least one x € R that satisfies the given

equation.

1.1 234+ 2=3 1.6 e* = 2?

1.2 23 +2=2x 1.7 zlnz =1

1.3 284+ 2°-2=0 1.8 sinx = e”
14 2°+2+1=0 1.9 cosx = 22
15 2"=2—-x 1.10 e* =cosz + 1

2. Prove that the follwing equations have at least one real root and find the approximate root

to be the midpont of an interval [a, b] of length ¢ that contain a root.

21 22+ =1 and ¢ = 0.001 24 cosx ==z and ¢ = 0.01
2.2 2% = g3 and ¢ = 0.01 2.5 sinex+z=1 and ¢ = 0.001
23 Inx+x =2 and ¢ = 0.001 2.6 xe® =cosx and ¢ = 0.01

3. Suppose that f is a real-value function of a real variable. If f is continuous at a with

a) < M for some M € R, prove that there is an open interval I containing a such that
b b g
f(z) < M for all z € I.

4. If f: R — R is continuous and

lim f(x) = lim f(z)= oo,

T—00 T—r—00

prove that f has a minimum on R; i.e., there is an z,, € R such that

f(zy) = inf f(x) < oo.

zeR
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5.3 Uniform continuity

Definition 5.3.1 Let E be a nonempty subset of R and f : E — R. Then f is said to be

uniformly continuous on E if and only if for every € > 0 there is a § > 0 such that
|t —al <6 and z,ac E  imply |f(z)— f(a)| <e.
Example 5.3.2 Prove that f(x) = x is uniformly continuous on (0,1).
Solution. Let € > 0. Choose 6§ = €. Let z,a € (0,1) such that |x — a] < 6. We obtain
[f(z) = fla)] = |z —a| < =
Thus, f is uniformly continuous on (0, 1).
Example 5.3.3 Prove that f(z) = x? is uniformly continuous on (0,1).

Solution. Let € > 0. Choose § = g Let z,a € (0,1) such that |z —a| < §.

Then |z + a| < |z| + |a] <1+ 1= 2. We obtain
|f(z) — f(a)| = |2* — a®| = |z +al|lz —a|] <20 =¢.

Thus, f is uniformly continuous on (0, 1).

Theorem 5.3.4 (Uniform continuity of linear function) A Linear function is uniformly

continuous on R.

Proof. Let m,c be contants and f(x) = ma + ¢ where x € R.

Let ¢ > 0. Then |m|+ 1 > 0. Choose § =

m|

Im| +1

| |—|—1>O' Let € R such that 0 < |z —a| < 9.
m

We obtain by < 1 that

[/ (x) = f(a)] = [(mz + ¢) — (ma + ¢)| = [m(z — a)| = [m||z - d

<|m|5:|m\-|’%<1-5:€.
m

Thus, f is uniformly continuous on R. O
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Example 5.3.5 Prove that f(x) = % is not uniformly continuous on R.

Solution. Suppose that f is uniformly continuous on R.

Given € = 1. There is a § > 0 such that

|t —a|l| <dand z,a € R imply |f(x)— f(a)| < 1. (5.5)
1 1 9 1 ) o
Choose x = 5 and a = sta Then |z —a| = ’5 — (5 + 5)’ =35 < d which satisfies (5.5).

We have |f(z) — f(a)] <1 but

) - J@l = | =] = e — e+l = |3 (3+3)| =145 > 1

2

It is contradiction. Hence, f(x) = x* is not uniformly continuous on R.

Theorem 5.3.6 Suppose that I is a closed, bounded interval. If f : I — R is continuous on I,

then f is uniformly continuous on I.

Proof. Suppose to the contrary that f is continuous but not uniformly continuos on I.

Then there is an ¢y > 0 such that

forall § >0, |z —a| <0 and z,a € I and |f(z) — f(a)] > &o.

1 1
Set 6 = —. Then z,,y, € I such that |z, — y,| < — and
n n

|f(2n) = f(yn)| > €0, forn eN. (5.6)

Then sequence {z,} and {y,} are bounded. By The Bolzano-Weierstrass Theorem, {z,} has a
subsequence, say @, , that converges, as k — 00, to some x € I. Similarly, {y,} has a subsequence,
say Yn,, that converges, as j — oo, to some y € I. Since x,,, — r as j — oo and f is continuous,

it follows by the Comparison Theorem from (5.6) that
lim | f(zn,) = f(yn;) = €0
j—o00
[f(x) = f(y)] = €0 >0

1

So, f(x) # f(y). But |z, — y,| < — for all n € R, so Theorem 1.3.10 implies that x = y. Thus,
n

f(z) = f(y), a contradiction. O
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Theorem 5.3.7 Suppose that E C R and f : E — R is uniformly continuous.

Cauchy, then f(x,) is Cauchy.

If x,, € F is

Proof. Assume that f: E — R is uniformly continuous and z,, is a Cauchy in E.

Let € > 0. There is a é > 0 such that
|l —al <dand z,a € E imply |f(z) — f(a)| <e.

There is an N such that
n,m > N implies |z, — &,] < 9.

For each n,m > N such that |z, — x,,| < J it satisfies (5.7) that we have

|f (zn) = flam)| <&

Therefore, f(z,) is Cauchy.

(5.7)
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Exercises 5.3

1. Use Definition to prove that each of the following functions is uniformly continuous on (0, 1).

11 f(z) = 2 12 f(z) =22 — 1
flz) = flx) =2 - 13 (1) = —

2. Prove that each of the following functions is uniformly continuous on (0, 1).

2.1 f(z) = (x+1)? 2.4 f(z) is any polynomial
3 _ 1 :

22 f(z) = 3;_ : 2.5 f(z) = 512;5

2.3 f(z) = xsin(1) 2.6 f(xr)=2Inzx

3. Prove that f(z) = =1 is uniformly continuous on R.

2 +
4. Find all real o such that z“ sin(%) is uniformly continuous on the open interval (0, 1).
5. Suppose that f : [0,00) — R is continuous and there is an L € R such that f(z) — L as

x — oco. Prove that f is uniformly continuous on [0, 00).

6. Let I be a bounded interval. Prove that if f : I — R is is uniformly continuous on I, then

f is bounded on I.
7. Prove that (6) may be false if I is unbounded or if f is merely continuous.

8. Suppose that a € R, E is nonempty subset of R, and f,g : £ — R are uniformly continuous
on F.
8.1 Prove that f 4+ ¢ and o f are uniformly continuous on F.
8.2 Suppose that f, g are bounded on E. Prove that fg is uniformly continuous on F.
8.3 Show that there exist functions f, g uniformly continuous on R such that fg is not

uniformly continuous on R.

9. Prove that a polynomial of degree n is uniformly continuous on R if and only if n = 0 or

n = 1.



Chapter 6

Differentiability on R

6.1 The Derivative

Definition 6.1.1 A real function f is siad to be differentiable at a point a € R if and only if f

1s defined on some open interval I containing a and

oy g Jath) = fla)
f'(a) :== lim -

h—0

exists. In this case f'(a) is called the derivative of f at a.

You may recall that the graph of y = f(x) has a tangent line at the point (a, f(a)) if and
only if f has a derivative at a, in which case the slope of that tangent line is f’(a). Suppose that
f is differentiable at a. A secant line of the graph y = f(z) is a line passing through at least
two points on the graph, an a chord is a line segment that runs from one point on the graph to

another.

Y
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Let © = a+ h and observe that the slope of the chord (chord function : F(x)) passing through
the points (z, f(x)) and (a, f(a)) is given by

Now, since © = a + h, f'(a) becomes

o) — i F0) = F0)

T—a Tr— a

Example 6.1.2 Let f(z) = 2 where x € R. Find f'(1)

Solution. We consider

limM i xz_lim(x_l)(x+1)zlim(:€+1):2.

z—1 x—1 z—=1 x — 1 z—1 r—1 z—1

Thus, f is differentiable at 1 and f'(1) = 2.

Example 6.1.3 Show that the function

is differentiable at the origin.

Solution. Consider

fla) = 1(0) . wtcos(l)

1
lim ————~* = lim ——%~ = lim x cos (—) =0.
z—0 x—0 z—0 T z—0 T
By Example 4.1.18, f/(0) = 0. Thus, f is differentiable at the origin.

Example 6.1.4 Show that the function

is not differentiable at the origin.

Solution. We consider

lim L(];(O) = lim xcos(%) = lim cos <1) .

z—0 T — z—0 x z—0 x

By Example 4.1.12, the limit does not exist. Thus, f is not differentiable at the origin.
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Theorem 6.1.5 Let f : R — R. Then f is differentiable at a if and only if there is a function T
of the form T(x) := mx such that

Lo |Fa+ b = fl@) T

h—0 h =0

Proof. Assume that f is differentiable at a. Then f'(a) exists. Choose m := f'(a).

We obtain
L flat k)= fla) = T() . flath) ~ f(@) ~mb
h—0 h h—0 h
_ g fleth) = fla)
h—0 h
= f'(a) = f'(a) =0
Conversely, assume that ’lllir(l) flath) _}{W) — T = (. Then
flat ) fl) L flath) =~ fa) —mh
h—0 h h—0 h
o flath) = f) =Tk
h—0 h
So, f'(a) = m. Thus, f is differentiable at a. ]

Theorem 6.1.6 If f is differentiable at a, then f is continuous at a.

Proof. Assume that f is differentiable at a. Then f'(a) exists. For z # a, we have

fo) — fa) = DI ()
Taking limit x — a, we obtain
f(z) = f(a)

lim f(z) — f(a) = lim (z—a)=f"(a)-0=0

r—a T—ra Tr—a

So, f(x) = f(a) as  — a. Hence, f is continuous at a. O
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Example 6.1.7 Show that f(x) = |x| is continuous at 0 but not differentiable there.

Solution. We see that

lim Jl@) = J(0) = lim J]

z—0 €xr — 0 x—0
does not exist by Example 4.2.3. Thus, f is not differentiable at 0 but it easy to prove that f

continuous at 0.

DIFFERENTIABLE ON INTERVAL.

Definition 6.1.8 Let I be an interval and f : I — R be a function. f is said to be differentiable
on I if and only if f is differentiable at a for every a € I

Example 6.1.9 Show that the function f(x) = x* is differentiable on R.

Solution. Let a € R. Then
f@)—fla) . 2*—a® . (v—a)(z+a)

lim = lim —— = lim = lim(x + a) = 2a.
r—a r—a r—a T — Q r—a r—a T—a

Thus, f is is differentiable at a and f’'(a) = 2a, i.e., f'(z) = 2z for all z € R.

Theorem 6.1.10 Let n € N. If f(x) = 2", then f is differentiable on R and

f'(x) = na" L.

Proof. Use Binomial formula, we have

, +h)— f(x (x + h)" — 2"
! — 1 (ZE — 1 Ny =
() hli% h h—0 h
n n
"+ i 1h+ xn—2h2_|____+ mhn—1+hn — "
2 n—1
=1i
a0 h
n 2 2 1
h " ch+---+ xh™ =+ h"
1 n—1
=1i
a0 h
n n n n
— lllln(l) xn—l + ZL‘n_Qh R QThn_Q + hn—l — xn—l _ n:v"_l.
- 1 n—1



6.1. THE DERIVATIVE 125

Theorem 6.1.11 FEvery constant function is differentiable on R and its value equals to zero.

Proof. Let f(x) = ¢ where ¢ is a constant. Then

flath)—flx) . c—c

! . . . . . o
fla) = fim h = =~ =}mo0=0
Thus, f is differentiable on R and f'(z) = 0. O

Example 6.1.12 Show that f(z) = \/x is differentiable on (0,00) and f'(x).

Solution. Let a > 0

@) @) Vi VE Vit

T—a T —a T—=a T — @ \/E—l—\/a
~ - a(a T va)
= lim L !

x—>a\/§—|—\/a:2\/a

1
Thus f is is differentiable on (0, 00) and f'(z) = NG for all x > 0.
T

Example 6.1.13 Show that f(x) = |x| is differentiable on [0,1] and [—1,0] but not on [—1,1].

x ifx>0
Solution. Consider f(z) = |z| = . Then f is differentiable on (—o0,0) U (0, c0)
—x ifx<0
and
) 1 ifz>0
fi(x) = :
-1 itz <0

Since f is not differentiable at 0, f is not differentiable on [—1,1]. We see that

lim M =1 and lim m = —1.
r—0t T z—0— T

We conclude that f is not differentiable on [—1,0] and [0, 1].



126

CHAPTER 6. DIFFERENTIABILITY ON R

Exercises 6.1

. For each of the following real functions, use definition directly to prove that f’(a) exists.

1.1 f(z)=2 a€R 1.3 f(z)=a2’4+2+2, a€R
1
1.2 f(x):i, a#0 1.4 f(x):ﬁ, a>0

. Prove that f(z) = z|z| is differentiable on R.

. Let I be an open interval that contains 0 and f : I — R. If there exists an a > 1 such that

|f(x)| < |z|* for all x € I,

prove that f is differentiable at 0. What happens when o =1 7

. Suppose that f : (0,00) — R satisfies f(z)—f(y) = f (g) for all z,y € (0,00) and f(1) = 0.

4.1 Prove that f is continuous on (0, 00) if and only if f is continuous at 1.
4.2 Prove that f is differentiable on (0, 00) if and only if f is differentiable at 1.

/
1
4.3 Prove that if f is differentiable at 1, then f'(z) = O for all z € (0, 00).
T

lz|*sin(2) ifz#£0
Suppose that f,(z) = . Show that f,(x) is continuous at x = 0 when
0 ite=20

a > 0 and differentiable at x = 0 when o > 1. Graph these functions for « = 1 and a = 2

and give a geometric interpretation of your results.

. Prove that if f(z) = 2* where @ = + for somw n € N, then y = f(z) is differentiable on

f'(z) = az®! for every x € (0,00).

sinx

Given lim = 1. Show that
z—=0 I
7.1 (sinz) = cosx 7.2 (cosx) = —sinx

f is a constant function on [ if and only if f'(x) = 0 for every = € I.
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6.2 Differentiability theorem

Theorem 6.2.1 (Additive Rule) Let f and g be real functions. If f and g are differentiable at
a, then f + g is differentiable at a. In fact,

(f +9)(a) = f'(a) + ¢'(a).

Proof. Assume that f and g are differentiable at a. Then

(f + 9)(a) = lim LTI+ — (f +9)(0)

_ ;:H; [f(a+h) — f(a)] Z lg(a+h) —g(a)]
~ lim fla+ h})l — fla) | lim gla+h) —g(a)
= f'(a) + g'(a)
Thus, (f +9)'(a) = f'(a) + ¢'(a). O

Theorem 6.2.2 (Scalar Multiplicative Rule) Let f be a real function and o € R. If f is
differentiable at a, then of is differentiable at a. In fact,

(af)(a) = af'(a).

Proof. Assume that f is differentiable at a. Then

(af(a)) = ,1113}) af(a—l—h})b—af(a)

fla+h) = f(a)
h

=« - lim
h—0

= af'(a).

Thus, (af)(a) = af'(a). O
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Theorem 6.2.3 (Product Rule) Let f and g be real functions. If f and g are differentiable at
a, then fg is differentiable at a. In fact,

(f9)'(a) = g(a)f'(a) + f(a)g'(a).

Proof. Assume that f and g are differentiable at a. Then
(fg)la+h) = (fg)(a)

(f9)(a) = lim

h—0 h
lm fla+h)gla+h)— fla)g(a) + f(a+ h)g(a) — f(a+ h)g(a)
h—0 h
— lim fla+h)gla+h)—gla)] +g(a)[f(a+h) — f(a)]
h—0 h
_ }lli_>néf(a+h) . g(a+h})b—9(a) +}1}_{%9(“) f(a+h}1— f(a)
= f(a)g'(a) + g(a)f'(a).
Thus, (fg)'(a) = g(a)f'(a) + f(a)g'(a). O

Theorem 6.2.4 (Quotient Rule) Let f and g be real functions. If f and g are differentiable at
a, then / is differentiable at a when g(a) # 0. In fact,
g

<i>’ (a) = g(a)f'(a) — fla)g'(a)

g l9(a)]?

Proof. Assume that f and g are differentiable at a when g(a) # 0. Then

/ i _ I flath) _ f(a)
I (@) = 1 29 75O ) e ~ o)
qg h—0 h h—0 h
flath) fla) (f(a) f(a)

g9

— lipp et — glath) at+h)  g(a)
h—0 h
s @t ) = J(@)+ flo) [em — )
o h—0 h
__9(a) _ _ glat+h)—g(a)
s 1)~ ) - S B2t
h—0 h

. g(a) |:f(a+h]1*f(a)i| _ f(a) |:g(a+h});g(a)] B g(a)f’(a) . f(a)g’(a)
& POYCE PO
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Example 6.2.5 Let f and g be differentiable at 1 with f(1) =1,9(1) =2 and f'(1) =3,¢'(1) = 4.

Fuvaluate the following derivatives.

L(f+g9)/)=f1)+g(1)=3+4=T.
2. (2f)(1) =2f'(1) =23 =6.

3. (f9)/(1) = F(1)g'(1) + f/(1)g(1) = 1-4+3-2 = 10.

N 9= g1 2-3-1-4 1
B (g) )= [g(1)]2 22 2

Theorem 6.2.6 (Chain Rule) Let f and g be real functions. If f is differentiable at a and g is
differentiable at f(a), then go f is differentiable at a with

(go f)(a) =4 (f(a))f (a).

Proof. Assume that f is differentiable at a and ¢ is differentiable at f(a).
Then f’(a) and ¢'(f(a)) exist. We consider

f) = 12T s g@), ata
o) = L=V o pa)) ko), # fla) (6.1)
y — f(a)
Since f is continuous at a, substitue y = f(z) in (6.1) to write
o)~ gl @) )
(#on = LLZITON ()~ fia) + ()
e e MR 0)
g@) — gl @) _ gf(@) — gf(@) fl) - fla)
r—d fo—f@)  e—a
L ol@) (@) _ gl () — g(fla)) | f(x) ~ o)
T r—a 5 ) E—
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Example 6.2.7 Let f and g be differentiable on R with f(0) = 1,9(0) = —1 and f'(0) = 2,
g'(0) = =2 ,f'(=1) =3, ¢'(1) = 4. Ewvaluate each of the following derivatives.

L (fo9)'(0) = f'(9(0)g'(0) = f'(=1) - ¢'(0) = 3(=2) = —6.
2. (90 ) (0) = g'(f(0)f(0) = ¢'(1) - F'(0) = 4(2) =8

T

Example 6.2.8 Let f(z) = Va? + 1. Use the Chain Rule to show that f'(x) = =T
T

Solution. Let g(z) = \/r and h(z) = 2 + 1. We have
and A/(z) = 2.

By Chain Rule,
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Exercises 6.2

. For each of the following functions, find all = for which f’(x) exists and find a formula for f’.

11 fa) = :U?’—Qf;—l—&% 1.3 f(z) = z|z|
1
1.2 f(x) = PR 1.4 f(z) = |23+ 22° —x — 2|

. Let f and g be differentiable at 2 and 3 with f'(2) = a, f'(3) = b, ¢'(2) = cand ¢'(3) = d, If

f(2) =1, f(3) =2 ,9(2) = 3 and ¢(3) = 4. Evaluate each of the following derivatives.

9

2.1 (f9)'(2) 22 (1) 3) 2.3 (g0 f)(3) 24 (fog)(2)

. If f, g and h is differentiable at a, prove that fgh is differentiable at a and

(fgh)'(a) = f'(a)g(a)h(a) + f(a)g'(a)h(a) + f(a)g(a)h'(a).

Let f(z) = (x —1)(z — 2)(x — 3) - - - (x — 2565). Find f'(2565)

. Prove that if f(z) = 2= for some n,m € N, then y = f(x) is differentiable

and satisfies ny" 1y’ = maz™~! for every z € (0, 00).

(Power Rule) Prove that f(x) = 27 for some g € Q, then f is differentiable

and f'(z) = qz?~! for every z € (0, 0).
(Reciprocal Rule) Suppose that f is differentiable at a and f(a) # 0.

7.1 Show that for h sufficiently small, f(a + h) # 0.

is differentiable at £ = a and

1
7.2 Use Definition 6.1.1 directly, prove that @)
x

Suppose hat n € N and f, g are real functions of a real variable whose nth derivatives f™, g(
exist at a point a. Prove Leibniz’s generalization of the Product Rule:

n

(f9)™ (@)=

k=0 \ K

") F9(a)gm P (a).
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6.3 Mean Value Theorem

Lemma 6.3.1 (Rolle’s Theorem) Suppose that a,b € R with a # b. If f is continuous on [a,b],
differentiable on (a,b), and if f(a) = f(b), then f'(c) =0 for some c € (a,b).

Proof. Let a # b such that f is continuous on [a, b] and differentiable on (a,b).

Assume that f(a) = f(b). By EVT, f has a finite maximum M and a finite minimum m on |a, b].
Case M = m. Then f is a constant function. Thus, f'(z) = 0 for all = € (a,b).

Case M # m. Since f(a) = f(b), there is a ¢ € (a,b) such that f(c) = M. We have

fle+h) < f(e) for all h that satisfy ¢+ h € (a,b).

In the case h > 0 this implies that

It follows that f'(c) = 0. O
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Y

Tangent
Chord
y=[f(z)

Theorem 6.3.2 (Mean Value Theorem (MVT)) Suppose that a,b € R with a # b.

If f is continuous on [a,b] and differentiable on (a,b), then there is an ¢ € (a,b) such that

f(b) = fa) = f'(e)(b - a).

Proof. Let a # b such that f is continuous on [a, b] and differentiable on (a,b). We set

W) = f(x)(b—a) —z[f(b) = f(a)] forz € [a,b].

Then h is continuous on [a, b] and differentiable (a, b),

W(z) = f'(z)(b—a) = [f(b) = f(a)].

We obtain

h(a) = f(a)(b—a) — a[f(b) — f(a)] = bf(a) — af(b)
= bf(a) —af(b) +bf(b) = bf(b) = f(b)(b—a) —bf(b) — f(a)] = h(b).

By the Rolle’s Theorem, there is a ¢ € (a,b) such that h'(c) =0, i.e.,
f(©)(b—a) = [f(b) = fa)] = 0.

Hence, f(b) — f(a) = f'(c)(b— a). O
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Example 6.3.3 Prove that
sinx <x  forall z > 0.

Solution. Let a > 0 and define f(z) = sinz where z € [0,a] . Then f is continuous on [0, a] and
f(z) is differentiable and f'(x) = cosx for every x € (0, a).
By the MVT, there is a ¢ € (0,a) such that

fla) = £(0) = f'(¢)(a —0)
sina — Ocosc-a

sina = acosc

From cosc <1 and a > 0, acosc < a, it implies that sina < a. Therefore,
sine <z forall x> 0.

Example 6.3.4 Prove that
l4+z<e* forallx>0.

Solution. Let a > 0 and define f(z) = e —x — 1 where z € [0,a] . Then f is continuous on [0, al
and f(z) is differentiable and f'(x) = e® — 1 for every = € (0, a).
By the MVT, there is a ¢ € (0,a) such that

fa) = f(0) = f'(c)(a—0)
(e*—a—1)—0=(e—1)a
e —a—1=(e—1)a

Since ¢ > 0, ¢ > 1 or e =1 > 0. From a > 0, it implies that (e — 1)a > 0 which leads to

e* —a — 1 > 0 Therefore,

14+2z<e* forall z>0.
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Example 6.3.5 (Bernoulli’s Inequality) Let 0 < o <1 and § > —1. Prove that
(1+9)* <1+ ad.

Proof. Let 0 < o < 1and 6 > —1. Define f(z) = x® where z € R. Then f is continuous on R and

f(z) is differentiable and
f(z) = az* ! for every z € R.

Case —1 < § < 0. By the MVT, there is a ¢ € (1 + 9, 1) such that

f) = f1+6)= (9t — (1+9)]
1—(14+0)*=—dac*!

(14+6)*—1=6ac*?

Since 0 <a<1, -1<a—-1<0. From0<1+6 < c< 1, it implies that ¢*~! > ¢® = 1. Since

d <0and a >0, o < 0 which leads to dac®* ! < ad. Thus,
(1+0)* <1+ ad.

Case 0 > 0. By the MVT, there is a ¢ € (1,1 + 0) such that

fA+06) = f(1) = f((1 +6) = 1]
(1+0)*—1=6ac*!

Since 0 < « <1, =1 < a—1<0. From ¢ > 1, it implies that ¢! < ¢ = 1. Since § > 0 and

a > 0, da > 0 which leads to dac®™! < ad. Thus,
(146)* < 1+ asd.

We conclude that (14+0)* <14 «ad for 0 <a<1andd> —1. O
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Theorem 6.3.6 (Generalized Mean Value Theorem) Suppose that a,b € R with a # b.

If f and g are continuous on |a,b] and differentiable on (a,b), then there is an ¢ € (a,b) such that

We obtain

h(a) = f(a)lg(b) — g(a)] — g(a)[f(b) — f(a)]
= [(a)g(b) — fla)g(a) — g(a) f(b) + g(a) f(a)
= [(a)g(b) — g(a) f (D)
= [(a)g(b) — g(a)f(b) + g(b) f(b) — g(b) f(b)
= [f(0)g(b) = f(b)g(a)] + [g(b) f(a) — g(b) f(D)]
= [(0)[g(b) — g(a)] = g(O)[f(b) — f(a)]
= h(b).
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Theorem 6.3.7 (L’Hoéspital’s Rule) Let a be an extended real number and I be an open interval

that either contains a or has a as an endpoint. Suppose that f and g are differentiable on I\{a},

and g(z) # 0 # ¢'(x) for all x € I\{a}. Suppose further that

A:=lim f(z) = lim g(x)

r—ra T—ra

is either 0 or oco. If

exists as an extended real number, then

lim M = lim f’(x)
z—a g $) r—a g’(x)

Proof. We will use the SCL to prove that

im m =
g 7

Let z; € I\{a} such that z;, — a as k — co. Note that if ¢’ is never zero on I\{a}. By the MVT,

for x,y < a or z,y > a there is a ¢ € (z,y) such that

9(@) —g(y) =g (c)(y—x) #0 forallz#y.

We suppose for simplicity that B € R. (For case B = +00, see Exercise.)
Case 1. A =0and a € R. Extend f and g to I U {a} by f(a) = 0 = g(a). By hypothesis,
f and g are continuous on I U {a} and differentiable on I'\{a}. By the Generalized Mean Value

Theorem, there is a ¢, between x;, and a such that

g'(cr)lf (z) = fla)] = f'(ci)lg(xx) — g(a)]
g'(er)[f () — 0] = f'(ci)lg(x) — 0]

From z; < ¢ < a or a < ¢ < xy, it implies ¢, — a as k — oo by the Squeeze Theorem.

We conclude that

i L)y £l _ F0)
k—oo g(zg)  k—oo ¢'(ck) g'(a)  a—a g'(z)
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Case 2. A = 400 and a € R. We suppose by symmetry that A = co. For each k,n € N, apply

the Generalized Mean Value Theorem, there is a ¢, between z;, and x,, such that

o) = fon) = LA g(a,) = o),
We obtain
flaa)  fla) _ flon) = floe) 1 flewn) o .
G @) T g g glon I Tl
_ fewn)  g(an)  f(crn)
g (Ck n) g(xn> g (Ck n)
It leads to
flan) _ fak) n fllenn) — gl@r)  f(crn) (6.2)

Since A = o0, it is clear that — 0 as n — oo, and since ¢, lies between xj and z,, it also

g(n) .
clear that ¢, — a as k,n — oo by the Squeeze Theorem. Thus, the limit of f/éck’ng exists as
g\ Ckn
n — oo and fixed k£ € N, we obtain
lim /() =0 and lim 9() = 0.
n—oo g(x,) n—oo g(1,)
Hence, (6.2) becomes to
!/ /
i 60) _ [0 | £ ) _ 9l (e
weo g(zn)  noe | g(@a) g lonn)  9(wn) 9(cun)
/
=0+ lim /<C kn) —0- lim fekn)
n—o0 g'(C.n) n—co ¢ (c,m)
/ ! /
= lim S Cn) = fa) = lim fz) =B.

noo g'(Crn)  g'(a) @ g'(x)
Case 3. a = £00. We suppose by symmetry that a = co. Choose ¢ > 0 such that (¢,00) C 1.

For each y € (0, 1), set

By the Chain Rule,

dy) PO (-5 )
P ) gy
Thus, for + = 1 € (c,00), we have oY) = f (x) Since x — oo if and only if y = - — 0T, it
v ¢'ly) g2

follows that ¢ and ¢ satisfy the hypothesis of Case 1 or 2 for a = 0 and I = (0, E)' In particular,
!/ /
P C ) I i) I [ C))

v=oo g (z) gm0t @(y) o0t @(y)  aoeo g(z)
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1
Given (Inx) = — for x > 0 and (e*)’ = ¢* for all z € R.

x
Example 6.3.8 Use L’Hospital’s Rule to prove that lir% T = 1.
z—0 e —
Solution. We see that
limzr =0=lime* — 1.
z—0 z—0
By L’Hospital’s Rule, it follows that
/
lim :hmizlimizl.
z—=0e® —1 2—0 (em — 1)’ z—0 %
Example 6.3.9 Use L’Hospital’s Rule to find lim+ xlnx.
z—0
Solution. We see that
1
lim Inzx =00 = lim —.
z—0t z—0t T
By L’Héspital’s Rule, it follows that
1 Inx)’
lim xlnz = lim 2T lim (In z)
z—0t z—0+ ¢! z—0t (22'71),
-1
= lim = lim (—z) =0.
z—0t —I~ z—0t

Example 6.3.10 Use L’Hospital’s Rule to find L = lim (Inx)'™*.

r—1—

Solution. We see that

1
lim In(Inz) = —co = lim
z—1- a—1-1—x

Since Inz is continuous on (0, c0), by L’Héspital’s Rule we have

InL =1In lim (Inz)"~"
rz—1— z—1— z—1—
z—1— —(171)2

Apply again L’Héspital’s Rule, we obtain

1—2)2) —o(1 —
InL = lim M: lim M:
es1-  [rlnz) e—»1- Inz+1
L=¢e"=1.

Hence, L = lim (Inz)'™* = 1.
z—1—

= lim In(lnz)"™* = lim (1 — 2)In(lnz) =

lim
rz—1—

(In(Inx))’

1
(1=

139
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Exercises 6.3

1. Use the Mean Value Theorem to prove that each of the following inequalities.

11 V2r+1<142 forallz>0 16 271 < for all z > 1
- =
12 lhx<z—-1 for all x > 1 1.7 Vx> for all z € [0, 1]
1.3 7(z—1) <e” for all x > 2 1.8 Vx <z forall z > 1
1.4 cosx —1<=x for all z > 0 1.9 sin®x < 2|z| forall z € R
2?2+ 1
15 Inz+1< for all > 1 1.10 Inz </ for all z > 1

2. (Bernoulli’s Inequality) Let & > 1 and § > —1. Prove that

(146)* <1+ aod.

3. Use L'Hospital’s Rule to evaluate the following limits.

cosx — e Inz 1
3.2 lim ——— Dl 81 e
a0+ In(1 + 22) 35 ol sin(mx) 38 glclg(l) (1+2)
3.3 lim ( - )?2 3.6 lim z <arctanx - E) 3.9 lim x(e% —-1)
x—0 \SInx T—>00 2 r—00
4. Show that the derivative of
e if x #0
f(x) =
0 if =0

exists and continuous on R with f/(0) = 0.
5. Suppose that f is differentiable on R.

5.1 If f'(z) =0 for all z € R, prove that f(xz) = f(0) for all z € R
5.2 If f(0) =1 and |f'(z)] <1 for all x € R, prove that |f(z)| < |z|+ 1 forall z € R

5.3 If /() > 0 for all x € R, prove that a < b imply that f(a) < f(b)
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10.

11.

. Let f be differentiable on a nonempty, open interval (a,b) with f’ bounded on (a,b). Prove

that f is uniformly continuous on (a, b).

Let f be differentiable on (a,b), continuous on [a,b], with f(a) = f(b) = 0. Prove that if
f'(¢) > 0 for some ¢ € (a,b), then there exist x1,x2 € (a,b) such that f'(x1) > 0> f'(x2).

. Let f be twice differentiable on (a, b) and let there be points 21 < xs < z3 in (a, b) such that

f(z1) > f(xe) and f(x3) > f(x2). Prove that there is a point ¢ € (a, b) such that f”(c) > 0.

. Let f be differentiable on (0,00). If L = lim f’(z) and lim f(n) both exist and are finite,

T—00 n—o0

prove that L = 0.

Prove L’Hospital’s Rule for the case B = +o0 by first proving that

g9(x) f(z)

——~ — 0 when —/—= — 400, as r — a.

() g(x)

1 n
Prove that the sequence (1 + —) is increasing, as n — 0o, and its limit e satisfies 2 < e < 3
n

and Ine = 1.
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6.4 Monotone function

Definition 6.4.1 Let E be a nonempty subset of R and f: E — R.
1. f is said to be increasing on E if and only if
x1, Ty € E and x1 < xo imply f(x1) < f(x2).
f is said to be strictly increasing on E if and only if
x1,To € E and x1 < xo imply f(x1) < f(x2).
2. f is said to be decreasing on E if and only if
x1, Ty € E and x1 < xo imply f(x1) > f(x2).
f s said to be strictly decreasing on E if and only if
x1,%9 € E and xy < xy imply f(xq1) > f(x2).

3. f is said to be monotone on E if and only if f is either decreasing or increasing on E.
f is said to be strictly monotone on E if and only if f is either strictly decreasing or

strictly increasing on FE.

Example 6.4.2 Show that f(x) = x* is strictly monotone on [0, 1] and on [—1,0] but not monotone

on [—1,1].

Solution.

If0 <z <y<1,then 2* <32 ie., f(x) < f(y). Thus, f is strictly increasing on [0, 1].

If -1 <z <y<O0,then z* > y? ie., f(z) > f(y). Thus, f is strictly decreasing on [—1,0].
We conclude that f is strictly monotone on [0, 1] and on [—1,0].

Since f is increasing and decreasing on [—1, 1], f is not monotone on [—1,1].
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Theorem 6.4.3 Let f: I — R and (a,b) C I. Then
1. f is increasing on (a,b) if f'(x) >0 for all x € (a,b)
2. f is decreasing on (a,b) if f'(x) <0 for all z € (a,b)

3. If f'(x) =0 for all z € (a,b), then f is constant on [a,b].

Proof. Let x,y € (a,b) such that z < y. Then y — x > 0.
By the MVT, there is a ¢ € (x,y) such that

If f'(x) >0 for all z € (a,b), f'(c) > 0. It follows that f(y) > f(x). So, f is increasing on (a,b).
If f'(x) <0 for all x € (a,b), f'(c) <0. It follows that f(y) < f(x). So, f is decreasing on (a,b).
Let z € [a,b]. By the MVT, there is a ¢ € (a,z) such that

f(@) = fla) = f(c)(x —a) =0.
So, f(z) = f(a) for all z € [a,b]. We conclude that f is constant on [a, b]. O
Example 6.4.4 Find each intervals of f(x) = x* — 4x + 3 that increasing and decreasing.
Solution. We have f’(z) = 2z — 4. Consider
20 —4 = f'(x) >0 implies x> 2.
Thus, f is increasing on (2, 00).
2 —4 = f'(x) <0 implies =z <2.

Thus, f is increasing on (—o0,2).
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Theorem 6.4.5 If f is 1-1 and continuous on an interval I, then f is strictly monotone on I and

[~V is continuous and strictly monotone on f(I):={f(x):x € I}.

Proof. Assume that f is 1-1 and continuous on an interval I. Let a,b € I such that
a < b implies either f(a) < f(b) or f(a) > f(b).

Suppose that f is not strictly monotone on /. Then there exist points a, b, c € I such that a < ¢ < b
but f(c) does not lie between f(a) and f(b). It follows that either f(a) lie between f(b) and f(c)
or f(b) lie between f(a) and f(c). Hence by the IVT, there is an x; € (a,b) such that

fla) = fla) or  f(z1) = f(b).

Since f is 1-1, we conclude that either x1 = a or x5 = b, a contradiction. Therefore, f is strictly
monotone on [.

We may suppose that f is strictly increasing on I. Since f is 1-1 on I, apply Theorem 1.4.3 to
verify that f~! takes f(I) onto I. We will show that f~! is strictly increasing on f(I). Suppose
to the contrary that there exist y;,ys € f(I) such that

y1<wya  but  fHy) > fHye).

Then z; = f~Y(y1) and zy = f~(yo) satisfy x; > 75 and z1, 75 € I. Since f is strictly increasing
on I, it follows that y; = f(x1) > f(z2) = ye, a contracdiction.
Thus, f~! is strictly increasing on f(I).

Since [ is a interval, it easy to prove that f(I) is also inverval. Fix yo € f(I) and € > 0.
Since f~! is strictly increasing on f(I), if yo is not right endpoint of f(I), then zy = f~(yo)
is not right endpoint of I. There is an €y > 0 so small that g < ¢ and zg + 9 € I. Choose

d = f(zo+e9) — f(xo) and suppose that 0 <y — yo < 6. The choice of ¢ implies that

Yo <y <yo+9=f(xo)+=f(zo+eo).
Set y = f~Y(x). Then f(xg) < f(z) < f(xo + &p). Since f is strictly increasing on I, it implies
To < x < xg+ Ep, ie., 0 <x—1x9 <. We conclude that
0< fHx)— fy) <e.

So, fHyd) = f*(yo). A similar argument show that if y, is not a left endpoint of f(I),

)
I Yyo) = f*(yo). Hence, f~! is continuous on f(I). O
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Theorem 6.4.6 (Inverse Function Theorem (IFT)) Let f be 1-1 and continuous on an open

interval 1. If a € f(I) and if f'(f~'(a)) exists and is nonzero, then f~' is differentiable at a and

1

(f)(a) = @)

Proof. Let f be 1-1 and continuous on an open interval I. By Theorem 6.4.5, f is strictly monotone,
say strictly increasing on I and f~! exists, is continuous and strictly increasing on f([).
Assume that a € f(I) and f'(f~'(a)) exists and is nonzero. Set xo = f~'(a) € I and I is open,
we can choose ¢,d € R such that 2y € (¢,d) C I. Then a = f(zo) € (f(c), f(d)) C f(I).
We can choose h # 0 so small that a + h € f(I). i.e., f~'(a+ h) exists. Set z = f~'(a + h) and
observe that f(z) — f(x9) = a+ h —a = h. Since f~! is continuous, z — z, if and only if h — 0.

Therefore,

(/1Y(a) = lim fHa+h)— fYa) T et 1 1

il h woeo f() — fzo) (o) F(f (@)

Example 6.4.7 Use the Inverse Function Theorem to find derivative of f(x) = arcsinx

Solution. Let g(x) = sinz where € (—%,%). Then g is 1-1 and continuous on (-3, 7).
We have ¢'(z) = cosz > 0 for all z € (=%,%) and g~ '(z) = arcsinz = f(x).

By the IFT, we obtain

f'(x) = (arcsinz)’ = (g~ )/1(55) =70 @)

¢'(arcsin x)
1
cos(arcsin )
1
/1 — sin?(arcsin z)
1

CVI—a2?
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Example 6.4.8 Let f(z) = x + €* where x € R.

1. Show that f is 1-1 on xz € R.

2. Use the result from 1 and the IFT to explain that f~1 differentiable on R.

3. Compute (f~1)'(2 +1n2).
Solution.

1. Proof. Let z,y € R and x # y. WLOG = > y. Then x —y > 0 and e* > e¥. We obtain

e —e"<0<x—y

y+e <x+e*
fly) < flo).

So, f(z) # f(y). Therefore, f is injective in R. O

2. Since f is 1-1, f~! exists. It is clear that f is continous on R. By the IFT, we conclude that
f~! differentiable on R.

3. We see that f'(r) =1+¢€% and f(In2) =In2+2. So, f~}(2+In2) =In2.
By the IFT, we obtain

iy _ 1 _ v 1
(F7)(2+n2) = f(f Y 2+mn2)  f'(n2) 1+2 3
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Exercises 6.4

1. Find each intervals of the following functions that increasing and decreasing.

1.1 f(x) =2z — 2? 1.4 g(x) = xe®
1.2 f(x)=a23—2®> -2 +3 1.5 g(z)=e"—x
1.3 f(z) = (z —1)3(z — 2)* 1.6 g(z) = 2%

2. Find all @ € R such that 23 + ax? + 3z + 15 is strictly increasing near z = 1.
3. Find all @ € R such that ax? 4+ 3z + 5 is strictly increasing on the interval (1,2).

4. Find where f(z) = 2|z — 1] + 5v/2? + 9 is strictly increasing and where f(x) is strictly

decreasing.

5. Let f and g be 1-1 and continuous on R. If f(0) =2, g(1) = 2, f'(0) = 7, and ¢'(1) = e,

compute the following derivatives.

5.1 (f71)(2) 5.2 (971)(2) 5.3 (f71-971)(2)

2

6. Let f(x) = 22", z € R.

6.1 Show that f~! exists and its differentiable on (0, 00).

6.2 Compute (f~1)(e)
7. Let f(x) = x + €** where x € R.

7.1 Show that f is 1-1 on = € R.
7.2 Use the result from 7.1 and the IFT to explain that f differentiable on R.

7.3 Compute (f71) (4 + In2).

8. Use the Inverse Function Theorem, prove that

1
V1 — 22
1
1+ 22

8.1 (arccosz) = — where z € (—1,1)

8.2 (arctanz) =

where z € (—00, 00)
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10.

11.

12.

13.

CHAPTER 6. DIFFERENTIABILITY ON R

1
PNz

Use the IFT to find derivative of invrese function f(x) = e* —e™* where x € R.

8.3 (V)

where z € (0, 00)

Suppose that f’ exists and continuous on a nonempty, open interval (a,b) with f’(z) # 0 for

all z € (a,b).

10.1 Prove that f is 1-1 on (a,b) and takes (a,b) onto some open interval (c, d)
10.2 Show that (f~!)’ exists and continuous on (¢, d)

10.3 Use the function f(x) = x®, show that 7.2 is false if the assumption f’(z) # 0 fails to

hold for some x € (¢, d)

Let [a,b] be a closed, bounded interval. Find all functions f that satisfy the following

conditions for some fixed &« > 0 : f is continuous and 1-1 on |a, b],

f'(z) #0 and f'(z) = a(f~1) (f(z)) for all z € (a,b).

Let f be differentiable at every point in a closed, bounded interval [a,b]. Prove that if f’ is

increasing on (a, b), then f’ is continuous on (a, b).
Suppose that f is increasing on [a, b]. Prove that

13.1 if zg € [a,b), then f(x) exists and f(xg) < f(zd),

13.2 if zg € (a,b], then f(z,) exists and f(zg) < f(xg).
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Integrability on R

7.1 Riemann integral

PARTITION.
Definition 7.1.1 Let a,b € R with a < b.

1. A partition of the interval |a,b] is a set of points P = {xq, 1, , ..., 2} such that

a=Tp<T1 < <z, =0

2. The norm of a partition P = {x,z1,,...,x,} is the number
1PIl = max fz; —z;].

3. A refinement of a partition P = {xo,x1,,...,2,} is a partition Q of [a,b] that satisfies
Q 2 P. In this case we say that Q) is finer than P or Q) is a refinement of P.

Example 7.1.2 Give example of partition and refinement of the interval [0, 1].

Partitions Norms of Partition
P = {0,0.5,1} 1P| = 0.5
@ =1{0,0.25,0.5,0.75,1} |Q] = 0.25
R =1{0,0.2,0.3,,0.5,0.6,0.8,1} |R|| = 0.2

We see that () and R are refinements of P but R is not a refinement of Q.
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Example 7.1.3 Prove that for each n € N,

P, = {l :j:O,l,...,n}
n

is a partition of the interval [0,1] and find a norm of P,.

Solution. Let n € N. It is easy to see that

0 1 2
O:—<—<—<...<2:1.
n n n n

Thus, P, is a partition of [0,1]. We have

Example 7.1.4 (Dyadic Partition) Let n € N and define
J o
Po=4L.5=01,.,2"},
{30
1. Prove that P, is a partition of the interval [0, 1].
2. Prove that P, is finer than P, when m > n.

3. Find a norm of P,.

Solution. Let n € N. It is easy to see that

0= 0 ! < 2 <. < 2" 1
S 2n Ton Tgn T T oom
Thus, P, is a partition of [0, 1]. Next, we will show that P, C P,, if m > n.
Let m > n and x € P,. Then there isa j € {0,1,2,...,2"} such that z = ;—n

Since m > n, m —n > 0. Then 2™ " > 0. From 0 < j < 2", it implies that

We obtain
x 2n . 2m 2m E
Thus, P,, is finer than P, when m > n. We final have
—1 1
Pl = max | & — 2| =
1<j<n | 2™ 2n 2n
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UPPER AND LOWER RIEMANN SUM.

Definition 7.1.5 Let a,b € R with a < b, let P = {xg,z1,,...,x,} be a partition of the interval
la,b], and suppose that f : [a,b] — R is bounded.

1. The upper Riemann sum of [ over P is the number
U(f,P) =Y M;(f)(x; — ;1)
j=1

where

M;(f) == sup [f(z).

z€[zj—1,7;]

2. The lower Riemann sum of f over P is the number

L(f,P) = ij(f)(xj — 1)

where
m;(f) = inf f(x).
CEE[I]'_l,a?j}
Y
y = f(z)
—1T T
Upper Riemann Sum
X
a=1=Tyg T1 T2 I3 Tp—1 Tk Tp1T, =D>
Y
y = f(z)
~
[ ——
Lower Riemann Sum
X

a=1x9 T4 Ty T3 Tp—1 Ty Tp-12, =0
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Example 7.1.6 Let f(z) = 2> + 1 where x € [0,1]. Find L(f, P) and U(f, P)

Le
1. P= O,l,lé,l
47274

Y flz)=2*+1 Y flz)=a?+1
2 f----------- 2 fo----m----
1 1
X X
0 1 1 3 1 0 1 1 3 1
4 2 4 4 2 4

urn =110+ 37 (7)) + 5
L 1T 5 %5 9
7(*%*1 1_6>_6_4
ve) =3 (3)+1f
L1 5 25 N 4T
_Z<E+Z+T+>_3_2

2. P=1{0,0.2,0.5,0.6,0.8,1}

Y flz) =2 +1 Y flz) =22 +1
2 - 2 -
1 1
X X
0 0.2 0506 0.8 1 0 0.2 0506 0.8 1

L(P, f) = 0.2f(0) 4 0.3£(0.2) + 0.1£(0.5) + 0.2f(0.6) + 0.2(0.8)
= 0.2(1) + 0.3(1.04) + 0.1(1.25) + 0.2(1.36) + 0.2(1.64)
—1.237

U(P, f) = 0.2f(0.2) 4+ 0.3£(0.5) + 0.1£(0.6) + 0.2f(0.8) + 0.2f(1)
= 0.2(1.04) + 0.3(1.25) + 0.1(1.36) + 0.2(1.64) + 0.2(2)

= 1.447
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Example 7.1.7 Let f(z) = 2* + 1 where x € [0,1]. Find L(P,, f) and U(P,, f) forn € N if

Pn:{l:j:0,1,...,n}.
n

k 1
Solution. Let z, = — and Az, = xp — 231 = — foreach k. =0,1,2,...,n
n n

R e o fla) =22 +1

o
S=
S
Sl —
‘?r

_
Sl —
3

|

-

—

For interval [xy_1, %] and f is increasing on [0, 1], it follows that

) ( ) +1—nl(l<:—1)2+1

my = f(xp-1) = (

NI SR ERRIE IS SRS
k—l k=1 n ne = n—
1
2 2 2 2
ng[O P2+ (=14~
1 (n—1)(n—-1+1)2(n—-1)+1)
=5 +1
n3 6
(n—1)(n)(2n — 1) (n—1)(2n—1)
6n3 * 6n2 +
and
L s S R I
V1= ZM’“M’“ Z{ﬂ’”%‘ﬁ 21
k=1 k—1 =1
1
. (n+1)(2n—|—1)+l.n
n 6 n
1)(2n + 1
_orbentl)

6m2
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Theorem 7.1.8 L(f, P) < U(f, P) for all partition P and all bounded function f.

Proof. Let P = {xg,x1,...,z,} be a partition and f be bounded on [a,b]. Then

m;(f)= inf f(z) < sup f(z)=M;(f) forallj=1,2,.. n

IE[Z‘jfl,Ij] J?E[$j_1,l’j]

It follows that

L(f,P) =Y m;(f)Ax; SZMj(f)A%' =U(f,P).

j=1

Theorem 7.1.9 (Sum Telescopes) If g : N — R, then

n

> gtk +1) = g(k)] = g(n + 1) — g(m)

k=m

for allm > m in N.

Proof. Fix m € N. We will prove by induction on n. The Sum Telescopes is obvious for n = 1.

Assume that the Sum Telescopes is true for some n € N. By inductive hypothesis,

D gtk +1) = g(k)] = > gk +1) — g(k)] + [g(n +2) — g(n +1)]

=g(n+1) —g(m)+[g(n+2) — g(n+1)]
=g(n+2) —g(m).

The Sum Telescopes is true for some n+1. We conclude that by induction that the Sum Telescopes

holds for n € N. O



7.1. RIEMANN INTEGRAL 155

Theorem 7.1.10 If f(z) = « is constant on |a,b], then

U(f,P):L(f,P):a(b—a)

Proof. Let f(x) = a is constant on [a, b] and let P = {xq, 21, %9, ..., 2, } be a partition of [a, b] such

that zo = @ and z,, = b.

a=x9 T T2 I3 Tp_1 Tk Tn-1  g,=b

For each j € {1,2,...,n} and f(x) = a, we have

m;(f)= inf f(z)=a and M;(f)= sup f[f(z)=a.
Ie[mjflij} JSE[CCJ',LCCJ‘]
Use the Sum Telescopes, we obtain
L(P, f) = ij(f)A:L‘j = Za(xj —xj1) = oz, —x9) = (b —a),
j=1

=1
n

UP, f) = Z My(f)Az; = alz; —xj1) = a(z, — 29) = a(b— a).

J=1

Theorem 7.1.11 If P is any partition of [a,b] and Q is a refinement of P, then

L(f,P) < L(f,Q) < U(f,Q) < U(f, P).

Proof. 1t is clear that L(f,Q) < U(f,Q) by Theorem 7.1.8.

Let P = {xg, x1,Z2, ..., T, } be a partition of [a, b] such that xy = a and z, = b.
Assume that @ is a refinement of P. Special case Q = P U {c} for some ¢ € (a,b).
If ¢ € P, then Q = P which implies that

L(f,P) = L(f,Q) <U(f.Q) =U(f, P).

The proof is done for this case.
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Suppose ¢ ¢ P. Then there is an x; such that

T < c<uxp for some k € {1,2,....,n}.

Consider
k—1 n
U(f,P) = Mj(f)Az; + Sup ]f(fc) (g —apa) + Y M(f)A
j=1 TE[XTR_1,Tk j=K+1
k—1 n
U(f,Q) =Y My(f)Az; + sup }f(x) (e @) + sup ]f(:v) (e —o)+ Y M;(f)Agy
=1 TE[rEK_1,C TE|(C,Tk j=k+1

Set M = sup f(z). Then

€Ty 1,7k

sup f(x) <M and sup  f(x) < M.

-Z’e[xk_17c] IE[C,xk,C]

We obtain

U(f,P)-U(f,Q) = sup f(x) (xzr —ap-1)— sup f(z) (c—mxp_1)— sup f(z): (1x —c)

TE€[TR_1,Tk) T€[xE_1,] T€[c,zk]
> M(xp —xp—1) — M(c— xp—1) — M(xp — )

=Mz —xp1—cH+ a1 —x) +¢) =0.

Thus, U(f, P) > U(f,Q). A similar argument show that L(f, P) < L(f, Q). H

Corollary 7.1.12 If P and Q are any partitions of |a,b], then

L(f,P) <U(f, Q)

Proof. Assume that P and ) are any partitions of [a, b]. Then
PCPUR and QCPUQ.

Thus, P U (@ is a refinement of P and ). By Theorem 7.1.11, it implies that
L(f,P) < L(f,PUQ) <U(f,PUQ) <U(f, P).

Hence, L(f, P) < U(f,Q). O
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RIEMANN INTEGRABLE.

Definition 7.1.13 Let a,b € R with a < b.
A function f : [a,b] — R is said to be Riemann integrable or integrable on [a,b] if and only

if f is bounded on |a,b], and for every e > 0 there is a partition of [a,b] such that

U(f,P) - L(f,P) < e.

Theorem 7.1.14 Suppose that a,b € R with a < b. If f is continuous on the interval |a,b], then

f is integrable on [a,b].

Proof. Let a,b € R with a < b. Assume that f is continuous on the interval [a, b].
It follows that f is bounded on [a,b] by the EVT. Theorem 5.3.6 implies that f is uniformly

continuous on the interval [a, b]. Let € > 0. There is a § > 0 such that

€
b—a

[z =yl <dand 2,y €a,b] imply [f(z) = f(y)] < (7.1)

Let P = {zg,x1,...,x,} be a partition of [a, b] such that || P| <.
Fix j € {1,2,...,n}. By agian the EVT, there are x,,zy € [xj_1,2;] such that
f(@m) =m;(f) and  f(za) = M;(f).
Since ||P|| < §, we have |z — 24| < |2; — xj_1| < 0. Then x,,, zp satisfy (7.1), it implies that

3

[M;(f) = my(H)l = If(2a) = flam)] < 5—

Use the Sum Telescopes, We obtain

n

U(f,P) = L(f, P) = Y (M;(f) = m;(f)(a; —;-1)

j=1
SN
<;b_a'(l“j—$j—1)
£ €
i (T — ) = _a-(b—a)zs.

Therefore, f is integrable on [a, b]. O
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Example 7.1.15 Prove that the function

—
<
o
IA
8
AN
N |

flx) =

=)
<
N |
VAN
8
IA
—_

is integrable on [0, 1].

Solution. Let ¢ > 0. Case ¢ < 1. Choose P = < 0, L E, L + E,l
2 42 4
Y
1 O
‘ ® : X
0 t-p b g
We obtain
1 ¢ 1 ¢ 1 e 1 e 1 ¢
v p=1|(3-7) -0+ {6+ 1) - G5 o[- (3+3)) =2+
1 € 1 ¢ 1 e 1 ¢ 1 e
wrn=1(3-5) oo (5+3) - (-] +ol-(G+3)] =21
U(f,P) = L(f.P) =5 <<
1
Case € > 1. Choose P = {0,5,1}. Then
1 1 1
P)=1(=- 1—=-) ==
U(f,pP) 5 0>+0( 2) :
L Py=0(t o) ro(1-1) =0
? - 2 2 -

Thus, f is integrable on [0, 1].
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Example 7.1.16 (Dirichlet function) Prove that the function
1 ifrxeQ
0 ifr¢Q

fz) =

is NOT Riemann integrable on [0, 1].

Solution. Suppose that f is Riemann integrable on [0, 1].

Given € = 1. There is a partition P = {z¢, z1,...,x,} of [0,1] such that
1
Fix j € {1,2,...,n}. By real property, it leads to that there are r € @ and s € Q° such that

r,s € [xj_1,x;]. It implies that
m;(f) = e[inf }f(a:) =0 and M;(f)= [sup ]f(x) =1
TE[Tj—1,Tj xre Tj—1,T;

Use the Sum Telescopes, we obtain

n

U(f,P) :iMJ(f)AJ}j:Zl(l‘]—l']_l)zl'n—l’o:l—o:l
j=1

=1

LU P) = 3 my(F)Az; = 300, = a,4) =0

U(f7P)—L(f,P):1—0:1>%,

a contradiction. We conclude that the Dirichlet function is not Riemann integrable on [0, 1].

UPPER AND LOWER INTEGRABLE.
Definition 7.1.17 Let a,b € R with a < b, and f : [a,b] = R be bounded.

1. The upper integral of f on [a,b] is the number

(U) /b f(z)dz .= inf{U(f, P) : P is a partition of |a,b]}.
2. The lower integral of f on [a,b] is the number

(L) /b f(z)dx = sup{L(f, P) : P is a partition of [a,b]}.

3. If the upper and lower integrals of f on [a,b] are equal, we define the integral of f on |a, b

to be the common value

/abf(:l?)d:c = (U)/abf(iﬁ)dx: (L)/abf(:c)dx.
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Example 7.1.18 Let f(x) = a where x € |a,b]. Show that

/f /f alb - a).

Solution. By Theorem 7.1.10, for any partition of [a,b], we have U(f, P) = L(f, P) = a(b — a).
It follows that

U)/ f(:v)dx:irng(f,P) =a(b—a),

b
L)/ f(x)dr =sup L(f, P) = a(b — a).
a P
Example 7.1.19 The Dirichlet function is defined
1 ifzeQ

0 ifzgQ
Find the upper integral and lower integral of the Dirichlet function on [0, 1].

fz) =

Solution. By Example 7.1.16, for any partition of [a, b], we have U(f, P) =1 and L(f,P) =0. It
follows that

b
U)/ f(x)dx:ing(f,P) =1,

L)/ f(z)dx = sgpL(f,P) = 0.

Theorem 7.1.20 If f : [a,b] — R is bounded, then its upper and lower integrals exist and are

D [ s@ar< @ [ e

Proof. By Corollary 7.1.12, we have

finite, and satisfy

L(f,P) <U(f,Q) for partitions P,Q of [a,b].
We obtain by taking supremum over all partitions P of [a, b],

L) / (o) dr = sup L(J, P) < supU(£,Q) = U(£. Q)

Taking infimum over all partitions @ of [a, b], we have

/f )de < nfU(£,Q) = /f
Hence, (L) /  Ha)yde < (1) / f(z) da. =



7.1. RIEMANN INTEGRAL 161

Theorem 7.1.21 Let a,b € R with a < b, and f : [a,b] — R be bounded. Then f is integrable on

[a,b] if and only if . \
L) / f(x)dx = (U) / f() de

Proof. Let a,b € R with a < b, and f : [a,b] — R be bounded.

Assume that f is integrable on [a,b]. Let € > 0. There is a partition P of [a, b] such that

U(f7p)_L<f7P> <ée
By definition,

L(f.P) < (L) / f(@)dr and (U) / f(x)dx < U(f,P).

By Theorem 7.1.20, it follows that
/ e - / s

\(U) /abf(fﬂ)drv—(L) /abf(m)d
<U(fP)— L(f.P) <

b b
Thus, L/fxdx:U/fxdx.

Conversely, we assume that ( / f(z)dx = / f(z)dx.
Let € > 0. Choose, by the APT and APS, partitions Py, P, of [a, b] such that

/f d.fE—§<L(f,P1) and Uf,PQ /f dl"{“

Set P = P, U P,. Then P is a refinement of P, and P,. By Theorem 7.1.11, it follows that

U(P,f)—L(f,P Ufp2 (fpl)

( /f dx—l—) ((L)/abf(x)dx—g):a

Therefore, f is integrable on [a, b]. O
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Theorem 7.1.22 For a constant a,

/abadx =a(b—a).

Proof. 1t is easy to prove by Example 7.1.18 and Theorem 7.1.21. O

Example 7.1.23 Let f : [0,2] — R defined by

0 ifx#1
fz) =
3 ifrx=1

2
Show that f is integrable and ﬁnd/ f(z)dx
0

Solution. Let ¢ > 0. Let P = {xg,x1,...,x,} be a partition of [0, 2] such that ||P|| < % Then

m;(f)= —inf f(x)=0 forallj=1,2, ... n

z€lzj—1,74]

We obtain L(f, P Z m;(f)Az; = 0 which is not depend on €. So,

2
L)/ f(z)dz =sup L(f, P) = 0.

0 P
Case 1 € P. Then x; = 1 for some k € {1,2,...,n — 1}. We have

M;(f)= inf f(x)=0forallj#kk+1 and My(f)=3, Mi1(f)=3.

x€[rj—1,%4]
From ||P|| < %, it follows that |z; — z;_1| < % for all j =1,2,...,n. We obtain

U(f,P)—L(f,P):U(f,P)—

n

5 5
= ZMj(f)ij =3(xp — xp—1) + 3(zpy1 — xp) < 3-6 +3~6 =c.

Case 1 ¢ P. Then 1 € [xy_1, z] for some k € {1,2,...,n}. We have

M;(f) = Jnf flz)=0forallj#k and M(f)=3.
We obtain
U(f’P)_L(f’P):U(fﬂp)_OIZMj(f)ij23(wk—fck71)<3%:§<g

j=1
Thus, f is integrable on [0, 2] and

[ syt =) [ syao =



7.1. RIEMANN INTEGRAL 163
Example 7.1.24 Let f : [0,1] — R defined by

fo) = 2 ifx#1
1 ifa=1

1
Show that f is integrable and ﬁnd/ f(z)dz.
0

Solution. Let ¢ > 0. Let P = {xg, z1,...,x,} be a partition of [0, 1] such that ||P]| < .

Y

2

1 )
‘ X
0 1

Then, M;(f)= sup f(z)=2 forallj=12..n
Z’E[a}j,17$j]

We obtain

n

U(f, P) = ZMj(f)A%‘ =D 25— x5-1) = 2w — w9) = 2(1 - 0) =2

j=1
which is not depend on e. So,
(U) /Ozf(:c)da: = ing(f,P) = 2.
We see that
m;(f)= inf f(x)=2forallj#n and M,(f)=1.

w€[xj—1,7;]

From [|P|| < ¢, it follows that |z; — z;_1| < € for all j = 1,2,...,n. We obtain

U(f7P)_L(faP):2_L(f7P)

n n—1
=2 ij(f>AfL’] =2 Z 2(33'] — .1'3;1) — 1(5[)n — l’nfl)
i=1 j=1

=2—2(xp_1 —x0) — L(zp — Tp1)

=2-2,1—-0)—-11—-zp ) =1—2, 1 =2, — Ty <E.
Thus, f is integrable on [0, 1] and

/Olf(:n) dz = (U) /:f(x) dz = 2.
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Exercises 7.1

1
1. For each of the following, compute U(f, P), L(f, P), and / f(z) dz, where
0

21
P: Oa_7_7§71 .
525

Find out whether the lower sum or the upper sum is better approximation to the integral.

Graph f and explain why this is so.

1.1 f(z) =1—2? 1.2 f(z) =222 +1 1.3 f(z) =2 —x

2. Let P, = {l n=0,1,.., n} for each n € N. Prove that a bounded function f is integrable
n
on [0, 1] if

Iy == lim L(f,P,) = lim U(f, P,),

n—oo n—o0

1
in which case / f(z) dx equals Iy.
0

3. For each of the following functions, use P, in 2. to find formulas for the upper and lower

1
sums of f on P,, and use them to compute the value of / f(z)dz.
0

3.1 f(x) ==

1 if0<z<j
3.3 f(z) =
3.2 f(x) = 2? 0 if $1<z<1
1 1 ifzeklE
4. Let F = {— ‘n € N}. Prove that the function f(x) = is integrable on
n

0 if otherwise

1
[0,1]. What is the value of / flz)dx ?
0

5. Suppose that f is continuous on an interval [a, b]. Show that / f(z)dx =0 for all ¢ € [a, D]
if and only if f(x) = 0 for all z € [a, b]. ’

6. Let f be bounded on a nondegenerate interval [a,b]. Prove that f is integrable on [a,b] if

and only if given £ > 0 there is a partition P. of [a,b] such that

PO P. imples |U(f,P)—L(f,P)| <e.
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7.2 Riemann sums

Definition 7.2.1 Let f : [a,b] — R.

1. A Riemann sum of f with respect to a partition P = {xg,z1,...,x,} of [a,b] is a sum of

the form
Z ft)) Az,

where the choice of t; € [xj_1, x| is arbitrary.

2. The Riemann sums of f are converge to I(f) as |P|| — 0 if and only if given € > 0 there

is a partition P. of [a,b] such that

n

> ft)An —I(f)| <«

Jj=1

P ={xo,z1,....;x,} 2 P implies

for all choice of t; € [xj_1,2;], 7 =1,2,...,n. In this case we shall use the notation

= lim Zf JAz;.

||P||—>O

Example 7.2.2 Let f(z) = x* where v € [0,1] and P = 1 cj = 0,1,...,n} be a partition of
n
[0,1]. Show that if f(t;) is choosen by the right end point and left end point in each subinterval,

then two I(f), depend on two methods, are NOT different.

Solution. The Right End Pomt Choose f(t;) = f(£) on the subinterval [z;_,z;]

—1
and have ij:l—j ——for all j =1,2,3,...,n. We obtain
n n n
n 1 1 n j 2 1 n -
2 S () = Zf();‘az(;)‘ﬁzf
=1 =1 =1

_ 1 n(r+1)2n+1) (n+1)(2n+1).

ns 6 6m2

Thus,

IR o (n+1)@2n+1) 1 1
I(f) = lim Zf( j)Az; = lim =3=73

[ Pll—0 n—00 6n? 3
j=
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The Left End Point : Choose f(t;) = f() on the subinterval [z;_y,z;]. We obtain

n

zn;f(tj)ijzzn;f<%>%:%i(%>2:%2(]'_1)2

e — [0+ 17+ 2%+ (n—1)°]

_ 1 (n—1)(n)(2(n—1)+1) _ (n—1)(2n—1)
n3 6 6n> '

Thus,

Theorem 7.2.3 Let a,b € R with a < b, and suppose that [ : [a,b] — R is bounded. Then f is

Riemann integrable on [a,b] if and only if

exists, in which case

Proof. Assume that f is Riemann integrable on [a, b].

Let € > 0. By the APT and APS, there is a partition P. of [a,b] such that

/f ydz+e< L(f,P.) and U(f,P.) /f )da + €.

Let P = {x¢,21,...,xn} 2 P.. From m;(f) < f(t;) < M;(f) for any choice of t; € [x;_q1,z;].

Hence,

/bf( Ydx —e < L(f, P.) < L(f, P) <Zf )Az;

<U(f,P) < U(f, P. /f dz +e.

It implies that

< E.

Zf(tj)A%'—/ f(z)dx

for all partitions P D P. and all choices of t; € [zj_1,2;], 1 =1,2,....,n
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Conversely, assume that the Riemann sums of converge to I(f). Let ¢ > 0 and choose a

partition P = {zg,x1,...,x,} of [a,b] such that

—I(f)] < (7.2)

OJI(‘f)

for all choices of ¢; € [x;_1,;]. By the API and APS, choose w;,v; € [z;_1,x;] such that

€ €

M;(f) = co—— < flu;) and  f(v;) <m;(f) + —=—
6(b—a) 6(b—a)

It implies that

£ 9 9

m—mj(f)—mZMj(f)—mj(f)—3(b_a)-

flug) = fvj) > M;(f) —

So,

M;(f) —m;(f) < f(u;) = flv;) +

By (7.2) and telescoping, we have

n

U(f,P) = L(f, P) = Y (M,(f) = m;(f)A;

J=1
n

< Z f(uj)Az; — Z fvj)Az; + ﬁ Z(%‘ — 1)
< Z f(uj)Ax; — Z f(vj) Az +

= Zf(uj)ij —I(f) —Zf(vj)ijJrI(f) +

(x,, — x0)

£
3(b—a)

+ > fp) Az = I(f)| + %

j=1

> fluy) Ay —1(f)

j=1

cELELE
3 3 3

IN

Thus, f is Riemann integrable on [a, b]. O
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Theorem 7.2.4 (Linear Property) If f, g are integrable on [a,b] and o € R, then f+ g and af

are integrable on [a,b]. In fact,

b

L@ sy = [ [ o

2. /abaf(x)dx - oz/abf(x)dx

Proof. Assume that f and g are integrable on [a,b] and o € R.
Let € > 0 and choose P. such that for any partition P = {zg,x1,...,2,} 2 P- of [a,b] and any

choice of t; € [x;_1,z;], we have

> f(t)an; ~ [ fla)da

By triangle inequality, for any choice ¢; € [z;_1, z;],

n

> glt)ae; - [ glo)ds

=1

<€
5"

€
< = d
5 an

n

b b
SO+ 9)(t) Ay — / f() da / o(x) do

Jj=1

n n b b
= Z f(tj)Ax; + Zg(tj)ij — / flx)dz — / f(z)dx
i=1 i=1 a a

n b n b
< Zf(tj)mj—/ f(x)dx| + Zg(tj)mj—/ g(z) dx
j=1 a j=1 a
€ g o

b b b
We conclude that f + ¢ is integrable on [a, b] and / (f(z)+g(z))dr = / f(x)dx +/ g(x) dx.

Similarly, if P. is chosen so that if P = {x¢,z1, ..., 2, } is finer than P., then

Zf(tj)A%‘—/ f(x)dx

It is easy to see that, for any choice t; € [z;_1, %],

5
la] + 1

<

n

Zaf(tj)ij—a/ f(z)dx

J=1

= |af

> f(t)as; — [ fa)da

b b
Thus, af is integrable on [a, b] and / af(x)de = a/ f(z)dx. O

a
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Theorem 7.2.5 If f is integrable on [a,b], then f is integrable on each subinterval [c,d] of [a,b].

L%@mzly@m+[wmm

Moreover,

for all c € (a,b).

Proof. We may suppose that a < b. Let € > 0 and choose a partition P of [a,b] such that

U(f,P)—L(f,P)<e¢

Let Py = PU{c} and P, = PyN|a,c|. Since P is a partition of [a, c] and P, is a refinement of P,
we have

U(f, P1) = L(f, ) SU(f, Ro) = L(f, Bo) SU(f, P) = L(f, P) <

Therefore, f isintegrable on [a, ¢|. A similar argument proves that f is integrable on any subinterval
[c,d] of [a,b].
Let P, = PyN[e,d]. Then Py = P U P, and by definition

U(f,P) > U(f, o) =U(f, 1) +U(f, P»)

/f )dx + (U /f d:c—/f da:—l—/f

Next, we will take infimum of the last inequality over all partitions P of [a, b], we obtain

[ rwar=w) [ swyas

:@mﬁmzlvwm+lvwm.

A similar argument using lower integrals shows that

/abf(fﬂ)dxS/acf(x)dx+/cbf(w)dfv

We conclude that /bf(x) dr = /cf(ac) dx + /bf(x) dz. O
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By Theorem 7.2.5, we obtain

/abf(x)dx:/aaf(x)dx+/abf(x)dx

Thus,

/aaf(a:)dxzo and /abf(x)dx:—/baf(x)dx.

5
Example 7.2.6 Using the connection between integrals are area, evaluate / |z — 2| dx.
0

Solution. Define f(x) = |z — 2| where z € [0, 5].

Y

AN

y=|r—2

b 5 1 1 13
/0 f(z)dx /0 |z — 2| dx 5 + 5 3-3 )

2
Example 7.2.7 Using the connection between integrals are area, evaluate / V4 —x2dx.
0

Solution. Define f(z) = v/4 — 22 where x € [0, 2].

Y

y=+v4—12
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Theorem 7.2.8 (Comparison Theorem) If f, g are integrable on [a,b] and f(x) < g(x) for all

[ 1w s [ o

In particular, if m < f(x) < M for x € [a,b], then

x € [a,b], then

b
m(b— a) §/ flz)dx < M(b—a).

Proof. Assume that f, g are integrable on [a,b] and f(z) < g(z) for all x € [a, b].
Let P be a partition of [a,b]. By hypothesis, M;(f) > M;(g) whence U(f, P) < U(g, P).
It follows that ) .
| 1@ =w) [ 1w <vis.P) <UG.P)
for all partition P of [a,b]. Taking the infimum of this inequality over all partition P of [a, b],

we have
/abf(:c) dr < infU(g, P) = (U) /abg@) dr — /abg(l,) do.

If m < f(z) < M, then by Theorem 7.1.22

m(b—a):/abmdxg/abf(x)dxg/abMd:B:M(b—a).

Theorem 7.2.9 If f is Riemann integrable on [a,b], then |f]| is integrable on [a,b] and
b
/ f(x)dx

Proof. Assume that f is Riemann integrable on [a,b]. Let P = {xg,x1,...,z,} be a partition of

< [ Vwia

[a,b] and let z,y € [rj_1, ;] for j = 1,2,...,n. If f(z), f(y) have the same sign, say both are
positive, then
[F (@) = [f (W)l = f(x) = fy) < M;(f) = m;(f).

If f(x), f(y) have opposite signs, f(z) >0 > f(y), then m;(f) <0, hence

[f@)| = 1f)| = f(z) + fy) < M;(f) +0 < M;(f) —my;(f).
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It implies that
M;(1F1) = my(LF1) < M;(f) = my(f)- (7.3)
Let € > 0 and choose a partition P of [a, b] such that
U(f,P) — L(f, P) < <.
Since (7.3) implies that U(|f|, P) — L(|f], P) < U(f, P) — L(f, P), it follows that
U(If1,P) = L(|f], P) < e.

Thus, |f| is Riemann integrable on [a, b]. Since —|f(z)| < f(z) < |f(x)| holds for any x € [a, b],

we conclude by Theorem 7.2.8 that

—/ab\f(x)|das§/abf(x)dmé/ab|f(93)|d93-

< [ V@la N

Hence,

/a o) de
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Exercises 7.2

1. Using the connection between integrals are area, evaluate each of the following integrals.

1 2
11 / = — 0.5|da 1.3 / (| + 1| + |2]) dz
0 —2

a b
1.2 / va? —ax%dr, a>0 14 / Bx+1)dz, a<b
0 a

2. Prove that if f is integrable on [0, 1] and § > 0, then

1
vl
lim n® f(z)dx =0 forall a < f.

n—o0 0

3. If f, g are integrable on [a,b] and a € R, prove that

[ +ona < [raiacs [

b
4. Suppose that g, > 0 is a sequence of integrable function that satisfies lim gn(z)dx = 0.

n—00 a

b
Show that if f : [a,b] — R is integrable on [a, b], then lim [ f(z)g,(x)dz = 0.
n—oo a
1
5. Prove that if f is integrable on [0, 1], then lim 2" f(x)dx = 0.

n—oo 0

6. Prove that if f is integrable on [0, 1], then

7. Let f be continuous on a closed, nondegenerate interval |a,b] and set M = sup |f(x)|.
z€[a,b]

7.1 Prove that if M > 0 and p > 0, then for every € > 0 there is a nondegenerate on interval
I C [a,b] such that

b
(M — eI < / @) dz < MP(b— a).

b v
7.2 Prove that lim </ | f(z)P dx) =M.
p—o0 @
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7.3 Fundamental Theorem of Calculus

d
Define a set C'[a,b] = {f : [a,b] — R : f is differentiable and f’ are continuous } and f'(z) = d_f
T

Theorem 7.3.1 (Fundamental Theorem of Calculus) Suppose that f : [a,b] — R.
1. If f is continuous on |a,b] and F(x) :/ f(t)dt, then F € C'[a,b] and

= [ s =@ -

dx
for each x € [a, .
2. If f is differentiable on |a,b] and ' is integrable on [a,b], then

/ﬁﬂﬂﬁzﬂ@—f@

for each x € [a,b.

Proof. Assume that f is continuous on [a,b] and F(x) = / f(t) dt where z € [a, b].
Let 79 € [a,b). Then f(z) — f(xo) as © — z¢. Let € > 0. There is a 6 > 0 such that

ro<t<zog+dandté€la,b] imply |f(t)— f(zo)| <e. (7.4)

Fix h such that 0 < h < §. Use Theorem 7.1.22, We have

F(zo+ h) — F(xg)
h

— (o) = P (o +h) = 3 Fwo) = 3 (wo) -

zo+h Zo zot+h
:1/ f(t)dt—%/ f(t)dt—%/ f (o) dt

o

h ),
0 zo+h 0 zo+h
=%A ﬂ0ﬁ+%/ ﬂwm—%l ﬂwﬁ—%/ f (o) dt
1

xo o

i [ - s a

Zo

By (7.4) and Theorem 7.2.9 | it implies that

F(zo+ h) — F(xg)
h

xo+h xo+h
_f(xo)‘ﬁ%/ |f(t)—f(:v0)|dx<%/xo edr = ¢.

o

F h) —F
Thus, F'(z¢) = lim (2o + ]z (o) = f(zo). The proof of part 1 is complete.

Tr—xT0
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2. Assume that f is differentiable on [a,b] and f’ is integrable on [a,b]. Let € > 0 and choose

a partition P = {xg,x1, ..., z,} of [a,b] such that

n b
> 5 ) A - / f(z) de

for any choice of points t; € [z;_1,%;]. Use the MVT to choose points t; € [z;_1, ;] such that

<e€

f(xg) = f(wja) = f1({t) (x5 — xj-0) = f/(t;)Ax;.

It follows by telescoping that Z(f(x]) — f(zj—1)) = f(b) — f(a) and

n

-t - [ N ] = S0 - st - | ey de

j=1
n b
— 3 fity) A, - / £ dt] < e.
i=1 o
b
Thus, / f'(t)dt = f(b) — f(a) for case z = b. It suffices to prove part 2. ]

Example 7.3.2 Assume that f is differentiable on (0,1) and integrable on [0, 1]. Show that

/ o' (x) + f(2)dx = f(1).

0

Solution. By the Product Rule, we have (zf(x)) =z f'(z) + f(z).
Apply the Fundamental Theorem of Calculus,

[ ar@+ fade = [ @) de = 170) =070 = £

Theorem 7.3.3 Let o # —1. Then

/ x%dr = f(b) — f(a) where f(z) =

anrl

a+1’

Proof. Let a@ # —1. The f'(x) = z®. By part 2 of the Fundamental Theorem of Calculus, we
obtain this Theorem. O

1
Example 7.3.4 Find integml/ 22 de.
0

Solution. By the Power Rule, we have

L ¥ 0 1
2

dr = — — — = -
/Oxx333
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Theorem 7.3.5 Suppose that f,u: [a,b] — R. If [ is continuous on [a,b] and

F(z) = f(t)dt, and F € C*a,b] and

P)= g [ f@dt = fula) (@)

for each x € [a,b].

Proof. Apply the Chain Rule. O

Example 7.3.6 Let F(x / ¢’ dt. Find F(0) and F'(0).

Solution. We obtain F(0) = / e” dt = 0 and by Theorem 7.3.5, it implies that
0

d sinx . .
F'(z) = %/ e’ dt = ™) . (sinz) = ™ * . cosa.
0

Thus, F'(0) = 1.

INTEGRATION BY PART.

Theorem 7.3.7 (Integration by Part) Suppose that f, g are differentiable on [a,b] with f', ¢’

integrable on [a,b], Then
b b
/ f'(x)g(x) dz = f(b)g(b) — f(a)g(a) —/ f(x)g (x) dz

Proof. Assume that f, g are differentiable on [a,b] with f’, ¢’ integrable on [a,b]. By the Product
Rule, (fg)(x) = f'(z)g(x) + f(x)d'(x) for x € [a,b]. It implies that (fg)" is integrable on [a,b].

Thus, by the part 2 of the Fundamental Theorem of Calculus, we obtain

/f dx—/(fg d:c—/f
/a F(2)g(e) dz = F(B)g(b) — f(@)g(a) — / F(2)(2) do

The proof is complete. O
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Example 7.3.8 Use the Integration by Part to find integrals.

jus 2
1. /Q:L'sinmdx 2. / Inz dx
0 1

Solution. By the Integration by Part and The Fundamental Theorem of Calculus, we have

/2 rsinzdr = /2 z(—cosz) dr = E(— cos z) — 0(—cos0) —/2<I>,(— cosz)dx
0 0 2 2 0
2 3 T
:/ Cosa:d;v:/ (sinz) dr =sin— —sin0 = 1.
0 0 2
2 2 2
/ lnxdx:/ (x)’lnxdxz?an—llnl—/ z(lnz) dx
1 1 1

2 1 2
:2ln2—/:z:-—d:1::2ln2—/ 1dx
1 x 1

2
= 21n2—/ () dr=2In2—-(2—1)=2In2—1.
1

3

Example 7.3.9 Let f(z) = / e’ dt. Use integration by part to show that
0

1 1
6/ IQf(LE)dLE—Q/ edr=1—e.
0 0

Solution. By the Theorem 7.3.5, f/(x) = ")’ . (3)' = 3z2%¢*". We obtain

1 1
We conclude that 6/ 22 f(z)dx — 2/ dr=1—e.
0 0
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CHANGE OF VARIABLES.

Theorem 7.3.10 (Change of Variables) Let ¢ be continuously differentiable on a closed interval
la,b]. If f is continuous on ¢([a,b]), or if ¢ is strictly incresing on [a,b] and f is integrable on
[¢(a), d(b)], then
¢(b) b )
[, 0= [ sowee .
&(a a

Proof. Exercise. O]
Example 7.3.11 Find dx
0 z+1
1
Solution. Let f(z) = e* and ¢(z) = Vo + 1 where x € [0,3]. Then ¢'(z) = such that
(@) o) = VaF T 03], Then /(a) = ;=

#(0) =1 and ¢(3) = 2. It follows that

By the Change of Variables, we obtain

eVt 3 , 6(3)
[ o= [ s @ =2 [ s
:2/26tdt:2/2(€t)/dt:2<62_e>‘

/ L F(2?) dw

1

Example 7.3.12 Fvaluate

for any f is continuous on [0, 1].

Solution. Let ¢(z) = x* where z € [—1,1]. Then ¢'(z) = 2z such that ¢(—1) = 1 and ¢(1) = 1.
It follows that

By the Change of Variables, we obtain

1 , 1 ! / #(1) 1 !
[ ettrae=g [ sow)-dwar=g [ rwa=g [ roa=o
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Example 7.3.13 Let f : [—a,a] — R where a > 0. Suppose f(—x) = —f(x) for all x € [—a,al.
Show that
/ f(z)dz =0.

Solution. Let ¢(x) = —x where x € [—a,a]. Then ¢'(x) = —1 such that ¢(—a) = a and
¢(a) = —a. It follows by the Change of Variables that

| twde= [~ (-1
= [ fw) sy
— [ 1) @) do
¢(a)
_ / oL

¢(=a)

- / oy ar
N

a

Then, 2/ f(z)dx = 0. We conclude that / f(z)dx = 0.

—a —a
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Exercises 7.3

1. Compute each of the following integrals.

3 e
1,1/ |2 + 2 — 2| dx 1.4/:(:1n:cd1:
-3 1
4 3
1.2/ ﬁ_ldx 1.5/ e’ sinx dx
1 VT 0

1 1
4 —dz 1 1
1.3/(3x+1)99dx 1.6/ JE TR gy
0 0 4=z +3

2. Use First Mean Value Theorem for Integrals to prove the followingversion of the Mean Value

Theorem for Derivatives. If f € C*[a, ], then there is an xq € [a,b] such that

f(b) = fla) = (b—a)f'(z).

w

d [~
. If f:]0,00) — R is continuous, find %/ ft)dt
0

t

d
. If g : R — R is continuous, find pr g(x)dx.

W

cost

2

5. Let g be differentiable and integrable on R. Define f(x) = / g(t) - Vtdt.
1

Show that /1 zg(x) + f(x)dx =
0

z? 1 1
6. If f(x) :/ sec?(t?)dt. show that 2/ secz(:vQ)d:v—él/ xf(x)dr =tanl.
0 0 0
3
7. Suppose that g is integrable and nonnegative on [1, 3] with / g(x)dt = 1. Prove that
1
1 9
= / g(v/x)dr < 2.
T
11
8. Suppose that h is integrable and nonnegative on [1,11] with / h(z) dt = 3. Prove that
1

2
/ h(1 + 3z + 32% — 2%) dr < 1.
0

9. If f is continuous on [a, b] and there exist numbers a # 3 such that

/f d:c—l—ﬁ/f Ydr =0

holds for all ¢ € (a,b), prove that f(x) =0 for all x € [a, b].



Chapter 8

Infinite Series of Real Numbers

8.1 Introduction

Let {ax}ren be a sequence of numbers. We shall call an expression of the form
(o)
>
k=1
an infinite series with terms ay.

Definition 8.1.1 Let S = Zak be an infinite series whose terms a; belong to R.
k=1

1. The partial sums of S of order n are the numbers defined, for each n € N, by
Sp - — Z Qg .
k=1

2. S is said to converge if and only if its sequence of partial sums {s,} to some s € R as

n — oo; i.e., for every € > 0 there is an N € N such that
n>N implies |s, —s| <e.

In this case we shall write

oo
Zak =S
k=1

(0.9}

and call s the sum, or value, of the series Zak.
k=1

3. S is said to diverge if and only if its sequence of partial sums {s,} does not converge.
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—[1 1
Example 8.1.2 Prove that Z {— — —} =1
pt ko k+1

Solution. Use telescoping, we have

1 = [1 1
Then, 7}1_}1110 Sp = nh_}rgo (1 T 1) = 1. We conclude that ; [E — k——i-l] =1

Example 8.1.3 Prove that Z(—l)k diverges.
k=1
Solution. We see that
n —1 ifnisodd
k=1 0 if n is even.

o
It is easy to see that s, does not converge as n — oo. Hence, Z(—l)k diverges.
k=1

Theorem 8.1.4 (Harmonic Series) Prove that the sequence + converges but the series

k
00
k=1

diverges.

| =

Proof. By Example 2.1.5, it implies that  — 0 as k — oo. Let « € [k, k+ 1] for each k € N. Then

1
— =

<
k+1 -

K| —
| =

By Comparison Theorem for integral, We obtain

k+1 1 k+1
/ —dx < / l dr = l

It follows that

n 1 n k+1 1 n+1 1
Sp= Yy — > / —dx:/ —dr=1In(n+1)
k PR .
k=1 k=1
We conclude that s, — 0o as n — oo, i.e., Z z diverges. O]

k=1
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Theorem 8.1.5 (Divergence Test) Let {ax}ren be a sequence of real numbers.

If ay, does not converge to zero, then the series E ay diverges.
k=1

o0
Proof. Assume that Z ayp converges and equals to s. Then
k=1
n
sn:Zak and s, — s as n — oo.
k=1

Since ay = Sg11 — Sk,

lim a; = lim (s —sx) =s—s=0.
k—o00

k—o0
Thus, aj converges to zero. [
Example 8.1.6 Show that the series Z diverges.
n
k=1

Solution. We see that

n
li =1 0.
Jim e =14

= n
By the Divergence Test, it imlplies that E e diverges.
n
k=

Theorem 8.1.7 (Telescopic Seires ) If {ax} is a convergent real sequence, then

[e.e]

E (ar — agy1) = ap, — lim ag.
k—o0
k=m
Proof. By telescoping, we have
n
Sn = (a'k - ak—i—l) = Gm — Ap41-

Thus,

oo
Z(ak — agy1) = lim (@, — apyq)
n—oo

k=m

= a, — lim a,1q
n—oo

= a,, — lim a;.
k—o0
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Example 8.1.8 Fuvaluate the series Z .
p (k+1) k: +2)

Solution. By the Telescopic Series, we obtain

> 1 > 1 1
Ez@w4xk+2):Z;(EIT_EI§>

k=1

1
lim —— = —.
1+1 k=ck+1 2

Example 8.1.9 Determine whether Z

1
—VE+1+VEk

CONveErges or not.

Solution. Use telescoping, we have
S v~ 3o [T Vi = v

Then, s, — 0o as n — co. We conclude that Z diverges.
¢— Ny

Theorem 8.1.10 (Geometric Seires) The series Z 2% converges if and only if |x| < 1, in which

k=1
case

o0
Exk:

Proof. If |x| > 1, then {z*} diverges. By The Divergence Test, it implies that Zxk diverges.

k=1

k k+1

Case |z| < 1. Then 2¥ — 0 as k — oo. Since z* — 2" = 2*(1 — ), we have

k k+1
K x x

Cl—z 11—z

By the Telescopic Series,

k=1
. at
= — lim
11—z k—oo 1 — 2
oz
N
oo o0 T
Thus, Zxk converges if and only if x| < 1 and Zxk = . O]
—x

k=1 k=1
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Example 8.1.11 Determine whether the following series converges or diverges

1. ir’f 2. f: V2 —1)"
k=1

k=1
Solution. For 1. We have x = 5 such that |z| < 1. It implies that Z 2% converges and
k=1

k=1 k=1
> > I 1
Since V2 —1)F = ( ) and =v2+1>1
20 =2 (o) ™
we conclude that Z(ﬁ —1)7* diverges.
k=1
Theorem 8.1.12 Let {ay} and {by} be a real sequences. Ifz ay and Z b are convergent series
k=1 k=1

then
Z ay + Zbk and i(aak) = aiak
k=1 k=1

k=1
for any a € R.
Proof. Let s, = Z ar and t, = Z bi. Assume that s,, — s and ¢, — t as n — o0o. Then
k=1 k=1
Sp+t, = Z(ak +b,) and as, = Zaak.

k=1
By the Limit Theorem, it implies that s,, + ¢, — s+t and as,, — as as n — oo

The proof of this Theorem is complete

k=1

Theorem 8.1.13 IfZak converges and Z b, diverges, then
k=1

Z (ar + by) diverges.

k=1

Proof. Exercise.
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> 1+2k+1
Example 8.1.14 Evaluate Z —
k=1

Solution. Use the Geometric Series and Theorem 8.1.12, it implies that

] 4 Qk+1 2] 4 2k+1 > [ /1\* 2\ *
DT =2 g =2 ) CJ +2(§)

k=0 k=1 k=1
=2 = 2 -
k=1 k=1
1 2
2 2 13
=2 3 2 - =2 4=—.
+1_%+ 2 + =+ 5
=k
Example 8.1.15 Fvaluate Z ok
k=1

Solution. Consider the difference of

k 1 k—1 2k —k—1 2k k+1 k k+1
ok ok ok - ok :2k ok :2k—1_ ok

By the Telescopic and Geometric Series, we have
>k k41
Zﬁ 2k 17 ok
k=1
1 X[ k kE+1
9ok Z {Qk 1 9k }

k
= T +1-— lim

M.HHME% “M8

g =l+1-0=2

Example 8.1.16 Let m be a Pi constant. Show that

converges and find its value.

Solution. We rewrite the term of this series
1 A | 1 1k
TG [T e T e

(1 1 1\*
7 e ) TS
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Then, the first term is telescoping series and the second term is geometric series. Thus,

1 S AN Ay | 1 = 71\
ZW[1—7+<7> ZZ(W—W)+Z(;)
k=1 k=1 k=1
00 o0 k
1 1 1
-3 () 2 (3)
k=1 k=1
1 1
=14 lim —y + —=
+kg£lo7l'k2+1—%
12—
=—-14+0+ = T #
™

—1 T—1

1
k2—1

Example 8.1.17 Evaluate the series Z
k=2

Solution. By the Telescopic Series, we obtain

o

1
(k—1)(k+1)

Pl
-
.

[
WK

|
[
o
Il
N

[\

I I
DO | — DN | —
2 L0
1 /N
|-

[S—

|

N
I~

—_
N——

B
[|
N

1| 1 1 = /1 1
)T IS (=

| k=2 k=2
IRV Lol
G A = B R vy e |

1 1 3

2 0+3 O} A

E le 8.1.18 Evaluat i( ! + 2 )
xample 8.1. valuate 5 — |
—~\n 1 75

Solution. Use Example 8.1.17, it implies that

n?—1 7.58) 4f=n2-1 7.5k
k=2 k=2 k=2
3 1< 2\
-1+ (3)
k=2
_3 .1 % 3 4 331
47T 1-%2 4 105 420
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Exercises 8.1

1. Show that

n

o0

>oat =
11—z

k=n

for [x] <1land n=0,1,2,...

2. Prove that each of the following series converges and find its value.

21 i—m 2.3 iw 2.5 ile_k
k=0

k
o VR =0 m
o~ (D = 3 = 2k — 1
223 24 ) 7w 26 3 =5
k=1 k=1 k=1

3. Represent each of the following series as a telescopic series and find its value.

51 ; (2k—1)1(2k+1)
- k(k
3.2 ) In (ﬁ)
3.3 i ¢ % (1 - (%)M), where jj, = _k(l{;—{—l) for k e N

4. Find all z € R for which

Z3(l,k . :L‘k_l)(l‘k + :Ek_l)
k=1
converges. For each such z, find the value of this series.

5. Prove that each of the following series diverges.

0 1 0 1\"* X k41
5.1 Zcosﬁ 5.2 Z(l_E) 5.3 Z ;
k=1 k=1 k=1

[e.e]

6. Prove that if Z ayp converges, then its partial sums s, are bounded.
k=1

7. Let {bx} be a real sequence and b € R.
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7.1 Suppose that there is an N € N such that |b — bg| < M for all £ > N. Prove that

nb — Xn: bk
k=1

N
<> b = b+ M(n— N)
=1

for all n > N.
7.2 Prove that if b, — b as k — oo, then

bi+by+---+0by
n

—b as n— o0.

7.3 Show that converse of 7.2 is false.

8. A series Z ay is said to be Cesaro summable to L € R if and only if
k=0

n—1
On ::Z(l_§>ak

k=0

converges to L as n — o0.

8.1 Let s, = Zak. Prove that o,, = Sitsete ot s, for each n € N.

n
k=0

oo
8.2 Prove that if a; € R and Z ap = L converges, then c is Cesaro summable to L.
k=0

8.3 Prove that Z(— is Cesaro summable to ; hence the converge of 8.2 is false.
k=0

8.4 TAUBER. Prove that if a;, > 0 for £ € N and Zak is Cesaro summable to L, then

k=0
00
D=

k=0

9. Suppose that {a;} is a decreasing sequence of real numbers. Prove that if Z aj converges,

k=1
then ka, — 0 as k& — oo.

10. Suppose that a; > 0 for k large and — converges. Prove that lim
pp k g kz% g Jim Z by =

11. If and Z aj, converges and Z by, diverges, prove that Z(ak + by) diverges.
k=1 k=1 k=1
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8.2 Series with nonnegative terms

INTEGRAL TEST.

Theorem 8.2.1 (Integral Test) Suppose that f : [1,00) — R is positive and decreasing on [1,00).
Then Z f(k) converges if and only if
k=1

Proof. Let s, = Zf(k) and ¢, = / f(z)dx for n € N. Since f is positive and decreasing on
k=1 1

[1,00), f is locally integrable on [1,00). For each k € N, we have
flk+1) < f(x) < f(k) forallxe [k k+1].

Taking integrate on [k, k + 1], we obtain
k+1 k+1 k+1

)= [ fhrndes [ f@ydes [ f0)de = f(B)

Summing over k = 1,2,....n — 1, it follows that

n—1 n—1 k41 n—1
fle+1) < > | flk+1Dde < f(k)
k=1 k=1"k k=1
-t < [ fEande < s g
1
_f(l) S tn — Sn S _f<n)
f(n) S Sp — tn S f(l)

Thus, {s,} is bounded if and only if {¢,} is. Since f is positir, it implies that both s, and t, are
incresing. It follows that from the Monotone Convergence Theorem that s, converges if and only

if ¢,, converges. m
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o0

1
Example 8.2.2 Use the Integral Test to prove that Z z diverges.
k=1

Solution. Let f(x) = —. Then f is positive and decreasing on [1,00). We obtain
x

n 7L1

lim f(z)dz = lim —dx
n—oo Jq n—oo J1 T

= lim [ (Inz) dx

= lim (Inn —In1) = co.

n—oo

1
By the Integral Test, we conclude that Z z diverges.
k=1

— 1
Example 8.2.3 Show that Z 7z converges.
k=1

1
Solution. Let f(z) = —;. Then f is positive and decreasing on [1,00). We obtain
x

n n

n 1
lim [ f(z)de=lim [ —dz=lim [ (—27')dzx

n—oo Jyq n—oo Jq ,1[2 n—oo Jyq
) 1
=lim|(——4+1)=1< oo.
n—o0o n

=1
By the Integral Test, we conclude that Z e converges.
k=1

Example 8.2.4 Show that Z converges.
k=

2
1k: +1
1
2 +1
: " . "ol
lim f(z)dx = lim

n—oo Jy n—oo Jq 2+ 1
n

Solution. Let f(z) = . Then f is positive and decreasing on [1,00). We obtain

dx

= lim [ (arctanx) dx
n—oo Jq

™
= lim (arctann — arctan 1) = — —
n—00 2

T 7r<
— = — < Q.
4 4

o)
1
By the Integral Test, we conclude that Z Pl converges.
k=1
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p-SERIES TEST.

Theorem 8.2.5 (p-Series Test) The series
= 1
2w
k=1

converges if and only if p > 1.

Proof. If p < 0 or p = 1, then the series diverges. Case p > 0 and p # 1, set f(z) = 7P and

observe that
f(z) = —pz Pt <0forall z € [1,00).

Thus, f is positive and decreasing on [1,00). Since

n n 1-p\/ I-p _1
lim z7Pdr = lim (f ) dz = lim L
1

n—oo 1 n—oo — p n—oo — p

has a finite limit if and only if 1 — p < 0. It follows from the Integral Test that p-series converges

if and only if p > 1. [

Example 8.2.6 Find p € R such that Z kP2 converges.
k=1
Solution. Rewrite the sum Z o which is a p-series. Then the series converges if and only if
k=1
2 —p? > 1. Tt follows that p?> — 1 < 0 is equivalent to p € (—1,1)
: =\ (k42
Example 8.2.7 Determine whether ; ( ok

) converges or not.

Solution. Consider
k+2F 1 L1
K2k 2k kS

1 = 1
Since Z Z diverges (the p-Series Test, p = 1) and Z o converge (the geometric series, x = %),

k=1 k=1
we conclude that

(k:+2k

W) diverges.

S (Le )y
ko 28]
k=1 k=1
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COMPARISON TEST.

Theorem 8.2.8 Suppose that a, > 0 for k > N. Then Z aj converges if and only if its sequence
k=1
of partial sums {s,} is bounded, i.e., if and only if there exists a finite number M > 0 such that

n
D

<M foralln eN.

k=1

Proof. Let s, = Z a, forn e N. If Z ay converges, then s, convergess as n — 0o. Since every
k=1

convergent sequence is bounded by the BCT s, is bounded. The proof is complete. O

Theorem 8.2.9 (Comparison Test ) Suppose that there is an M € N such that

0<a,<b, forallk> M.

1. [bek < 00, then Zak < 00.
k=1 k=1

2. [fiak:oo, then ibk =
k=1 k=1

Proof. Assume that there 1s an M € N such that 0 < a; < b for all &k > M.

Let s,, = Zak and t, —Zbk For each n > M, we sum over k = M +1,.
k=1 k=1

0< iakﬁ ibk

k=M+1 k=M+1

0<s,—su<t,—tu.

Since M is fixed, it follows that s, is bounded when ¢, is, , is unbounded when s, is. Apply
Theorem 8.2.8, we obtain this Theorem. O
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Example 8.2.10 Determine whether the following series converges or diverges.

=1 > 1
1';k3+1 ggm

Solution. Since k® +1 > k® > 0 and 3* + k* > k? > 0 for all k € N, we have

< ! < ! d 0< L < L
— < -3 an —_— < 5.
E34+1 k3 k3 + 3k k3

0

1
We see that Z = converges by the p-Series Test (p = 3 > 1). It implies by the Comparison Test

k=1
that

=~ 1 = 1
; pE and ; T converge.

— 1
Example 8.2.11 Determine whether E L comverges or diverges.
n
k=2

Solution. Use the MVT to prove that (see 1.10 of Exercise 6.3)
Inz <.z foralx>1.

It follows that 0 < Ink < vk for all k> 1. Then

1 1
0< —4=<—

VE  Ink’

1

5 < 1). It implies by the Comparison Test

We see that Z diverges by the p-Series Test (p =
k=1

1
— Vk

that

1
Z Ik diverges.
k=2
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LIMIT COMPARISON TEST.

Theorem 8.2.12 (Limit Comparison Test) Suppose that ay and by are positive for lagre k and

exists as an extended real number.

1. If 0 < L < o0, then Zbk converges if and only ifZak converges.
k=1 k=1

2. If L=0 and Z by converges, then Z Q) CONVETJES.
k=1 k=1

3. If L =00 and Z by diverges, then Z ay diverges.
k=1 k=1

Proof. Assume that a, and by are positive for lagre k£ and % — L as k — oo.
k

L
1. Case 0 < L < 0o. Given € = 3 There is an N € N such that

L
k>N implies |2 _|<Z.
by, 2
L L
For each n > N, we have —— < W _ < —, e,
2 b 2

L 3L
—-b — - by.
0<2 k<ak<2 k

Hence, part 1 follows immediately from the Comparison Test and Theorem 8.1.12.

Similar arguments establish part 2 and 3. [

Example 8.2.13 Use the Limit Comparison Test to prove that Z converge.
k=1

— k241

and b, = i Then

Solution. Let a; = :
olution. Let a; oY 12

k’2
lim 9 _ lim

=1 .
k—o00 bk k—oo k2 4+ 1 <

=1
We see that Z 72 converges by the p-Series Test (p = 2 > 1). It implies by the Limit Comparison
k=1

Test that

<1

E converges.
2

k241
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S k
Example 8.2.14 Determine whether Z S, converges or diverges.
pt 2k* +k+3

1
and b, = —. Then

Solution. Let a; = 5

2k* +k+3

k4
lim Ok _ lim

— " = <.
kooo by ke 2kt k43 2 0 F

= 1
We see that Z 75 converges by the p-Series Test (p = 3 > 1). It implies by the Limit Comparison
k=1

> k
Test that Z
k=

———— converges.
<2k + k+3 vers

Example 8.2.15 Determine whether Z converges or diverges.
k=1

1
—~ Vk+1

Solution. Let a; = and b, = —. Then

SN

1
VE+1

- : k
lim — = lim —m,—— =1 .
klm bk klm \/E 1 < 00

1
ﬁ diverges by the p-Series Test (p = % < 1). Tt implies by the Limit Comparison

=1
Test that Z diverges.
—~ VE+1

D
We see that Z
k=1

Theorem 8.2.16 Let a, — 0 as k — 0o. Prove that

(0.9} (0.9}
Z sin |ag| converges if and only if Z lag| converges.
k=1 k=1

Proof. Assume that ap — 0 as k — oo. We will see that

. sin|ay] . sinz
lim = lim
k—o0 |ak| z—0t X

=1< 0.

o oo
By the Limit comparison Test, it implies that Z sin |ag| converges if and only if Z |ax| converges.

k=1 k=1
]
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Exercises 8.2

1. Prove that each of the following series converges.

=~ k-3 > Ink > 1
1.1 - 1. — 1 1. 10+ = | k™
> i DIL 53 (10+7)
k=1 =1 k=1
X k-1 > 1 = 3k2 -k
1.2 1.4 1.6 _

— k2 +2k+3
2.1 2
Z L ; k3 —2k2 ++/2
2.2 >0 24 1
2wy ” 2w P
. . —~ 3k [k
3. Use the Comparison Test to determine whether 2V E converges or diverges.
k=1

1
4. Find all p > 0 such that the followi i . —_
ind all p > 0 such that the following series converges kg TP

5. If ap > 0 is a bounded sequence, prove that Z converges for all p > 1.
k=1

Qg
(k+1)r

6. If Z |ag| converges, prove that Z converges for all p > 0. What happen if p <0 ?
k=1

7. Prove that if Z a and Z by coverge, then Z arby also converges.
k=1 k=1 k=1

8. Suppose tha a,b € R satisfy g € R\Z. Find all ¢ > 0 such that

——————  converges.
; (ak + b)g*

9. Suppose that ap — 0. Prove that Z aj converges if and only if the series Z Aok + 2k41)

k=1 k=1
converges.
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8.3 Absolute convergence

Theorem 8.3.1 (Cauchy Criterion) Let {a} be a real sequence. Then the infinite series Z a
k=1
converges if and only if for every e > 0, there is an N € N such that

m>n>N imply Zak <e.
k=n

Proof. Let s, represent the sequence of partial sum of Zak and set so = 0. By the Cauchy’s
k=1
Theorem (Theorem 2.4.5), s,, converges if and only if for every € > 0, there is an N € N such that
m,n >N imply |s, —s,_1]| <e.

For all m > n > 1, we obtain

= |8 — Sn_1] < €.

m
> ak
k=n

The proof is complete. O

Corollary 8.3.2 Let {a} be a real sequence. Then the infinite series Z ay converges if and only
k=1
if for every e > 0, there is an N € N such that

n >N implies <e.

00
> ak
k=n

Proof. Exercise. O
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ABSOLUTE CONVERGENCE.

Definition 8.3.3 Let S = Zak be an infinite series.
k=1

1. S is said to converge absolutely if and only ifz lax| < oo.
k=1

2. S is said to converge conditionally if and only if S converges but not absolutely.

Theorem 8.3.4 A series Zak converges absolutely if and only if for every € > 0 there is an

k=1
N € N such that
m>n>N implies Z lax| < e.
k=n
Proof. The Cauchy Criterion gives us the Theorem 8.3.4. O]

Theorem 8.3.5 ]fz ay converges absolutely, then Zak converges.
k=1 k=1

Proof. Assume that Z aj converges absolutely. Then Z lax| converges.

k=1 k=1
Let € > 0. By Theorem 8.3.4, there is an N € N such that

m
m>n>N implies Z lag| < e.

k=n

Apply the Triangle Inequality, we obtain

m
> a
k=n

m
< Z lax| < e.
k=n

[e.e]
By the Cauchy Criterion, we conclude that Z aj COnverges. O]
k=1
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9] _1 k 00 1 L
Example 8.3.6 Prove that Z ( k‘2) converges absolutely but Z ( k‘> s not.

Solution. We consider

Since the first and second series are a p-series such that p =2 and p =1, respectively, we obtain the
first series converges but the second series is not. We conclude that Z k;2)

. k=1
but Z (=
k=1

converges absolutely

is not.

LIMIT SUPREMUM.

Definition 8.3.7 The supremum s of the set of adherent points of a sequence {xy} is called the

limit supremum of {x}}, denoted by s := limsup xy, i.e.,
k—o00

limsup 2, = lim sup{zy : k > n}.
k—o0 n—00

Example 8.3.8 Fuvaluate limit supremum of the following sequences.

1 —1)k 9 =14 (—1)F

Solution. By the Definition of limit supremum, we have

1 111 1
limsup z = lim sup{ k>n}— lim sup{ .}: lim — =0
n

limsupy, = lim sup{ }
k—o0 n—oo
n+1,n+2,... if n is even
= lim sup
n—o0
n, n+17 —n+2, ... ifnisodd
= hm —=0
n—o00 1,
limsup zx = lim Sup{ P k>n}_ hm sup{O 2} = lim 2 =2.

k—o00 n—o0 n—oo
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Theorem 8.3.9 Let x € R and {x} be a real sequence.
1. Iflimsupxy < x, then x < x for large k.
k—o0

2. If limsup xy > x, then xy > x for infinitely many k.

k—o0

Proof. Let x € R and s := limsup x.

k—o00
1. Assume that s < x. Suppose to the contary that there exist natural numbers

ki <ky <ks<--- suchthat x, >z forjeN.

If {z},} is unbounded above, it implies that sup{z; : k& > n} is unbounded above so s = oo, a
contradiction. If {x,} is bounded above by C, then 2 < x;, < C for all j € N. Thus, by the
Bolzano-Weierstrass Theorem and the fact that o < x,, {zx,} has a convergent subsequence. It
implies that s > z, another contradiction.

2. Assume that s > x. There is a ¢ € R such that = < ¢ < s. By the Approximation Property in

the Theorem 2.2.5, there is a subsequence {zy,} that converges to c; i.e., x > x for lagre j. O

Theorem 8.3.10 Let z € R and {zx} be a real sequence. If v, — x as k — oo, then

limsupz, = x.
k—o00

Proof. Assume that x;, — x as k — oo. By the Theorem 2.1.18, any subsequence {zy,} also

converges to x. It implies that limsup xy = . O
k—o00

k
Example 8.3.11 FEvaluate limit supremum of {k‘—H}

k
Solution. Since klim il 1, we obtain by Theorem 8.3.10 that

—00

I — i _
MDA e
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ROOT TEST.

Theorem 8.3.12 (Root Test) Let ay € R and r := limsup |ak|%.

k—o0

1. Ifr <1, then Z ap converges absolutely.
k=1

2. If r > 1, then Z ay diverges.
k=1

Proof. 1. Assume that r < 1. Then there is an € R such that r < x < 1.

o
We notice that the geometric series Z 2% converges. By Theorem 8.3.9, we have
k=1

lap|* <z for large k.
It follows that 0 < |ax| < 2* for large k. By the Comparison Test, Z lag| converges.

k=1
2. Assume that r > 1. By Theorem 8.3.9, we have

lag|* > 1 for infinitely many k.

It follows that |ax| > 1 for infinitely many k. Then the limit of a; is not zero.

By the Divergence Test, Z ay diverges. O
k=1

- k
Example 8.3.13 Prove that Z (1 ok

k=1

k
) converges absolutely.

Solution. We notice that

e k
(i)

By the Root Test, we conclude that Z (
k=1

T i li K L
= 111m = 111 = — .
P ok~ i 1+2k 2

lim sup
k—o0

k
1+ 2k

k
) converges absolutely.
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Example 8.3.14 Prove that Z (T) diverges.
k=1

Solution. We notice that

1

&

3+ (—=1)k
k—o00 2

lim sup
k—00

(3+ (2—1)k)’“

= lim sup{1,2} = lim 2=2> 1.
n—oo n—oo

By the Root Test, we conclude that Z (T) diverges.
k=1

RATIO TEST.

Theorem 8.3.15 (Ratio Test) Let ay € R with ax, # 0 for large k and suppose that

Af41
Qg

r = lim
k—o00
exists as an extended real number.

1. Ifr <1, then Z ay converges absolutely.
k=1

2. If r > 1, then Z ay diverges.
k=1

Proof. 1. Assume that r < 1. Then there is an € R such that r <z < 1.

oo
We notice that the geometric series Z zk converges.

k=1
By Theorem 8.3.10, we have r = lim Slian T sup aay ) By Theorem 8.3.9, we obtain
k—oo | ag k—o0 ay
) -2 for large k.
a
i k+1
It follows that < @& = —— for large k which is equivalent to
Qg i
|| _ |ax]
xkil < g for large k.
Then @ is decreasing and bounded. So, there is an M > 0 such that |a;| < Mz* for all k € N.
x

o o
We see that Z Maz* converges. By the Comparison Test, Z |ag| converges.
k=1 k=1
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2. Assume that r > 1. By Theorem 8.3.9, we have

Q41
Qg

> 1 for infinitely many k.

It follows that |ax+1| > |ax| for infinitely many k. Thus, a; is incresasing which induces nonzero
o0

limit of a;. By the Divergence Test, Z ay diverges. O]
k=1
Example 8.3.16 Prove that Z — converges absolutely.

k!
k=1

Solution. We notice that

—3k+1 i li S 0<1
- — | = 11In = .

k—o0

lim ‘

o0
3k
By the Ratio Test, we conclude that Z i converges.
k=1

2 k!
Example 8.3.17 Prove that Z & diverges.
k=1
Solution. We notice that
' (k—i— 1)k+1 k! ' (k—l— 1)k+1
lim |—— —| = llm —-—
(k1)
=l

o (B g
T b\ K

1 k
k—o0 k

Ny
By the Ratio Test, we conclude that Z % diverges.
k=1
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Exercises 8.3

1. Prove that each of the following series converges.

> 1 > 1 > ok < 7k A\
1.1 E T 1.2 E o 1.3 E T 1.4 <k:—+1>
k=1 k=1 k=1 k=1

2. Decide, using results convered so far in this chapter, which of the following series converge

and which diverge.

00 k2 0o k’—f-]_ k 0o El k2
2.1 T 2.4 . :

S5 > (5r73) 273 ()

i k! i " (34 (DR
2.9 - 2.5 (—) 2.8 Z (—)

k

2 ~\k+1 p 3

— k! = Ly (L4 (=1)F)*
2.3 Z::m 2.6 ;<W—E)k 2.9 ’;e—k

3. Define ay recursively by a; = 1 and

I\
ap, = (—1)* (1 + ksin (E)) ag—1, k> 1.

oo
Prove that Z aj converges absolutely.
k=1

o0
4. Suppose that ap > 0 and /ax — a as k — co. Prove that Z a,z® converges absolutely for

k=1
all [z| <1 if a0 and for all z € Rif a = 0.

5. For eachof the following, find all values of p € R for which the given series converges abso-

lutely.

<1 = kP 2kp |
5.1 § R 5.3 E o 5.5 7
k=2 k=1

5.2 5.4 _— 5.6 VK2 +1—EkP
kz:; In® k kz:; \/E(;{;p —1) ’;( )
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6. Suppose that ai; > 0 for k,j € N. Set

[e9]

Ak = Zakj

=1

for each k € N, and suppose that Z Ay converges.

k=1
6.1 Prove that i (Z ak‘y) < Z (Z akj)
j=1 \k=1
6.2 Show that i (f: akj) = i (f: akj)
j=1 \k=1 k=1 \j=1

7. Suppose that Z ay converges absolutely. Prove that Z |ag|P converges for all p > 1.
k=1 k=1

8. Suppose that Z ay, converges conditionally. Prove that Z kPa;, diverges for all p > 1.
k=1 k=1

9. Let a, >0 for n € N. Set by =0, by =1In (a2>’ and

ai

b, = In < il ) “In <a’“‘1) . k=34,..
Qp—1 Q—2

if exists and is positive, then

9.1 Prove that » = lim

n—oo an_ 1

hmlnan%: mE (1——)bk E b, =Inr.
n—oo
k=1

a 1
9.2 Prove that if a, € R\{0} and |—"=| — 7 as n — 0o, for some r > 0, then |a,|* — r as

n

n — oQ.



8.4. ALTERNATING SERIES 207

8.4 Alternating series

Theorem 8.4.1 (Abel’s Formula) Let {ay }ren and {by}ren be real sequences, and for each pair

of integers n > m > 1 set

Ay = Z ag.

k=m

Then .
Z akbk = An,mbn - Z Ak,m(bk—i-l - bk)
k=m

k=m

for all integers n > m > 1.

Proof. Since Ay, — Ag—1,m = ai, for k > m and A,, ,,, = a,,, we obtain

n

Z akbk = (lmbm + i akbk

k=m k=m+1
- ambm + Z (AkJrL - Ak—l,m)bk
k=m-+1
= ambm + Z Ak,mbk - Z Akfl,mbk
k=m+1 k=m+1
n n—1
= ambm + Z Ak,mbk - Z Ak,mbk
k=m+1 k=m
n—1 n—1
= ambm + Z Ak,mbk + An,mbn - Z Ak,mbk - Am,mbm+1
k=m-+1 k=m+1
n—1
- Am,mbm + An,mbn - Am,mbm—l—l - Z Ak,m(bk—i-l - bk)
k=m+1
n—1
= An,mbn - Am,m<bm+1 - bm) - Z Ak,m<bk+1 - bk)
k=m+1
n—1
- An,mbn - Z Ak,m(bk+1 - bk)
k=m

The proof is complete. O
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Theorem 8.4.2 (Dirichilet’s Test) Let {ar} and {by} be sequences in R. If the sequence of

partial sums s, = Z ay 1s bounded and b | 0 as k — oo, then
k=1

n
E apbr  converges.
k=1

n

Proof. Let s, = Z aj be bounded. Assume that b, is decreasing and converges to zero.

k=1
There is an M > 0 such that

n

>

k=1

< M forall n € N.

|3n| =

By the triangle inequality, for n > m > 1.

n

>

k=m

|Apm| = =180 — Sm-1| < |Sn] + |Sm_1| < M + M = 2M.

Let € > 0. Then there is an N € N such that

€
k>N impli b —.
> implies  |bx| < oYi

Since by, is decreasing and converges to zero, by — b1 > 0 and b > 0 for all k£ € N.

By Abel’s Formula and telescoping, for n > m > N, we obtain

n n—1
Z arbk| = |Anmbn — Z Apm (brr1 — br)
k=m k=m
n—1
S |An,m||bn| + Z Ak;,m<bk+1 - bk)
k=m
n—1
k=m
n—1
< 2Mb, + Y 2M (b, — bry)
k=m
— 2Mb,, + 2M (b, — by)
19
Thus, Zakbk converges. O

k=1
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Corollary 8.4.3 (Alternating Series Test (AST)) Ifa; | 0 as k — oo, then

(e.)
Z(—l)kak converges.
k=1

o
Moreover, z'fZak converges, then

k=1

Z(—l)kak converges conditionally.

00
k=1

Proof. Since the partial sums of Z(—l)k are bounded, Z(—l)kak converges by Dirichilet’s Test.
k=1 k=1

]

Example 8.4.4 Prove that Z ( k)
k=1

converges conditionally.

1 o)
Solution. If a; = T we see that a;, is decreasing and converges to 0. By AST, we have Z(—l)kak
k=1

diverges by p-Series Test (p = 1).

el

converges. It is clear that Z [(—1)*ay| = Z
k=1 k=1

(=D

We conclude that Z converges conditionally.
k=1

k
= (—1)* .
Example 8.4.5 Prove that Z Y converges conditionally.
n
k=2
1
Solution. Let a; = e Since k+1 >k >0, In(k+ 1) > Ink. It implies that
n
1 1
< for all £ > 1.
m(k+1) Ik O

(="
nk

Then a;, is decreasing and converges to 0. By AST, we obtain Z converges.
k=2

(=1)"
nk

[e.e] 1 oo
By Example 8.2.11, E ke We conclude that E converges conditionally.
n
k=2 k=2
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in(kx)
k

Dﬂmg

Example 8.4.6 Prove that S(z)= converges for each v € R.

B
Il

1

Solution. Let x € R. If x = 2¢7 where ¢ € Z, then

sin(2k{rm
3 (2k(m)

00
k=1

1 1
For case x # 20w for all ¢ € Z. 1t’s easy to see that {E} is decreasing and lim = 0.

k—o00
Define

Sy = zn:sin(kx)
Use trigonometry properties and teleascoping,kv:v; have
(23 (5)) 5. = (25 (5)) Do sinti
.. e
= ; 2sin(kz) sin ( 2)
= ki; [cos (kq: — g) — cos (k:c + g)]
2 {cosm (k — %) — oS T (k -+ %)1
1 1
= COosx (5) — COSZT (n+ 5) .
Since sin (g) # 0 for all x # 2¢w. We obatin
‘ (2 sin <§>> Sy, COS T (%) — COoST (n + %)
‘(23111 (g))“Sn\ = cosx(%)‘+ %

\Sn\§;: cse (2)].
(3)

\
)
[(sin ()] 2

So, S, is bounded for each = # 2¢w. By Dirichilet’s Test, it implies that

S

CcoST <n +

o0

Z Smg{:[) converges for all x # 207.

k=1

Therefore, we conclude that

in(k
S(x) = Z s1n§€ ?) converges for all z € R.
1

(e 9]

k
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Exercises 8.4

1. Prove that each of the following series converges.

1.1 Z(—l)k (g — arctan k) 1.5 Z Sm]ifm), reR, p>0
k=1 =

1.2 L.
; o 62 k;2 1-3- (2k—1)
= (1) (-1

1.3 1.7
; k! Z In(e* +1)
o (_1>k arctan k

1.4 0 1.8
; w0 P > Z Ak3 — 1

L (z+2)F

2.1 2.4

D% 2T

— " — 2 (z + 1)*
2.2 Z? 2.5 Z o

k=1 k=1

L (—1)ka® = (k(x+3))
2.3 2.6

kz; k2 +1 ; cosk

3. Using any test coveredin this chapter, find out which of the following series converge abso-

lutely, which converge conditionally, and which diverge.

o (—1)’%3 k\/ﬁ
3.1 ; (S 3.5 Z NG

s (=1)(=3)--- (1 — 2k) smk:
3.2; 1 Bh D) 362

— (k+ 1)k (—1)*
3.3 ;W’ p>e 3.7 ;m
345":(—1% k 382 lnk+2)
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4. ABEL’S TEST. Suppose that Z aj converges and by | b as k — co. Prove that
k=1

o0
E arpbr converges.
k=1

5. Use Dirichilet’s Test to prove that

converges for all x € R.

o

6. Prove that Z ay, cos(kx) converges for every z € (0,27) and every ay, | 0.

k=1
What happens when x =0 7

7. Suppose that Z ay converges. Prove that if by T oo and Z arby, converges, then
k=1 k=1

o0
meak—>0 as m — oo.
k=m
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Index
Abel’s formula, 205 Chord, 119
Absolute value, 9 Closed, 74
Additive identity, 1 Closure, 80
Additive inverse, 1 Closure properties, 1
Additive properties, 5, 48 Continuity of linear function, 106

Additive rule, 125 Continuous, 101, 106

Unifromly continuous, 115

Alternating series test (AST), 207 . L ) .
Unifrom continuity of linear function, 115

Associative properties, 1
prop ’ Commutative properties, 1

Approach, 83 Comparison test, 191

Approximatation property infimum (APT), 28 Comparison theorem, 51, 169

Approximatation property supremum (APS), 23 Comparison theorem for function, 90

Archimedean properties (AP), 24 Composition, 105

Base, 2 Converge, 36, 83

Bernoulli’s inequality, 133 Converge absolutely, 197

Converge conditionally, 197
Binomial formula, 19

Decreasing, 59, 140
Bolzano-Weierstrass theorem, 62 . .
Stricly decreasing, 140
Bounded, 26, 32, 110
Bounded above, 21, 32

Bounded below, 26, 32

Density
of Irrationals, 27
of Rationals, 26

Bounded convergent theorem (BCT), 43 Derivative, 119

Cancellation law, 4 Differentiable, 119, 122
Cauchy, 65 Distributive properties, 1
Cauchy criterior, 196 Dirichlet function, 157
Cauchy’s theorem, 66 Dirichlet test, 206

Chain rule, 127 Diverges, 52, 179

Change of variable, 176 Divergent test, 181
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Does not exist (DNE), 40

Dyadic partition, 148

Exponent, 2

Extreme value theorem (EVT), 110
Fundamental theorem of calculus, 172
Gauss’formula, 18

Geometric series, 182

Harmonic series, 180

Increasing, 59, 140
Stricly increasing, 140

Infinite series, 179
Infimum, 26

Integers, 2

Integral test, 188
Integration by part, 174

Interval, 11
Closed interval, 11

Open interval, 11
Interior point, 77
Intermedaite value theorem (IVT), 112
Inverse function, 33
Inverse function theorem, 143
Isolated point, 77
Irrationals, 2
L’Héspital’s rule, 135
Least element, 17

Limit, 83
Limit of constant function, 85
Limit of linear function, 86
Limit point, 77
Left-hand limit, 93
Right-hand limit, 92

Limit comparison test, 191
Limit supremum (limsup), 198
Linear property, 166

Lower bound, 26
Mathematical induction, 17

Mean value theorem (MVT), 131

Generalized mean value theorem, 134

Monotone, 59, 140

Stricly monotone, 140
Monotone convergent theorem (MCT), 60
Multiplicative identity, 1
Multiplicative inverse, 1
Multiplicative law, 9
Multiplicative property, 5, 49
Natural numbers, 2
Neighborhood, 72
Nested, 61
Nested interval property, 61
Nonnegative, 5
Norm, 147
One-to-one, 31
Onto, 31
Open, 69
p-series test, 190
Partial sum, 179
Partition, 147
Positive, 5
Positive definite, 9
Product rule, 126

Quotient property, 50
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Quotient rule, 126 Sequence, 35

Infinite sequence, 35
Rationals, 2
Subsequence, 41

Ratio test, 201 ) o o
Sequential Charaterization of limit (SCL), 87

Reciprocal property, 49 Sign-preserving theorem, 111

Refinement, finer, 147 Squeeze theorem, 45

Riemann integrable, integrable, 155 Squeeze theorem for function, 89

Lower integral, 157 .
Symmetric law, 10

Upper integral, 157
Sum telescopes, 152

Riemann sum, 163 Telescopic series, 181

Lower Riemann sum, 149

. Supremum, 21
Upper Riemann sum, 149

Tangent line, 119
Roll’s theorem, 130

Transtive property, 5
Root test, 200

Triangle inequality, 12
Scalar multiplicative property, 48 Apply triangle inequality, 13

Scalar multiplicative rule, 125 Trichotomy property, 5

Secant line, 119 Upper bound, 21
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