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Chapter 1

The Real Number System

1.1 Ordered field axioms

FIELD AXIOMS.

There are functions + and ·, defined on R2, that satisfy the following properties for every a, b, c ∈ R:

F1 Closure Properties a+ b and a · b belong to R.

F2 Associative Properties a+ (b+ c) = (a+ b) + c

a · (b · c) = (a · b) · c

F3 Commutative Properties a+ b = b+ a and a · b = b · a

F4 Distributive Properties a · (b+ c) = a · b+ a · c

(b+ c) · a = b · a+ c · a

F5 Additive Identity There is a unique element 0 ∈ R such that

0 + a = a = a+ 0 for all a ∈ R .

F6 Multiplicative Identity There is a unique element 1 ∈ R such that

1 · a = a = a · 1 for all a ∈ R.

F7 Additive Inverse For every x ∈ R there is a unique −x ∈ R such that

x+ (−x) = 0 = (−x) + x.

F8 Multiplicative Inverse For every x ∈ R\{0} there is a unique x−1 ∈ R such that

x · (x−1) = 1 = (x−1) · x.
We shall frequently denote

a+ (−b) by a− b, a · b by ab, a−1 by 1

a
and a · b−1 by a

b
.

1



2 CHAPTER 1. THE REAL NUMBER SYSTEM

The real number system R contains certain special subsets: the set of natural numbers

N := {1, 2, 3, ...}

obtained by begining with 1 and successively adding 1’s to form 2 := 1 + 1, 3 := 2 + 1, etc,; the

set of integers

Z := {...,−2,−1, 0, 1, 2, ...}

(Zahlen is German for number); the set of rationals (or fractions or quoteints)

Q :=

{
p

q
: p, q ∈ Z and q ̸= 0

}
and the set of irrationals

Qc := R\Q.

Equality in Q is defined by

m

n
=

p

q
if and only if mq = np.

Recall that each of the sets N,Z,Q and R is a proper subset of the next; i.e.,

N ⊂ Z ⊂ Q ⊂ R.

Definition 1.1.1 Let a ∈ R and n ∈ N. Define

an = a · a · ... · a︸ ︷︷ ︸
n− copies

a and n are called base and exponent, respectively.

Definition 1.1.2 Let a be a non-zero real number. Define

a0 = 1 and a−n =
1

an
for n ∈ N

Theorem 1.1.3 Let a, b ∈ R and n,m ∈ Z. Then

1. (ab)n = anbn

2.
(a
b

)n
=

an

bn
where b ̸= 0

3. an · am = am+n

4. an

am
= an−m where a ̸= 0

Proof. Excercise.
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Theorem 1.1.4 Let a be a real number. Then

1. 0a = 0

2. (−1)a = −a

3. −(−a) = a

4. (a−1)−1 = a where a ̸= 0

Theorem 1.1.5 Let a and b be real numbers. Then

−(ab) = a(−b) = (−a)b.
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Theorem 1.1.6 (Cancellation) Let a, b and c be real numbers. Then

1. Cancellation for addition if a+ c = b+ c, then a = b.

2. Cancellation for multiplication if ac = bc and c ̸= 0, then a = b.

Theorem 1.1.7 (Integral Domain) Let a and b be real numbers.

If ab = 0 , then a = 0 or b = 0.
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ORDER AXIOMS.

There is a relation < on R2 that has the following properties for every a, b, c ∈ R.

O1 Trichotomy Property Given a, b ∈ R, one and only one of

the following statements holds:

a < b, b < a, or a = b

O2 Trasitive Property a < b and b < c imply a < c

O3 Additive Property a < b imply a+ c < b+ c

O4 Multiplicative Property O4.1 a < b and 0 < c imply ac < bc

O4.2 a < b and c < 0 imply bc < ac

We define in other cases:

• By b > a we shall mean a < b.

• By a ≤ b we shall mean a < b or a = b.

• If a < b and b < c, we shall write a < b < c.

• We shall call a number a ∈ R nonnegative if a ≥ 0 and positive if a > 0.

Example 1.1.8 Let x ∈ R. Show that if 0 < x < 1, then 0 < x2 < x
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Example 1.1.9 Let x, y ∈ R. Show that if 0 < x < y, then 0 < x2 < y2

Theorem 1.1.10 Let a, b, c and d be real numbers.

If a < b and c < d, then a+ c < b+ d.

Theorem 1.1.11 Let a, b, c and d be real numbers.

If 0 < a < b and 0 < c < d, then ac < bd.
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Theorem 1.1.12 If a ∈ R, prove that

a ̸= 0 implies a2 > 0.

In particular, −1 < 0 < 1.

Example 1.1.13 If x ∈ R, prove that x > 0 implies x−1 > 0.

Example 1.1.14 If x ∈ R, prove that x < 0 implies x−1 < 0.
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Theorem 1.1.15 Let a and b be real numbers such that 0 < a < b. Then

1

b
<

1

a
.

Example 1.1.16 Let a and b be real numbers such that b < a < 0. Then

1

a
<

1

b
.

Example 1.1.17 Let x and y be two distinct real numbers. Prove that

x+ y

2
lies between x and y.
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ABSOLUTE VALUE.

Definition 1.1.18 (Absolute Value) The absolute value of a number a ∈ R is a the number

|a| =


a if a > 0

0 if a = 0

−a if a < 0

Theorem 1.1.19 (Positive Definite) For all a ∈ R,

1. |a| ≥ 0 2. |a| = 0 if and only if a = 0

Theorem 1.1.20 (Multiplicative Law) For all a, b ∈ R,

|ab| = |a||b|.
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Theorem 1.1.21 (Symmetric Law) For all a, b ∈ R,

|a− b| = |b− a|.

Moreover, |a| = | − a|.

Example 1.1.22 Show that
∣∣∣∣1x
∣∣∣∣ = 1

|x|
for all x ̸= 0.
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Theorem 1.1.23 Let a, b ∈ R. Show that

1. |a2| = a2 2. a ≤ |a| 3.
∣∣∣a
b

∣∣∣ = |a|
|b|

when b ̸= 0
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Theorem 1.1.24 Let a ∈ R and M ≥ 0. Then

|a| ≤ M if and only if −M ≤ a ≤ M

Corollary 1.1.25 For all a ∈ R, −|a| ≤ a ≤ |a|.
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INTERVAL.

Let a and b real numbers. A closed interval is a set of the form
[a, b] := {x ∈ R : a ≤ x ≤ b}

[a,∞) := {x ∈ R : a ≤ x}

(−∞, b] := {x ∈ R : x ≤ b}

(−∞,∞) := R,

and an open interval is a set of the form

(a, b) := {x ∈ R : a < x < b}

(a,∞) := {x ∈ R : a < x}

(−∞, b) := {x ∈ R : x < b}

(−∞,∞) := R.

By an interval we mean a closed interval, an open interval, or a set of the form

[a, b) := {x ∈ R : a ≤ x < b} or (a, b] := {x ∈ R : a < x ≤ b}

Notice, then, that when a < b, then intervals [a, b], [a, b), (a, b] and (a, b) correspond to line

segments on the real line, but when b < a, these interval are all the empty set.

Example 1.1.26 Solve |x− 1| ≤ 1 for x ∈ R in interval form.

Example 1.1.27 Show that if |x| < 1, then |x2 + x| < 2.
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Example 1.1.28 Show that if |x− 1| < 2, then 1

|x|
> 1.

Theorem 1.1.29 (Triangle Inequality) Let a, b ∈ R. Then,

|a+ b| ≤ |a|+ |b|.
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Theorem 1.1.30 (Apply Triangle Inequality) Let a, b ∈ R. Then,

1. |a− b| ≤ |a|+ |b|

2. |a| − |b| ≤ |a− b|

3. |a| − |b| ≤ |a+ b|

4. ||a| − |b|| ≤ |a− b|

Example 1.1.31 Show that if |x− 2| < 1, then |x| < 3.
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Theorem 1.1.32 Let x, y ∈ R. Then

1. x < y + ε for all ε > 0 if and only if x ≤ y

2. x > y − ε for all ε > 0 if and only if x ≥ y

Corollary 1.1.33 Let a ∈ R. Then

|a| < ε for all ε > 0 if and only if a = 0
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Exercises 1.1

1. Let a, b ∈ R. Prove that

1.1 −(a− b) = b− a

1.2 a(b− c) = ab− ac

1.3 (−a)(−b) = ab

1.4 −a

b
=

a

−b
= −a

b
when b ̸= 0

2. Let a, b ∈ R. Prove that

2.1 If a+ b = a, then x = 0.

2.2 If ab = b and b ̸= 0, then a = 1.

2.3 If a−1 = a and a ̸= 0, then a = −1 or a = 1.

3. Let a, b, c, d ∈ R. Prove that

3.1 if a < b < 0, then 0 < b2 < a2.

3.2 if a ≤ b and a ≥ b, then a = b.

3.3 if 0 < a < b, then
√
a <

√
b.

4. Solve each of the following inequality for x ∈ R.

4.1 |1− 2x| ≤ 3

4.2 |3− x| < 5

4.3 |x2 − x− 1| < x2

4.4 |x2 − x| < 2

5. Prove that if 0 < a < 1 and b = 1−
√
1− a, then 0 < b < a.

6. Prove that if a > 2 and b = 1−
√
1− a, then 2 < b < a.

7. Prove that |x| ≤ 1 implies |x2 − 1| ≤ 2|x− 1|.

8. Prove that −1 ≤ x ≤ 2 implies |x2 + x− 2| ≤ 4|x− 1|.

9. Prove that |x| ≤ 1 implies |x2 − x− 2| ≤ 3|x+ 1|.

10. Prove that 0 < |x− 1| ≤ 1 implies |x3 + x− 2| < 8|x− 1|. Is this true if 0 ≤ |x− 1| < 1 ?
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11. Let x, y ∈ R. Prove that if |x+ y| = |x− y|, then x|y|+ y|x| = 0.

12. Let x, y ∈ R. Prove that if |2x+ y| = |x+ 2y|, then |xy| = x2.

13. Let a ∈ R. Prove that a2 + 2√
a2 + 1

≥ 2.

14. Prove that

(a1b1 + a2b2)
2 ≤ (a21 + a22)(b

2
1 + b22)

for all a1, a2, b1, b2 ∈ R

15. Let x, y ∈ R. Prove that x > y − ε for all ε > 0 if and only if x ≥ y.

16. Suppose that x, a, y, b ∈ R, |x− a| < ε and |y − b| < ε for some ε > 0. Prove that

16.1 |xy − ab| < (|a|+ |b|)ε+ ε2

16.2 |x2y − a2b| < ε(|a|2 + 2|ab|) + ε2(|b|+ 2|a|) + ε2

17. The positive part of an a ∈ R is defined by

a+ :=
|a|+ a

2

and the negative part by

a− :=
|a| − a

2
.

17.1 Prove that a = a+ − a− and |a| = a+ + a−.

17.2 Prove that a+ :=

a : a ≥ 0

0 : a ≤ 0

and a− :=

0 : a ≥ 0

−a : a ≤ 0

.

18. Let a, b ∈ R. The arithmetic mean of a, b is A(a, b) :=
a+ b

2
,

the geometric mean of a, b ∈ (0,∞) is G(a, b) :=
√
ab,

and harmonic mean of a, b ∈ (0,∞) is H(a, b) :=
2

a−1 + b−1
.

Show that

18.1 if a, b ∈ (0,∞). Then H(a, b) ≤ G(a, b) ≤ A(a, b).

18.2 if 0 < a ≤ b. Then a ≤ G(a, b) ≤ A(a, b) ≤ b.

18.3 if 0 < a ≤ b. Then, G(a, b) = A(a, b) if and only if a = b.



1.2. WELL-ORDERING PRINCIPLE 19

1.2 Well-Ordering Principle

Definition 1.2.1 A number m is a least element of a set S ⊂ R if and only if

m ∈ S and m ≤ s for all s ∈ S.

WELL-ORDERING PRINCIPLE (WOP).

Every nonempty subset of N has a least element.

S ⊆ N ∧ S ̸= ∅ → ∃m ∈ S ∀s ∈ S, m ≤ s.

Theorem 1.2.2 (Mathematical Induction) Suppose for each n ∈ N that P (n) is a statement

that satisfies the following two properties:

(1) Basic step : P (1) is true

(2) Inductive step : For every k ∈ N for which P (k) is true, P (k + 1) is also true.

Then P (n) is true for all n ∈ N.
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Example 1.2.3 (Gauss’ formula) Prove that

n∑
k=1

k =
n(n+ 1)

2

for all n ∈ N.

Example 1.2.4 Prove that 2n > n for all n ∈ N.
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BINOMIAL FORMULA.

Definition 1.2.5 The notation 0! = 1 and n! = 1 · 2 · · · (n − 1) · n for n ∈ N (called factorial),

define the binomial coefficient n over k byn

k

 :=
n!

(n− k)!k!

for 0 ≤ k ≤ n and n = 0, 1, 2, 3, ...

Theorem 1.2.6 If n, k ∈ N and 1 ≤ k ≤ n, then

n+ 1

k

 =

 n

k − 1

+

n

k
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Theorem 1.2.7 (Binomial formula) If a, b ∈ R and n ∈ N, then

(a+ b)n =
n∑

k=0

n

k

 an−kbk
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Exercises 1.2

1. Prove that the following formulas hold for all n ∈ N.

1.1
n∑

k=1

(3k − 1)(3k + 2) = 3n3 + 6n2 + n

1.2
n∑

k=1

k3 =

[
n(n+ 1)

2

]2
1.3

n∑
k=1

(2k − 1)2 =
n(4n2 − 1)

3

1.4
n∑

k=1

a− 1

ak
= 1− 1

an
, a ̸= 0

2. Use the Binomial Formula to prove each of the following.

2.1 2n =
n∑

k=1

n

k

 for all n ∈ N.

2.2 (a+ b)n ≥ an + aan−1b for all n ∈ N and a, b ≥ 0.

2.3
(
1 +

1

n

)n

≥ 2 for all n ∈ N.

3. Let n ∈ N. Write
(x+ h)n − xn

h

as a sum none of whose terms has an h in the dennominator.

4. Suppose that 0 < x1 < 1 and xn+1 = 1−
√
1− xn for n ∈ N. Prove that 0 < xn+1 < xn < 1

holds for all n ∈ N.

5. Suppose that x1 ≥ 2 and xn+1 = 1 +
√
xn − 1 for n ∈ N. Prove that 2 ≤ xn+1 ≤ xn ≤ x1

holds for all n ∈ N.

6. Suppose that 0 < x1 < 2 and xn+1 =
√
2 + xn for n ∈ N. Prove that 0 < xn < xn+1 < 2

holds for all n ∈ N.

7. Prove that each of the following inequalities hold for all n ∈ N.

7.1 n < 3n 7.2 n2 ≤ 2n + 1 7.3 n3 ≤ 3n

8. Let 0 < |a| < 1. Prove that |a|n+1 < |a|n for all n ∈ N.

9. Prove that 0 ≤ a < b implies an < bn for all n ∈ N.
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1.3 Completeness Axiom

SUPREMUM.

Definition 1.3.1 Let A be a nonempty subset of R.

1. The set A is said to be bounded above if and only if

there is an M ∈ R such that a ≤ M for all a ∈ A

2. A number M is called an upper bound of the set A if and only if

a ≤ M for all a ∈ A

3. A number s is called a supremum of the set A if and only if

s is an upper bound of A and s ≤ M for all upper bound M of A

In this case we shall say that A has a supremum s and shall write s = supA

Example 1.3.2 Fill the blanks of the following table.

Sets Bounded above Set of Upper bound Supremum

A = [0, 1]

A = (0, 1)

A = {1}

A = (0,∞)

A = (−∞, 0)

A = N

A = Z
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Example 1.3.3 Show that supA = 1 where

1. A = [0, 1] 2. A = (0, 1)

Theorem 1.3.4 If a set has one upper bound, then it has infinitely many upper bounds.



26 CHAPTER 1. THE REAL NUMBER SYSTEM

Theorem 1.3.5 If a set has a supremum, then it has only one supremum.

Theorem 1.3.6 (Approximation Property for Supremum (APS)) If A has a supremum

and ε > 0 is any positive number, then there is a point a ∈ A such that

supA− ε < a ≤ supA



1.3. COMPLETENESS AXIOM 27

Theorem 1.3.7 If A ⊂ N has a supremum, then supA ∈ A.

COMPLETENESS AXIOM.

If A is a nonempty subset of R that is bounded above, then A has a supremum.

Theorem 1.3.8 The set of natural numbers is not bounded above.
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Theorem 1.3.9 (Archimedean Properties (AP)) For each x ∈ R, the following statements

are true.

1. There is an integer n ∈ N such that x < n.

2. If x > 0, there there is an integer n ∈ N such that 1

n
< x.

Theorem 1.3.10 Let x ∈ R. Then

|x| < 1

n
for all n ∈ N if and only if x = 0
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Example 1.3.11 Let A =

{
1

n
: n ∈ N

}
. Prove that supA = 1.

Example 1.3.12 Let A =

{
n

n+ 1
: n ∈ N

}
. Prove that supA = 1.
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Theorem 1.3.13 If x ∈ R, then there is an n ∈ Z such that

n− 1 ≤ x < n.

Theorem 1.3.14 (Density of Rationals) If a, b ∈ R satisfy a < b, then there is a rational

number r such that

a < r < b.
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Theorem 1.3.15
√
2 is irrational.

Theorem 1.3.16 (Density of Irratioals) If a, b ∈ R satisfy a < b, then there is an irrational

number t such that

a < t < b.
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INFIMUM.

Definition 1.3.17 Let A be a nonempty subset of R.

1. The set A is said to be bounded below if and only if

there is an m ∈ R such that m ≤ a for all a ∈ A

2. A number m is called a lower bound of the set A if and only if

m ≤ a for all a ∈ A

3. A number ℓ is called an infimum of the set A if and only if

ℓ is a lower bound of A and m ≤ ℓ for all lower bound m of A

In this case we shall say that A has an infimum s and shall write ℓ = infA

4. A is said to be bounded if and only if it is bounded above and below.

Example 1.3.18 Fill the blanks of the following table.

Sets Bounded below Set of Lower bound Infimum Bounded

A = [0, 1]

A = (0, 1)

A = {1}

A = (0,∞)

A = (−∞, 0)

A = N

A = Z
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Example 1.3.19 Show that infA = 0 where

1. A = [0, 1] 2. A = (0, 1)

Example 1.3.20 Let A =

{
1

n
: n ∈ N

}
. Prove that infA = 0.
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Example 1.3.21 Let A =

{
n

n+ 1
: n ∈ N

}
. Prove that infA =

1

2
.

Theorem 1.3.22 (Approximation Property for Infimum (API)) If A has an infimum and

ε > 0 is any positive number, then there is a point a ∈ A such that

infA ≤ a < infA+ ε.
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Exercises 1.3

1. Find the infimum and supremum of each the following sets.

1.1 A = [0, 2)

1.2 A = {4, 3, 1, 5}

1.3 A = {x ∈ R : |x− 1| < 2}

1.4 A = {x ∈ R : |x+ 1| < 1}

1.5 A = {1 + (−1)n : n ∈ N}

1.6 A =

{
1

n
− (−1)n : n ∈ N

}

1.7 A =

{
1 +

(−1)n

n
: n ∈ N

}

1.8 A =

{
n+ 1

n
: n ∈ N

}

1.9 A =

{
n2 + n

n2 + 1
: n ∈ N

}

1.10 A =

{
n(−1)n + 1

n+ 2
: n ∈ N

}

2. Find infA and supA with proving them.

2.1 A = [−1, 1]

2.2 A = (−1, 2]

2.3 A = (−1, 0) ∪ (1, 2)

2.4 A = {1, 2, 3}

2.5 A =

{
n

n+ 2
: n ∈ N

}
2.6 A =

{
n− 2

n+ 2
: n ∈ N

}
2.7 A =

{
n

n2 + 1
: n ∈ N

}
2.8 A = {(−1)n : n ∈ N}

3. Let A =

{
1− n

n2 + 2
: n ∈ N

}
. What are supremum and infimum of A ? Verify (proof)

your answers.

4. Let A =

{
2− n

n2 + 1
: n ∈ N

}
. What are supremum and infimum of A ? Verify (proof)

your answers.

5. If a set has one lower bound, then it has infinitely many lower bounds.

6. Prove that if A is a nonempty bounded subset of Z, then both supA and infA exist and

belong to A.

7. Prove that for each a ∈ R and each n ∈ N there exists a rational rn such that

|a− rn| <
1

n
.
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8. Let r be a rational number and s be an irrational number. Prove that

8.1 r + s is an irrational number.

8.2 if r ̸= 0, then rs is always an irrational number.

9. Let
√
K ∈ Qc and a, b, x, y ∈ Z. Prove that

if a+ b
√
K = x+ y

√
K, then a = x and b = y.

10. Show that a lower bound of a set need not be unique but the infimum of a given set A is

unique.

11. Show that if A is a nonoempty subset of R that is bounded below, then A has a finite

infimum.

12. Prove that if x is an upper bound of a set A ⊆ R and x ∈ A, then x is the supremum of A.

13. Suppose E,A,B ⊂ R and E = A ∪ B. Prove that if E has a supremum and both A and B

are nonempty, then SupA and supB both exist, and supE is one of the numbers SupA or

supB.

14. (Monotone Property) Suppose that A ⊆ B are nonempty subsets of R. Prove that

14.1 if B has a supremum, then supA ≤ supB

14.2 if B has an infimum, then infB ≤ infA

15. Define the reflection of a set A ⊆ R by

−A := {−x : x ∈ A}

Let A ⊆ R be nonempty. Prove that

15.1 A has a supremum if and only if −A has and infimum, in which case

inf(−A) = − supA.

15.2 A has an infimum if and only if −A has and supremum, in which case

sup(−A) = − infA.
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1.4 Functions and Inverse functions

Review notation f : X → Y that means a fuction form X to Y , each x ∈ X is assigned a

unique y = f(x) ∈ Y , there is nothing that keeps two x’s from being assigned to the same y, and

nothing that say every y ∈ Y corresponds to some x ∈ X, i.e., f is a fuction if and only if for each

(x1, y1), (x2, y2) belong to f ,

if x1 = x2 , then y2 = y2.

Definition 1.4.1 Let f be a function from a set X into a set Y .

1. f is said to be one-to-one (1-1) on X if and only if

x1, x2 ∈ X and f(x1) = f(x2) imply x1 = x2.

2. f is said to take X onto Y if and only if

for each y ∈ Y there is an x ∈ X such that y = f(x).

Example 1.4.2 Show that f(x) = 2x+ 1 is 1-1 from R onto R.
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Theorem 1.4.3 Let X and Y be sets and f : X → Y . Then f is 1-1 from X onto Y if and only

if there is a unique function g from Y onto X that satisfies

1. f(g(y)) = y, y ∈ Y

and

2. g(f(x)) = x, x ∈ X
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If f is 1-1 from a set X onto a set Y , we shall say that f has an inverse function. We shall

call the function g given in Theorem 1.4.3 the inverse of f , and denote it by f−1. Then

f(f−1(y)) = y and f−1(f(x)) = x.

Example 1.4.4 Find inverse function of f(x) = 2x+ 1.

Example 1.4.5 Let f(x) = ex − e−x.

1. Show that f is 1-1 from R onto R.

2. Find a formula of f−1(x).
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Exercises 1.4

1. For each of the following, prove f is 1-1 from A onto A. Find a formula for f−1.

1.1 f(x) = 3x− 7 : A = R

1.2 f(x) = x2 − 2x− 1 : A = (1,∞)

1.3 f(x) = 3x− |x|+ |x− 2| : A = R

1.4 f(x) = x|x| : A = R

1.5 f(x) = e
1
x : A = (0,∞)

1.6 f(x) = tanx : A = (−π
2
, π
2
)

1.7 f(x) =
x

x2 + 1
: A = [−1, 1]

2. Let f(x) = x2ex
2 where x ∈ R. Show that f is 1-1 on (0,∞).

3. Suppose that A is finite and f is 1-1 from A onto B. Prove that B is finite.

4. Prove that there a fuction f that is 1-1 from {2, 4, 6, ...} onto N.

5. Prove that there a fuction f that is 1-1 from {1, 3, 5, ...} onto N.

6. Suppose that n ∈ N and ϕ : {1, 2, ..., n} → {1, 2, ..., n}.

6.1 Prove that ϕ is 1-1 if and only if ϕ in onto.

6.2 Suppose that A is finite and f : A → A. Prove that

f is 1-1 on A if and only if f takes A onto A.

7. Let f : {1, 2, ..., n} → {1, 2, ..., n} be a 1-1 function. Show that
n∑

x=1

f(x) = n!.
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Sequences in R

2.1 Limits of sequences

An infinite sequence (more briefly, a sequence) is a function whose domain in N. A sequence

f whose term are xn := f(n) will be defined by

x1, x2, x3, ... or {xn}n∈N or {xn}∞n=1 or {xn}.

Example 2.1.1 Use notation to represents the following sequences.

1. 1, 2, 3, ... represents the sequence {n}n∈N

2. 1,−1, 1,−1, ... represents the sequence {(−1)n}

Example 2.1.2 Sketch graph of {xn} and guess xn if n go to infinity where xn =
1

n

X

Y

1 2 3 4 5 6 7 8 9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

41
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Definition 2.1.3 A sequence of real numbers {xn} is said to converge to a real number a ∈ R

if and only if for every ε > 0 there is an N ∈ N such that

n ≥ N implies |xn − a| < ε.

We shall use the following phrases and notations interchangeably:

(a) {xn} converges to a;

(b) xn converges to a;

(c) lim
n→∞

xn = a;

(d) xn → a as n → ∞;

(e) the limit of {xn} exists and equals a.

X

Y

1 2 3 · · · N N + 1 · · ·

a+ ε

a

a− ε

Theorem 2.1.4 lim
n→∞

k = k where k is a constant.
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Example 2.1.5 Prove that 1

n
→ 0 as n → ∞.

Example 2.1.6 Prove that lim
n→∞

n

n+ 1
= 1
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Example 2.1.7 Prove that 1

2n
→ 0 as n → ∞

Example 2.1.8 Prove that lim
n→∞

1

n2
= 0



2.1. LIMITS OF SEQUENCES 45

Example 2.1.9 Prove that lim
n→∞

(√
n+ 1−

√
n
)
= 0

Example 2.1.10 If xn → 1 as n → ∞. Prove that

2xn + 1 → 3 as n → ∞.
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Example 2.1.11 If xn → −1 as n → ∞. Prove that

(xn)
2 → 1 as n → ∞.

Example 2.1.12 Assume that xn → 1 as n → ∞. Show that

1

xn

→ 1 as n → ∞.
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Example 2.1.13 Assume that xn → 1 as n → ∞. Show that

1 + (xn)
2

xn + 1
→ 1 as n → ∞

Theorem 2.1.14 A sequence can have at most one limit.
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Example 2.1.15 Show that the limit {(−1)n}n∈N has no limit or does not exist (DNE).



2.1. LIMITS OF SEQUENCES 49

SUBSEQUENCES.

Definition 2.1.16 By a subsequence of a sequence {xn}n∈N, we shall mean a sequence of the

form

{xnk
}k∈N, where each nk ∈ N and n1 < n2 < n3 < ...

Example 2.1.17 Give examples for two subsequences of the following sequences.

Sequences Subsequences

1,−1, 1,−1, 1,−1, ...

{n}n∈N

Theorem 2.1.18 If {xn}n∈N converges to a and {xnk
}k∈N is any subsequence of {xn}n∈N, then

xnk
converges to a as k → ∞.
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Example 2.1.19 Show that the limit {cos(nπ)}n∈N has no limit.

BOUNDED SEQUENCES.

Definition 2.1.20 Let {xn} be a sequence of real numbers.

1. {xn} is said to be bounded above if and only if

there is an M ∈ R such that xn ≤ M for all n ∈ N

2. {xn} is said to be bounded below if and only if

there is an m ∈ R such that m ≤ xn for all n ∈ N

3. {xn} is said to be bounded if and only if it is both above and below or

there a K > 0 such that |xn| ≤ K for all n ∈ N

Example 2.1.21 Show that the following sequence is bounded above or bounded below or bounded.

Sequences Bounded below Bounded above Bounded

{n}n∈N

{−n}n∈N

{(−1)n}n∈N
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Theorem 2.1.22 (Bounded Convergent Theorem (BCT)) Every convergent sequence is

bounded.

Example 2.1.23 Show that the limit {n}n∈N does not exist.
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Example 2.1.24 Assume that xn → 1 as n → ∞. Use BCT to prove that

(xn)
2 → 1 as n → ∞.
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Exercises 2.1

1. Prove that the following limit exist.

1.1 3 +
1

n
as n → ∞

1.2 2

(
1− 1

n

)
as n → ∞

1.3 2n+ 1

1− n
as n → ∞

1.4 n2 − 1

n2
as n → ∞

1.5 5 + n

n2
as n → ∞

1.6 π − 3√
n

as n → ∞

1.7 n(n+ 2)

n2 + 1
as n → ∞

1.8 n

n3 + 1
as n → ∞

2. Suppose that xn is sequence of real numbers that converges to 2 as n → ∞.

Use Definition 2.1.3, prove that each of the following limit exists.

2.1 2− xn → 0 as n → ∞

2.2 3xn + 1 → 7 as n → ∞

2.3 (xn)
2 + 1 → 5 as n → ∞

2.4 1

xn − 1
→ 1 as n → ∞

2.5 2 + x2
n

xn

→ 3 as n → ∞

3. Assume that {xn} is a convergent sequence in R. Prove that lim
n→∞

(xn − xn+1) = 0.

4. If xn → a as n → ∞, prove that xn+1 → a as n → ∞.

5. If xn → +∞ as n → ∞, prove that xn+1 → +∞ as n → ∞.

6. Prove that {(−1)n} has some subsequences that converge and others that do not converge.

7. Find a convergent subsequence of n+ (−1)3nn.

8. Suppose that {bn} is a sequence of nonnegative numbers that converges to 0, and {xn} is a

real sequence that satisfies |xn − a| ≤ bn for large n. Prove that xn converges to a.

9. Suppose that {xn} is bounded. Prove that xn

nk
→ 0 as n → ∞ for all k ∈ N.

10. Suppose that {xn} and {yn} converge to same point. Prove that xn − yn → 0 as n → ∞

11. Prove that xn → a as n → ∞ if and only if xn − a → 0 as n → ∞.
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2.2 Limit theorems

Theorem 2.2.1 (Squeeze Theorem) Suppose that {xn}, {yn}, and {wn} are real sequences.

If xn → a and yn → a as n → ∞, and there is an N0 ∈ N such that

xn ≤ wn ≤ yn for all n ≥ N0,

then wn → a as n → ∞.

Example 2.2.2 Use the Squeeze Theorem to prove that

lim
n→∞

sin(n2)

2n
= 0.
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Theorem 2.2.3 Let {xn}, and {yn} be real sequences. If xn → 0 and {yn} is bounded, then

xnyn → 0 as n → ∞.

Example 2.2.4 Show that lim
n→∞

cos(1 + n)

n2
= 0.
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Theorem 2.2.5 Let A ⊆ R.

1. If A has a finite supremum, then there is a sequence xn ∈ A such that

xn → supA as n → ∞.

2. If A has a finite infimum, then there is a sequence xn ∈ A such that

xn → infA as n → ∞.
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Theorem 2.2.6 (Additive Property) Suppose that {xn} and {yn} are real sequences.

If {xn} and {yn} are convergent, then

lim
n→∞

(xn + yn) = lim
n→∞

xn + lim
n→∞

yn.

Theorem 2.2.7 (Scalar Multiplicative Property) Let α ∈ R. If {xn} is a convergent sequence,

then

lim
n→∞

(αxn) = α lim
n→∞

xn.
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Theorem 2.2.8 (Multiplicative Property) Suppose that {xn} and {yn} are convergent se-

quences. Then

lim
n→∞

(xnyn) =
(

lim
n→∞

xn

)(
lim
n→∞

yn

)
.
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Theorem 2.2.9 (Reciprocal Property) Suppose that {xn} is a convergent sequence.

lim
n→∞

1

xn

=
1

lim
n→∞

xn

where lim
n→∞

xn ̸= 0 and xn ̸= 0.

Theorem 2.2.10 (Quotient Property) Suppose that {xn} and {yn} are convergent sequences.

Then

lim
n→∞

xn

yn
=

lim
n→∞

xn

lim
n→∞

yn

where lim
n→∞

yn ̸= 0 and yn ̸= 0.
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Example 2.2.11 Find the limit lim
n→∞

n2 + n− 3

1 + 3n2
.

Theorem 2.2.12 (Comparison Theorem) Suppose that {xn} and {yn} are convergent se-

quences. If there is an N0 ∈ N such that

xn ≤ yn for all n ≥ N0,

then

lim
n→∞

xn ≤ lim
n→∞

yn.

In particular, if xn ∈ [a, b] converges to some point c, then c must belong to [a, b].
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DIVERGENT.

Definition 2.2.13 Let {xn} be a sequence of real numbers.

1. {xn} is said to be diverge to +∞, written xn → +∞ as n → ∞ or lim
n→∞

xn = +∞

if and only if for each M ∈ R there is an N ∈ N such that

n ≥ N implies xn > M .

2. {xn} is said to be diverge to −∞, written xn → −∞ as n → ∞ or lim
n→∞

xn = −∞

if and only if for each M ∈ R there is an N ∈ N such that

n ≥ N implies xn < M .

Example 2.2.14 Show that lim
n→∞

n = +∞

Example 2.2.15 Prove that lim
n→∞

n2

1 + n
= +∞.
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Example 2.2.16 Prove that lim
n→∞

4n2

1− 2n
= −∞.

Example 2.2.17 Suppose that {xn} is a real sequence such that xn → +∞ as n → ∞.

If xn ̸= 0, prove that

lim
n→∞

1

xn

= 0.
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Theorem 2.2.18 Let {xn} and {yn} be a real sequence and xn ̸= 0. If {yn} is bounded and

xn → +∞ or xn → −∞ as n → ∞, then

lim
n→∞

yn
xn

= 0.

Example 2.2.19 Show that sinn

n
→ 0 as n → ∞.
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Theorem 2.2.20 Let {xn} be a real sequence and α > 0.

1. If xn → +∞ as n → ∞, then lim
n→∞

(αxn) = +∞.

2. If xn → −∞ as n → ∞, then lim
n→∞

(αxn) = −∞.
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Theorem 2.2.21 Let {xn} and {yn} be real sequences. Suppose that {yn} is bounded below and

xn → +∞ as n → ∞. Then

lim
n→∞

(xn + yn) = +∞.
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Theorem 2.2.22 Let {xn} and {yn} be real sequences such that

yn > K for some K > 0 and all n ∈ N.

It follows that

1. if xn → +∞ as n → ∞, then lim
n→∞

(xnyn) = +∞

2. if xn → −∞ as n → ∞, then lim
n→∞

(xnyn) = −∞
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Exercises 2.2

1. Prove that each of the following sequences coverges to zero.

1.1 xn =
sin(n4 + n+ 1)

n

1.2 xn =
n

n2 + 1

1.3 xn =

√
n+ 1

n+ 1

1.4 xn =
n

2n

1.5 xn =
(−1)n

n

1.6 xn =
1 + (−1)n

2n

2. Find the limit (if it exists) of each of the following sequences.

2.1 xn =
2n(n+ 1)

n2 + 1

2.2 xn =
1 + n− 3n2

3− 2n+ n2

2.3 xn =
n3 + n+ 5

5n3 + n− 1

2.4 xn =

√
2n2 − 1

n+ 1

2.5 xn =
√
n+ 2−

√
n

2.6 xn =
√
n2 + n− n

3. Prove that each of the following sequences coverges to −∞ or +∞.

3.1 xn = n2

3.2 xn = −n

3.3 xn =
n

1 +
√
n

3.4 xn =
n2 + 1

n+ 1

3.5 xn =
1− n2

n

3.6 xn =
2n

n

4. Let A ⊆ R. If A has a finite supremum, then there is a sequence xn ∈ A such that

xn → supA as n → ∞.

5. Prove that given x ∈ R there is a sequence rn ∈ Q such that rn → x as n → ∞.

6. Use the result Excercise 1.2, show that the following

6.1 Suppose that 0 ≤ x1 ≤ 1 and xn+1 = 1−
√
1− xn for n ∈ N.

If xn → x as n → ∞, prove that x = 0 or 1.
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6.2 Suppose that x1 > 0 and xn+1 =
√
2 + xn for n ∈ N.

If xn → x as n → ∞, prove that x = 2.

7. Let {xn} be a real sequence and α > 0. If xn → −∞ as n → ∞, then lim
n→∞

(αxn) = −∞.

8. Let {xn} and {yn} be real sequences such that yn > K for some K > 0 and all n ∈ N.

Prove that if xn → −∞ as n → ∞, then lim
n→∞

(xnyn) = −∞.

9. Let {xn} and {yn} are real sequences. Suuppose that {yn} is bounded above and xn → −∞

as n → ∞. Prove that

lim
n→∞

(xn + yn) = −∞.

10. Interpret a decimal expansion 0.a1a2a3... as

0.a1a2a3... = lim
n→∞

∞∑
k=1

ak
10k

.

Prove that

10.1 0.5 = 0.4999... 10.2 1 = 0.999...
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2.3 Bolzano-Weierstrass Theorem

MONOTONE.

Definition 2.3.1 Let {xn}n∈N be a sequence of real numbers.

1. {xn} is said to be increasing if and only if x1 ≤ x2 ≤ x3 ≤ ... or

xn ≤ xn+1 for all n ∈ N.

2. {xn} is said to be decreasing if and only if x1 ≥ x2 ≥ x3 ≥ ... or

xn ≥ xn+1 for all n ∈ N.

3. {xn} is said to be monotone if and only if it is either increasing or decreasing.

If {xn} is increasing and converges to a, we shall write xn ↑ a as n → ∞.

If {xn} is decreasing and converges to a, we shall write xn ↓ a as n → ∞.

Example 2.3.2 Determine whether {xn}n∈N is increasing or decreasing or NOT both.

Sequences Decreasing Increasing Monotone

{n}n∈N

{
1

n

}
n∈N

{1}n∈N

{(−1)n}n∈N
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Theorem 2.3.3 (Monotone Converegence Theorem (MCT)) If {xn} is increasing and

bounded above, or if it is decreasing and bounded below, then {xn} has a finite limit.
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Theorem 2.3.4 If |a| < 1, then an → 0 as n → ∞.

Example 2.3.5 Find the limit of
{
3n+1 + 1

3n + 2n

}
.
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Definition 2.3.6 A sequence of sets {In}n∈N is said to be nested if and only if

I1 ⊇ I2 ⊇ I3 ⊇ ... or In+1 ⊆ In for all n ∈ N.

Example 2.3.7 Show that In = [ 1
n
, 1] is nested.

Theorem 2.3.8 (Nested Interval Property) If {In}n∈N is a nested sequence of nonempty closed

bounded intervals, then

E =
⋂
n∈N

In := {x : x ∈ In for all n ∈ N}

contains at least one number. Moreover, if the lengths of these intervals satisfy |In| → 0 as n → ∞,

then E contains exactly one number.
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Theorem 2.3.9 (Bolzano-Weierstrass Theorem) Every bounded sequence of real numbers has

a convergence subsequence.
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Exercises 2.3

1. Prove that

xn =
(n2 + 22n+ 65) sin(n3)

n2 + n+ 1

has a convergence sunsequence.

2. If {xn} is decreasing and bounded below, then {xn} has a finite limit.

3. Suppose that E ⊂ R is nonempty bpunded set and supE /∈ E. Prove that there exist a

strictly increasing sequence {xn} (x1 < x2 < x3 < ...) that converges to supE such that

xn ∈ E for all n ∈ N.

4. Suppose that {xn} is a monotone increasing in R (not necessarily bounded above). Prove

that there is extended real number x such that xn → x as n → ∞.

5. Suppose that 0 < x1 < 1 and xn+1 = 1−
√
1− xn for n ∈ N. Prove that

xn ↓ 0 as n → ∞ and xn+1

xn

→ 1

2
, as n → ∞

6. If a > 0, prove that a
1
n → 1 as n → ∞. Use the resulte to find the limit of {3n+1

n }.

7. Let 0 ≤ x1 ≤ 3 and xn+1 =
√
2xn + 3 for n ∈ N. Prove that xn ↑ 3 as n → ∞.

8. Suppose that x1 ≥ 2 and xn+1 = 1+
√
xn − 1 for n ∈ N. Prove that xn ↓ 2 as n → ∞. What

happens when 1 ≤ x1 < 2 ?

9. Prove that

lim
n→∞

x
1

2n−1 =


1 if x > 0

0 if x = 0

−1 if x < 0

10. Suppose that x0 ∈ R and xn =
1 + xn−1

2
for n ∈ N. Prove that xn → 1 as n → ∞.

11. Let {xn} be a sequence in R. Prove that

11.1 if xn ↓ 0, then xn > 0 for all n ∈ N.
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11.2 if xn ↑ 0, then xn < 0 for all n ∈ N.

12. Let 0 < y1 < x1 and set

xn+1 =
xn + yn

2
and yn+1 =

√
xnyn, for n ∈ N

12.1 Prove that 0 < yn < xn for all n ∈ N.

12.2 Prove that yn is increasing and bounded above, and xn is decreasing and bounded

below.

12.3 Prove that 0 < xn+1 − yn+1 <
x1 − y1

2n
for n ∈ N

12.4 Prove that lim
n→∞

xn = lim
n→∞

yn. (the common value is called the arithemetic-geometric

mean of x1 and y1.)

13. Suppose that x0 = 1, y0 = 0

xn = xn−1 + 2yn−1,

and

yn = xn−1 + yn−1

for n ∈ N. Prove that x2
n − 2y2n = ±1 for n ∈ N and

xn

yn
→

√
2 as n → ∞.

14. (Archimedes) Suppose that x0 = 2
√
3, y0 = 3,

xn =
2xn−1yn−1

xn−1 + yn−1

, and yn =
√
xnyn−1 for n ∈ N.

14.1 Prove that xn ↓ x and yn ↑ y, as n → ∞, for some x, y ∈ R.

14.2 Prove that x = y and

3.14155 < x < 3.14161.

(The actual value of x is π.)
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2.4 Cauchy sequences

Definition 2.4.1 A sequence of points xn ∈ R is said to be Cauchy if and only if every ε > 0

there is an N ∈ N such that

n,m ≥ N imply |xn − xm| < ε.

Example 2.4.2 Show that
{
1

n

}
is Cauchy.

Example 2.4.3 Show that
{

n

n+ 1

}
is Cauchy.
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Theorem 2.4.4 The sum of two Cauchy sequences is Cauchy.

Theorem 2.4.5 If {xn} is convergent, then {xn} is Cauchy.
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Theorem 2.4.6 (Cauchy’s Theorem) Let {xn} be a sequence of real numbers. Then

{xn} is Cauchy if and only if {xn} converges to some point in R.
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Example 2.4.7 Prove that any real sequence {xn} that satisfies

|xn − xn+1| ≤
1

2n
, n ∈ N,

is convergent.
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Exercises 2.4

1. Use definition to show that {xn} is Cauchy if

1.1 xn =
1

n2
1.2 xn =

n

n+ 1

2. Prove that the product of two Cauchy sequences is Cauchy.

3. Prove that if {xn} is a sequence that satisfies

|xn| ≤
1 + n

1 + n+ 2n2

for all n ∈ N, then {xn} is Cauchy.

4. Suppose that xn ∈ N for n ∈ N. If {xn} is Cauchy prove that there are numbers a and N

such that xn = a for all n ≥ N .

5. Let {an} be a sequence in R such that there is an N ∈ N satisfying the statement:

if n,m ≥ N , then |xn − xm| <
1

k
for all k ∈ N.

Prove that {an} converges.

lim
n→∞

n∑
k=1

xk exists and is finite.

6. Let {xn} be Cauchy. Prove that {xn} converges if and only if at least one of its subsequence

converges.

7. Prove that lim
n→∞

n∑
k=1

(−1)k

k
exists and is finite.

8. Let {xn} be a sequence. Suppose that there is an a > 1 such that

|xk+1 − xk| ≤ a−k

for all k ∈ N. Prove that xn → x for some x ∈ R.

9. Show that a sequence that satisfies xn+1 − xn → 0 is not necessarily Cauchy.
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Topology on R

3.1 Open sets

Open sets are among the most important subsets of R. A collection of open sets is called a

topology, and any property (such as convergence, compactness, or continuity) that can be dened

entirely in terms of open sets is called a topological property.

Definition 3.1.1 A set E ⊆ R is open if for every x ∈ E there exists a δ > 0 such that

(x− δ, x+ δ) ⊆ E.

In other word,

E is open ↔ ∀x ∈ E ∃δ > 0, (x− δ, x+ δ) ⊆ E

and

E is not open ↔ ∃x ∈ E ∀δ > 0, (x− δ, x+ δ) ⊈ E.

Since the empty set has no element, by definition it imples that ∅ is open. For E = R, we

obatin

∀x ∈ R ∃δ > 0, (x− δ, x+ δ) ⊆ R is true.

It follows that R is open.

81
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Example 3.1.2 Show that interval (0, 1) is open.

Theorem 3.1.3 Intervals (a, b), (a,∞) and (−∞, b) are open.

Example 3.1.4 Show that [0, 1) is not open.
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Theorem 3.1.5 Let A and B be open. Prove that A ∪ B and A ∩B are open.

Theorem 3.1.6 Let A1, A2, .., An be open sets. Then

1.
n⋃

k=1

Ak := A1 ∪ A2 ∪ ... ∪ An is open.

2.
n⋂

k=1

Ak := A1 ∩ A2 ∩ ... ∩ An is open.
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NEIGHBORHOOD.

Next, we introduce the notion of the neighborhood of a point, which often gives clearer, but

equivalent, descriptions of topological concepts than ones that use open intervals.

Definition 3.1.7 A set U ⊆ R is a neighborhood of a point x ∈ R if

(x− δ, x+ δ) ⊆ U for some δ > 0.

For example x = 1, we have (0, 2), [0, 2] and [0, 2) to be neighborhoods of 1.

Theorem 3.1.8 A set E ⊆ R is open if every x ∈ E has a neighborhood U such that U ⊆ E.
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Theorem 3.1.9 A sequence {xn} of real numbers converges to a limit x ∈ R if and only if for

every neighborhood U of x there exists N ∈ N such that xn ∈ U for all n > N .
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Exercises 3.1

1. Show that interval [a, b], [a, b) and (a, b], are not open.

2. Show that interval [a,∞) and (−∞, b] are not open.

3. Give two neighborhoods of x = 2.

4. Let A and B be subsets of R. Suppose that A and B are open.

Determine whether A\B is open.

5. Let U ⊆ R be a nonempty open set. Show that supU /∈ U and infU /∈ U .

6. Let A1, A2, .., An be open sets. Prove that

6.1
n⋃

k=1

Ak := A1 ∪ A2 ∪ ... ∪ An is open.

6.2
n⋂

k=1

Ak := A1 ∩ A2 ∩ ... ∩ An is open.

7. Find a sequence In of bounded, and open interval that

In+1 ⊂ In for each n ∈ N and
∞⋂
n=1

In = ∅.
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3.2 Closed sets

Definition 3.2.1 A set F ⊆ R is closed if

F c = R\F = {x ∈ R : x /∈ F} is open.

Since ∅c = R and Rc = ∅ ( ∅ and R are open), ∅ and R are closed sets.

Example 3.2.2 Show that interval [0, 1] is closed.

Example 3.2.3 Show that [0, 1) is neither open nor closed.
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Theorem 3.2.4 Let A and B be closed. Prove that A ∪ B and A ∩ B are closed.

Theorem 3.2.5 Let A1, A2, .., An be closed sets. Then

1.
n⋃

k=1

Ak := A1 ∪ A2 ∪ ... ∪ An is closed.

2.
n⋂

k=1

Ak := A1 ∩ A2 ∩ ... ∩ An is closed.
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Exercises 3.2

1. Show that interval [a, b], [a,∞) and (−∞, b] are closed.

2. The set of rational numbers Q ⊂ R is neither open nor closed.

3. Show that every closed interval I is a closed set.

4. Is
∞⋂
n=1

(
− 1

n
,
n+ 1

n

)
open or closed ?

5. Is
∞⋃
n=1

[
1

n
,
n− 1

n

]
open or closed ?

6. Suppose, for n ∈ N, the intervals In = [an, bn] are such that In+1 ⊂ In. If

a = sup{an : n ∈ N} and b = inf{bn : n ∈ N},

show that
∞⋂
n=1

In = [a, b].

7. Find a sequence In of closed interval that In+1 ⊂ In for each n ∈ N and
∞⋂
n=1

In = ∅.

8. Suppose that U ⊆ R is a nonempty open set. For each x ∈ U , let

Jx =
(
x− ε, x+ δ),

where the union is taken over all ε > 0 and δ > 0 such that (x− ε, x+ δ) ⊂ U .

8.1 Show that for every x, y ∈ U , either Jx ∩ Jy = ∅, or Jx = Jy.

8.2 Show that U =
⋃
x∈B

Jx, where B ⊆ U is either finite or countable.
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3.3 Limit points

Definition 3.3.1 A point x ∈ R is called a limit point of a set A ⊆ R if for every ε > 0 there

exists a ∈ A, a ̸= x, such that a ∈ (x− ε, x+ ε) or

[(x− ε, x) ∪ (x, x+ ε)] ∩ A ̸= ∅.

We denote the set of all limit points of a set A by A′.

x

A

( )

Definition 3.3.2 Let A ⊆ R. Then x ∈ R is an interior point of A if there exists an δ > 0

such that

(x− δ, x+ δ) ⊆ A.

The set of all interior points of A is called the interior of A, denoted A◦.

x

A

( )

Definition 3.3.3 Suppose A ⊆ R. A point x ∈ A is called an isolated point of A if there exists

an δ > 0 such that

A ∩ (x− δ, x+ δ) = {x}.

x

A

( )
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Example 3.3.4 Fill the blanks of the following table.

Set Set of limit points Set of interior points Set of isolated points

[0, 1]

(0, 1)

[0, 1)

(0, 1] ∪ {3}

{1}

N

Q

Example 3.3.5 Show that 0 is a limit point of (0, 1).
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Theorem 3.3.6 Let A and B be sets. If A ⊆ B, then A′ ⊆ B′.

Theorem 3.3.7 Let A be a closed subset of R. Then A′ ⊆ A.
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CLOSURE.

Definition 3.3.8 Given a set A ⊆ R, the set Ā = A ∪ A′ is called the closure of A.

Example 3.3.9 Fill the blanks of the following table.

Set Set of limit points Closure

[0, 1]

(0, 1)

[0, 1)

(0, 1] ∪ {3}

{1}

N

Q

Theorem 3.3.10 Let A and B be subsets of R. If A ⊆ B, then Ā ⊆ B̄.
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Theorem 3.3.11 Let A ⊆ R. Then Ā is closed.

Theorem 3.3.12 Let A ⊆ R. Then A is closed if and only if A = Ā.
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Theorem 3.3.13 A set F ⊆ R is closed if and only if

the limit of every convergent sequence in F belongs to F .
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Exercises 3.3

1. Identify the limit points, interior point and isolated points of the following sets:

1.1 A = (0, 1) ∪ {3}

1.2 A = [0, 1]c

1.3 A = [1,∞)

1.4 A = (0, 1) ∪ [3, 4]

1.5 A =

{
1

n
: n ∈ N

}
1.6 A = [0, 1] ∩Q

2. Find A′, A◦ and Ā where

2.1 A = (0, 1)

2.2 A = [0, 1]

2.3 A = [0,∞)

2.4 A = (0, 1) ∪ {2, 3}

2.5 A =

{
1

n2
: n ∈ N

}
2.6 A = Q

3. Let A and B be two subset of R. Show that (A ∪ B)′ = A′ ∪ B′.

4. Let A and B be two subset of R. Determine whether

4.1 (A ∩ B)′ = A′ ∩ B′

4.2 A ∪ B = Ā ∪ B̄

4.3 A ∩ B = Ā ∩ B̄

4.4 (A ∪ B)◦ = A◦ ∪B◦

4.5 (A ∩ B)◦ = A◦ ∩B◦

4.6 if Ā ⊆ B̄, then A ⊆ B.

5. Prove that A◦ is open.

6. Prove that A is open if and only if A = A◦.

7. Suppose x is a limit point of the set A. Show that for every ε > 0, the set

(x− ε, x+ ε) ∩ A is infinite.

8. Suppose that Ak ⊆ R for each k ∈ N, and let B =
∞⋃
k=1

Ak. Show that B̄ =
∞⋃
k=1

Āk.

9. If the limit of every convergent sequence in F belongs to F ⊆ R, prove that F is closed.
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Limit of Functions

4.1 Limit of Functions

Definition 4.1.1 Let E ⊆ R and f : E → R be a function and let a ∈ R be a limit point of E.

Then f(x) is said to converge to L, as x approaches a, if and only if

for every ε > 0 there is a δ > 0 such that for all x ∈ E,

0 < |x− a| < δ implies |f(x)− L| < ε.

In this case we write

lim
x→a

f(x) = L or f(x) → L as x → a.

and call L the limit of f(x) as x approaches a.

X

Y

y = f(x)

L+ ε

L

L− ε

a+ δaa− δ

97
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Example 4.1.2 Suppose that f(x) = 2x+ 1. Prove that

lim
x→1

f(x) = 3.

Example 4.1.3 Let f(x) =
√
x2 where x ∈ R. Prove that f(x) → 0 as x → 0.

Example 4.1.4 Prove that

lim
x→0

x cos
(
1

x

)
= 0.
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Example 4.1.5 Prove that

lim
x→3

x2 = 9.

Example 4.1.6 Prove that f(x) = 1

x
→ 1 as x → 1.
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Theorem 4.1.7 (Limit of Constant function) The limit of a constant function is equal to the

constant.

Theorem 4.1.8 (Limit of Linear function) Let m and c be constant such that f(x) = mx+ c

for all x ∈ R. Then

lim
x→a

(mx+ c) = ma+ c.
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Theorem 4.1.9 Let E ⊆ R and f, g : E → R be functions and let a ∈ R be a limit point of E. If

f(x) = g(x) for all x ∈ E\{a} and f(x) → L as x → a,

then g(x) also has a limit as x → a, and

lim
x→a

f(x) = lim
x→a

g(x).

Example 4.1.10 Prove that f(x) = x2 − 1

x− 1
has a limit as x → 1.
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Theorem 4.1.11 (Sequential Characterization of Limit (SCL)) Let E ⊆ R and f : E → R

be a function and let a ∈ R be a limit point of E. Then

lim
x→a

f(x) = L exists

if and only if f(xn) → L as n → ∞ for every sequence xn ∈ E\{a} that converges to a as n → ∞.
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Example 4.1.12 Use the SCL to prove that

f(x) =


cos
(
1

x

)
if x ̸= 0

0 if x = 0

has no limit as x → 0.

Example 4.1.13 Use the SCL to prove that

e−
1
x → 0 as x → 0+.
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Theorem 4.1.14 Let α ∈ R, E ⊆ R and f, g : E → R be functions and let a ∈ R be a limit point

of E. If f(x) and g(x) converge as x approaches a, then so do

(f + g)(x), (αf)(x), (fg)(x) and (f
g
)(x).

In fact,

1. lim
x→a

(f + g)(x) = lim
x→a

f(x) + lim
x→a

g(x)

2. lim
x→a

(αf)(x) = α lim
x→a

f(x)

3. lim
x→a

(fg)(x) = lim
x→a

f(x) lim
x→a

g(x)

4. lim
x→a

(
f

g

)
(x) =

lim
x→a

f(x)

lim
x→a

g(x)
when the limit of g(x) is nonzero.

Example 4.1.15 Show that lim
x→a

x2 = a2 fo all a ∈ R.
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Theorem 4.1.16 Suppose that E ⊆ R and f : E → R is a function. Let a ∈ R be a limit point of

E. Then,

lim
x→a

|f(x)| = 0 if and only if lim
x→a

f(x) = 0.

Theorem 4.1.17 (Squeeze Theorem for Functions) Suppose that E ⊆ R and f, g, h : E → R

are functions. Let a ∈ R be a limit point of E. If

g(x) ≤ f(x) ≤ h(x) for all x ∈ E\{a},

and lim
x→a

g(x) = lim
x→a

h(x) = L, then the limit of f(x) exists, as x → a and

lim
x→a

f(x) = L.
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Corollary 4.1.18 Suppose that E ⊆ R and f, g : E → R are functions. Let a ∈ R be a limit point

of E and M > 0. If

|g(x)| ≤ M for all x ∈ E\{a} and lim
x→a

f(x) = 0,

then

lim
x→a

f(x)g(x) = 0.

Example 4.1.19 Show that lim
x→0

x cos
(
1

x

)
= 0
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Theorem 4.1.20 (Comparision Theorem for Functions) Suppose that E ⊆ R and

f, g : E → R are functions. Let a ∈ R be a limit point of E. If f and g have a limit as x approaches

a and

f(x) ≤ g(x), x ∈ E\{a},

then

lim
x→a

f(x) ≤ lim
x→a

g(x).
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Exercises 4.1

1. Use Definition 4.1.1, prove that each of the following limit exists.

1.1 lim
x→1

x2 = 1

1.2 lim
x→2

x2 − x+ 1 = 3

1.3 lim
x→−1

x3 + 1 = 0.

1.4 lim
x→0

x− 1

x+ 1
= −1

2. Decide which of the following limit exist and which do not.

2.1 lim
x→0

sin
(
1

x

)
2.2 lim

x→0
x sin

(
1

x

)
2.3 lim

x→0
tan
(
1

x

)

3. Evaluate the following limit using result from this section.

3.1 lim
x→1

x2 + x− 2

x3 − x

3.2 lim
x→

√
π

3
√
π − x2

x+ π

3.3 lim
x→0

x sin
(

1

x2

)
3.4 lim

x→0
x2 cos

(
1

x

)

4. Prove that lim
x→0

xn sin
(
1

x

)
exists for all n ∈ N.

5. Show that lim
x→a

xn = an fo all a ∈ R and n ∈ N.

6. Prove that lim
x→a

|f(x)| = 0 if and only if lim
x→a

f(x) = 0.

7. Prove Squeeze Theorem for Functions.

8. Prove Comparision Theorem for Functions.

9. Suppose that f is a real function.

9.1 Prove that if

lim
x→a

f(x) = L

exists, then |f(x)| → |L| as x → a.

9.2 Show that there is a function such that as x → a, |f(x)| → |L| but the limit of f(x)

does not exist.
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4.2 One-sided limit

What is the limit of f(x) :=
√
x− 1 as x → 1.

X

Y

0 1 2 3 4 5 6 7 8 9

1

2

3

4

y =
√
x− 1

A reasonable answer is that the limit is zero. This function, however, does not satisfy Definition

4.1.1 because it is not defined on an OPEN interval containg a = 1. Indeed, f is defined only for

x ≥ 1. To handle such situations, we introduce one-sided limits.

Definition 4.2.1 Let a ∈ R.

1. A real function f said to converge to L as x approaches a from the right if and only if

f defined on some interval I with left endpoint a and every ε > 0 there is a δ > 0 such that

a+ δ ∈ I and for all x ∈ I,

a < x < a+ δ implies |f(x)− L| < ε.

In this case we call L the right-hand limit of f at a, and denote it by

f(a+) := L =: lim
x→a+

f(x).

X

Y
y = f(x)

L+ ε

L

a+ δa
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2. A real function f said to converge to L as x approaches a from the left if and only if f

defined on some interval I with right endpoint a and every ε > 0 there is a δ > 0 such that

a+ δ ∈ I and for all x ∈ I,

a− δ < x < a implies |f(x)− L| < ε.

In this case we call L the left-hand limit of f at a, and denote it by

f(a−) := L =: lim
x→a−

f(x).

X

Y
y = f(x)

L

L− ε

aa− δ

Example 4.2.2 Prove that

1. lim
x→1+

√
x− 1 = 0 2. lim

x→0−

√
−x = 0



4.2. ONE-SIDED LIMIT 111

Example 4.2.3 If f(x) = |x|
x

, prove that f has one-sided limit at a = 0 but lim
x→0

f(x) = 0 DNE.
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Theorem 4.2.4 Let f be a real function. Then the limit

lim
x→a

f(x)

exists and equals to L if and only if

L = lim
x→a+

f(x) = lim
x→a−

f(x).

Example 4.2.5 Use Theorem 4.2.4 to show that f(x) =

x+ 1 if x ≥ 0

2x+ 1 if x < 0

has limit at a = 0.
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Exercises 4.2

1. Use definitons to prove that lim
x→a+

f(x) exists and equal to L in each of the following cases.

1.1 f(x) = 2x2 + 1, a = 1, and L = 3.

1.2 f(x) =
x− 1

|1− x|
, a = 1, and L = 1.

1.3 f(x) =
√
3x− 5, a = 2, and L = 1.

2. Use definitons to rove that lim
x→a−

f(x) exists and equal to L in each of the following cases.

2.1 f(x) = 1 + x2, a = 1, and L = 2.

2.2 f(x) =
√
1− x2, a = 1, and L = 0.

2.3 f(x) =
1− x2

1 + x
, a = 1, and L = 0.

3. Evauate the following limit when they exist.

3.1 lim
x→0+

x+ 1

x2 − 2

3.2 lim
x→1−

x3 − 3x+ 2

x3 − 1

3.3 lim
x→π+

(x2 + 1) sinx

3.4 lim
x→π

2
−

cosx
1− sinx

4. Prove that
√
1− cosx
sinx

→
√
2

2
as x → 0+.

5. Determine whether the following functions are limit at a.

5.1 f(x) =

3x+ 1 if x ≥ 1

x+ 3 if x < 1

and a = 1

5.2 f(x) =

2− 2x if x ≥ 0

√
1− x if x < 0

and a = 0

6. Suppose that f : [0, 1] → R and f(a) = lim
x→a

f(x) for all x ∈ [0, 1]. Prove that

f(q) = 0 for all q ∈ Q ∩ [0, 1] if and only if f(x) = 0 for all x ∈ [0, 1].
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4.3 Infinite limit

The definition of limit of real functions can be expanded to include extended real numbers.

Definition 4.3.1 Let E ⊆ R and f : E → R be a function.

1. We say that f(x) → L as x → ∞ if and only if there exists a c > 0 such that (c,∞) ⊆ E

and for every ε > 0, there is an M ∈ R such that

x > M implies |f(x)− L| < ε.

In this case we shall write lim
x→∞

f(x) = L.

2. We say that f(x) → L as x → −∞ if and only if there exists a c > 0 such that (−∞,−c) ⊆ E

and for every ε > 0, there is an M ∈ R such that

x < M implies |f(x)− L| < ε.

In this case we shall write lim
x→−∞

f(x) = L.

Example 4.3.2 Prove that lim
x→∞

1

x
= 0.
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Example 4.3.3 Prove that lim
x→∞

x− 1

x+ 1
exists and equals to 1.

Example 4.3.4 Prove that lim
x→∞

1

x2 + 1
= 0.
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Example 4.3.5 Prove that lim
x→−∞

1

x
= 0.

Example 4.3.6 Prove that lim
x→−∞

x

x+ 1
= 1.
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Definition 4.3.7 Let E ⊆ R and f : E → R be a function.

1. We say that f(x) → +∞ as x → a if and only if there is an open interval I containing a

such that I\{a} ⊂ E and for every M > 0 there is a δ > 0 such that

0 < |x− a| < δ implies f(x) > M .

In this case we shall write lim
x→a

f(x) = +∞.

2. We say that f(x) → −∞ as x → a if and only if there is an open interval I containing a

such that I\{a} ⊂ E and for every M < 0 there is a δ > 0 such that

0 < |x− a| < δ implies f(x) < M .

In this case we shall write lim
x→a

f(x) = −∞.

Obviousl modification define f(x) → ±∞ as x → a+ and x → a−, and f(x) → ±∞ as x → ±∞.

Example 4.3.8 Prove that lim
x→0

1

|x|
= +∞.
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Example 4.3.9 Prove that lim
x→1+

x

1− x
= −∞.

Example 4.3.10 Prove that lim
x→1−

x

1− x
= +∞.
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Exercises 4.3

1. Use definitons to prove that lim
x→a+

f(x) exists and equal to L in each of the following cases.

1.1 f(x) =
1

x− 3
, a = 3, and L = +∞.

1.2 f(x) = −1

x
, a = 0, and L = −∞.

2. Use definitons to prove that lim
x→a−

f(x) exists and equal to L in each of the following cases.

2.1 f(x) =
x

x2 − 4
, a = 2, and L = −∞.

2.2 f(x) =
1

1− x2
, a = 1, and L = +∞.

3. Use definition to prove that the follwing limits

3.1 lim
x→∞

2x+ 1

x+ 1
= 2

3.2 lim
x→−∞

1− x

2x+ 1
= −1

2

3.3 lim
x→∞

2x2 + 1

1− x2
= −2

3.4 lim
x→2

x

|x− 2|
= +∞

3.5 lim
x→2+

x+ 1

x− 2
= +∞

3.6 lim
x→2−

x+ 1

x− 2
= −∞

4. Evauate the following limit when they exist.

4.1 lim
x→∞

3x2 − 13x+ 4

1− x− x2

4.2 lim
x→∞

x2 + x+ 2

x3 − x− 2

4.3 lim
x→−∞

x3 − 1

x2 + 2

4.4 lim
x→∞

arctanx

4.5 lim
x→∞

sinx

x2

4.6 lim
x→−∞

x2 sinx

5. Prove that sin(x+ 3)− sin 3

x
converges to 0 as x → ∞.

6. Prove the following comparision theorems for real functions.

6.1 If f(x) ≥ g(x) and g(x) → ∞ as x → a, then f(x) → ∞ as x → a.

6.2 If f(x) ≤ g(x) ≤ h(x) and L = lim
x→∞

f(x) = lim
x→∞

h(x), then g(x) → L as x → ∞.
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7. Recall that a polynomial of degree n is a functon of the form

P (x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

where aj ∈ R for j = 0, 1, ..., n and an ̸= 0.

7.1 Prove that lim
x→a

xn = an for n = 0, 1, 2, ...

7.2 Prove that if P is a polynomial, then

lim
x→a

P (x) = P (a)

for every a ∈ R.

7.3 Suppose that P is a polynomial and P (a) > 0. Prove that P (x)

x− a
→ ∞ as x → a+,

P (x)

x− a
→ −∞ as x → a−, but

lim
x→a

P (x)

x− a

does not exist.

8. Cauchy. Suppose that f : N → R. If

lim
n→∞

f(n+ 1)− f(n) = L,

prove that lim
n→∞

f(n)

n
exists and equals L.



Chapter 5

Continuity on R

5.1 Continuity

Definition 5.1.1 Let E be a nonempty subset of R and f : E → R.

f is said to be continuous at a point a ∈ E if and only if given ε > 0 there is a δ > 0 such that

|x− a| < δ and x ∈ E imply |f(x)− f(a)| < ε.

Example 5.1.2 Let f(x) = 2x− 1 where x ∈ R. Prove that f is continuous at x = 1.

121
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Example 5.1.3 Let f(x) = x2 where x ∈ R. Prove that f is continuous at x = 2.

Example 5.1.4 Let f(x) =
√
x where x ∈ (0,∞). Prove that f is continuous at 1.
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Example 5.1.5 Let f(x) = 3− x2 where x ∈ [−1, 2] ∪ {3}. Prove that f is continuous at x = 3

Example 5.1.6 Prove that the function

f(x) =


|x|
x

if x ̸= 0

0 if x = 0

is discontinuous at 0.
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Theorem 5.1.7 Let I be an open interval that contain a point a and f : I → R. Then

f is continuous at a ∈ I if and only if f(a) = lim
x→a

f(x).
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Example 5.1.8 Let f(x) = x cos
(
1

x

)
where x ̸= 0. If f is continuous at 0, what is f(0) defined?

Example 5.1.9 Find a such that the function f(x) =

ax+ 1 if x ≥ 1

2x+ 3 if x < 1

is continuous at 1.
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Theorem 5.1.10 Suppose that E is a nonempty subset of R, a ∈ E, and f : E → R. Then the

following statements are equivalent:

1. f is continuous at a ∈ E.

2. If xn converges to a and xn ∈ E, then f(xn) → f(a) as n → ∞.

Example 5.1.11 Use Theorem 5.1.10 to find lim
n→∞

√
n

n+ 1
.

Theorem 5.1.12 Let E be a nonempty subset of R and f, g : E → R and α ∈ R. If f, g are

continuous at a point a ∈ E, then so are

f + g, fg and αf

Moreover, f/g is continuous at a ∈ E when g(a) ̸= 0.
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CONTINUITY OF COMPOSITION.

Definition 5.1.13 Suppose that A and B are subsets of R and that f : A → R and g : B → R.

If {f(x) : x ∈ A} ⊆ B, then the composition of g with f is the function

(g ◦ f)(x) := g(f(x)), x ∈ A.

gf

B

x

A

f(x)

R

g(f(x))

R

g ◦ f

Theorem 5.1.14 Suppose that A and B are subsets of R and that f : A → R and g : B → R with

{f(x) : x ∈ A} ⊆ B. If f is continuous at a ∈ A and g is continuous at f(a) ∈ B, then

g ◦ f is continuous at a ∈ A

and moreover,

lim
x→a

(g ◦ f)(x) = g
(

lim
x→a

f(x)
)
.
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Example 5.1.15 Show that lim
x→1

√
2x− 1 exists and equals to 1.

CONTINUITY ON A SET.

Definition 5.1.16 Let E be a nonempty subset of R and f : E → R.

f is said to be continuous on E if and only if f is continuous at every a ∈ E.

Note that if f is continuous on E, then f is continuous on nonempty subset of E.

Example 5.1.17 Show that f(x) = x2 is continuous on R.
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Theorem 5.1.18 (Continuity of Linear function) Let m and c be constants and let

f(x) = mx+ c where x ∈ R.

Prove that f is continuous on R

Example 5.1.19 Show that h(x) = (3x+ 1)2 is continuous on R.
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Example 5.1.20 Prove that

f(x) =

2x+ 4 if x > −1

3x+ 5 if x ≤ −1

is continuous on R.

Example 5.1.21 Find a such that the function f(x) =

ax+ 1 if x ≥ 2

x+ a if x < 2

is continuous on R.
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Exercises 5.1

1. Use definition to prove that f is continuous at a.

1.1 f(x) = x2 + 1 and a = 1.

1.2 f(x) = x3 and a = −1.

1.3 f(x) =
1

x
and a = 1.

1.4 f(x) =
x

x2 + 1
and a = 2.

2. Determine whether the following functions are continuous at a.

2.1 f(x) =

1− 2x if x ≥ 1

2− 3x if x < 1

and a = 1

2.2 f(x) =

x2 − 1 if x ≥ 0

√
1− x if x < 0

and a = 0

3. Use definition to prove that f is continuous at E.

3.1 f(x) = x3 and E = R.

3.2 f(x) =
√
1− x and E = (−∞, 1).

3.3 f(x) =
1

x2 + 1
and E = R.

4. Use limit theorem to show that the following function are continuous on [0, 1].

4.1 f(x) = 3x2 + 1

4.2 f(x) =
1− x

1 + x

4.3 f(x) =
√
2− x

4.4 f(x) =
1

x2 + x− 6

5. Find a and b such that the function f(x) =


ax+ 3 if x ≤ 1

x+ b if 1 < x ≤ 2

2ax− 2 if x > 2

is continuous on R.

6. If f : [a, b] → R is continuous, prove that sup
x∈[a,b]

|f(x)| is finite.

7. Show that there exist nowhere continuous functions f and g whose sum f + g is continuous

on R. Show that the same is ture for product of functions.
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8. Let

f(x) =

cos( 1
x
) if x ̸= 0

1 if x = 0

is continuous on (−∞, 0) and (0,∞), discontinuous at 0, and neither f(0+) nor f(0−) exists.

8.1 Prove that f is continuous on (−∞, 0) and (0,∞) discontinuous at 0.

8.2 Suppose that g : [0, 2
π
] → R is continuous on (0, 2

π
) and that there is a positive constant

C > 0 such that

|g(x)| ≤ C
√
x for all x ∈ (0, 2

π
),

Prove that f(x)g(x) is continuous on [0, 2
π
].

9. Suppose that a ∈ R, that I is an open interval containing a, that, f, g : I → R, and that f

is continuous at a.

9.1 Prove that g is continuous at a if and only if f + g is continuous at a.

9.2 Make and prove an analogous atstement for the product fg. Show by example that

hypothesis about f added cannot be dropped.

10. Let f : A → R be a continuous function. Suppose that E ⊆ A and is open. Determine

whether {f(x) : x ∈ E} is open.

11. Let f(x) = xn where n ∈ N. Prove that f is continuous on R

12. Suppose that f : R → R satisfies f(x+ y) = f(x) + f(y) for each x, y ∈ R.

12.1 Show that f(nx) = nf(x) for all x ∈ R and n ∈ Z.

12.2 Prove that f(qx) = qf(x) for all x ∈ R and q ∈ Q.

12.3 Prove that f is continuous at 0 if and only if f is continuous on R.

12.4 Prove that f is continuous at 0, then there is an m ∈ R such that f(x) = mx for all

x ∈ R.

13. Assume that lim
n→0

ln(x+ 1)

x
= 1 and f(x) = ex is continuous on R. Show that lim

x→0
(1+x)

1
x = e.
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5.2 Intermediate Value Theorem

Definition 5.2.1 Let E be a nonempty subsets of R. A function f : E → R is said to be bounded

on E if and only if there is an M > 0 such that

|f(x)| ≤ M for all x ∈ E

Example 5.2.2 Show that f(x) = 1

x2 + 1
is bounded on R.

Definition 5.2.3 Let I be a closed, bounded interval and f : I → R be continuous on I. Define

sup
x∈I

f(x) := sup{f(x) : x ∈ I} and inf
x∈I

f(x) := inf{f(x) : x ∈ I}.

Example 5.2.4 Let f(x) = x2. Find a supremum and infimum of f on I.

1. I = [0, 1) 2. I = (−1, 1) 3. I = (−1,∞)
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Theorem 5.2.5 (Extreme Value Theorem (EVT)) If I is a closed, bounded interval and

f : I → R is continuous on I, then f is bounded on I. Moreover, if

M = sup
x∈I

f(x) and m = inf
x∈I

f(x),

then there exist point xm, xM ∈ I such that

f(xM) = M and f(xm) = m.
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Lemma 5.2.6 (Sign-Preserving Property) Let f : I → R where I is open. If f is continuous

at a point x0 ∈ I and f(x0) > 0, then there are positive numbers ε and δ such that

|x− x0| < δ implies f(x) > ε.
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Theorem 5.2.7 (Intermediate Value Theorem (IVT)) Let f : [a, b] → R be continuous.

If y0 lies between f(a) and f(b), then

there is an x0 ∈ (a, b) such that f(x0) = y0.

X

Y

y = f(x)f(b)

y0

f(a)

bx0a



5.2. INTERMEDIATE VALUE THEOREM 137

Corollary 5.2.8 Let f : [a, b] → R be continuous.

1. If f(a) > 0 and f(b) < 0, then there is an c ∈ (a, b) such that f(c) = 0.

2. If f(a) < 0 and f(b) > 0, then there is an c ∈ (a, b) such that f(c) = 0.

Example 5.2.9 Show that there is a real number such that x2 = x+ 1.

Example 5.2.10 Show that there is a real number x such that x3 − x− 3 = 0.
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Example 5.2.11 Prove that

lnx = 3− 2x

has at least one real root and find the approximate root to be the midpont of an interval [a, b] of

length 0.01 that contain a root.
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Exercises 5.2

For these exercise, assume that sinx, cosx and ex are continuous on R and lnx is continuous on

R+.

1. For each of the following, prove that there is at least one x ∈ R that satisfies the given

equation.

1.1 x3 + x = 3

1.2 x3 + 2 = 2x

1.3 x4 + x3 − 2 = 0

1.4 x5 + x+ 1 = 0

1.5 2x = 2− x

1.6 ex = x2

1.7 x lnx = 1

1.8 sinx = ex

1.9 cosx = x2

1.10 ex = cosx+ 1

2. Prove that the follwing equations have at least one real root and find the approximate root

to be the midpont of an interval [a, b] of length ℓ that contain a root.

2.1 x3 + x = 1 and ℓ = 0.001

2.2 2x = x3 and ℓ = 0.01

2.3 lnx+ x = 2 and ℓ = 0.001

2.4 cosx = x and ℓ = 0.01

2.5 sinx+ x = 1 and ℓ = 0.001

2.6 xex = cosx and ℓ = 0.01

3. Suppose that f is a real-value function of a real variable. If f is continuous at a with

f(a) < M for some M ∈ R, prove that there is an open interval I containing a such that

f(x) < M for all x ∈ I.

4. If f : R → R is continuous and

lim
x→∞

f(x) = lim
x→−∞

f(x) = ∞,

prove that f has a minimum on R; i.e., there is an xm ∈ R such that

f(xm) = inf
x∈R

f(x) < ∞.
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5.3 Uniform continuity

Definition 5.3.1 Let E be a nonempty subset of R and f : E → R. Then f is said to be

uniformly continuous on E if and only if for every ε > 0 there is a δ > 0 such that

|x− a| < δ and x, a ∈ E imply |f(x)− f(a)| < ε.

Example 5.3.2 Prove that f(x) = x is uniformly continuous on (0, 1).

Example 5.3.3 Prove that f(x) = x2 is uniformly continuous on (0, 1).
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Theorem 5.3.4 (Uniform of continuity of Linear function) A Linear function is uniformly

continuous on R.

Example 5.3.5 Prove that f(x) = x2 is not uniformly continuous on R.
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Theorem 5.3.6 Suppose that I is a closed, bounded interval. If f : I → R is continuous on I,

then f is uniformly continuous on I.
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Theorem 5.3.7 Suppose that E ⊆ R and f : E → R is uniformly continuous. If xn ∈ E is

Cauchy, then f(xn) is Cauchy.
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Exercises 5.3

1. Use Definition to prove that each of the following functions is uniformly continuous on (0, 1).

1.1 f(x) = x3 1.2 f(x) = x2 − x 1.3 f(x) =
1

x+ 1

2. Prove that each of the following functions is uniformly continuous on (0, 1).

2.1 f(x) = (x+ 1)2

2.2 f(x) =
x3 − 1

x− 1

2.3 f(x) = x sin( 1
x
)

2.4 f(x) is any polynomial

2.5 f(x) =
sinx

x

2.6 f(x) = x2 lnx

3. Prove that f(x) =
1

x2 + 1
is uniformly continuous on R.

4. Find all real α such that xα sin( 1
x
) is uniformly continuous on the open interval (0, 1).

5. Suppose that f : [0,∞) → R is continuous and there is an L ∈ R such that f(x) → L as

x → ∞. Prove that f is uniformly continuous on [0,∞).

6. Let I be a bounded interval. Prove that if f : I → R is is uniformly continuous on I, then

f is bounded on I.

7. Prove that (6) may be false if I is unbounded or if f is merely continuous.

8. Suppose that α ∈ R, E is nonempty subset of R, and f, g : E → R are uniformly continuous

on E.

8.1 Prove that f + g and αf are uniformly continuous on E.

8.2 Suppose that f, g are bounded on E. Prove that fg is uniformly continuous on E.

8.3 Show that there exist functions f, g uniformly continuous on R such that fg is not

uniformly continuous on R.

9. Prove that a polynomial of degree n is uniformly continuous on R if and only if n = 0 or

n = 1.
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Differentiability on R

6.1 The Derivative

Definition 6.1.1 A real function f is siad to be differentiable at a point a ∈ R if and only if f

is defined on some open interval I containing a and

f ′(a) := lim
h→0

f(a+ h)− f(a)

h

exists. In this case f ′(a) is called the derivative of f at a.

You may recall that the graph of y = f(x) has a tangent line at the point (a, f(a)) if and

only if f has a derivative at a, in which case the slope of that tangent line is f ′(a). Suppose that

f is differentiable at a. A secant line of the graph y = f(x) is a line passing through at least

two points on the graph, an a chord is a line segment that runs from one point on the graph to

another.

X

Y
y = f(x)

Tangent

Chord

a x2 x1

145
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Let x = a+ h and observe that the slope of the chord (chord function : F (x)) passing through

the points (x, f(x)) and (a, f(a)) is given by

F (x) :=
f(x)− f(a)

x− a
, x ̸= a.

Now, since x = a+ h, f ′(a) becomes

f ′(a) = lim
x→a

f(x)− f(a)

x− a
.

Example 6.1.2 Let f(x) = x2 where x ∈ R. Find f ′(1)

Example 6.1.3 Show that the function

f(x) =

x2 cos( 1
x
) if x ̸= 0

0 if x = 0

is differentiable at the origin.
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Example 6.1.4 Show that the function

f(x) =

x cos( 1
x
) if x ̸= 0

0 if x = 0

is not differentiable at the origin.

Theorem 6.1.5 Let f : R → R. Then f is differentiable at a if and only if there is a function T

of the form T (x) := mx such that

lim
h→0

∣∣∣∣f(a+ h)− f(a)− T (h)

h

∣∣∣∣ = 0.
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Theorem 6.1.6 If f is differentiable at a, then f is continuous at a.

Example 6.1.7 Show that f(x) = |x| is continuous at 0 but not differentiable there.
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DIFFERENTIABLE ON INTERVAL.

Definition 6.1.8 Let I be an interval and f : I → R be a function. f is said to be differentiable

on I if and only if f is differentiable at a for every a ∈ I

Example 6.1.9 Show that the function f(x) = x2 is differentiable on R.

Theorem 6.1.10 Let n ∈ N. If f(x) = xn, then f is differentiable on R and

f ′(x) = nxn−1.
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Theorem 6.1.11 Every constant function is differentiable on R and its value equals to zero.

Example 6.1.12 Show that f(x) =
√
x is differentiable on (0,∞) and f ′(x).

Example 6.1.13 Show that f(x) = |x| is differentiable on [0, 1] and [−1, 0] but not on [−1, 1].
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Exercises 6.1

1. For each of the following real functions, use definition directly to prove that f ′(a) exists.

1.1 f(x) = x3, a ∈ R

1.2 f(x) =
1

x
, a ̸= 0

1.3 f(x) = x2 + x+ 2, a ∈ R

1.4 f(x) =
1√
x

, a > 0

2. Prove that f(x) = x|x| is differentiable on R.

3. Let I be an open interval that contains 0 and f : I → R. If there exists an α > 1 such that

|f(x)| ≤ |x|α for all x ∈ I,

prove that f is differentiable at 0. What happens when α = 1 ?

4. Suppose that f : (0,∞) → R satisfies f(x)−f(y) = f

(
x

y

)
for all x, y ∈ (0,∞) and f(1) = 0.

4.1 Prove that f is continuous on (0,∞) if and only if f is continuous at 1.

4.2 Prove that f is differentiable on (0,∞) if and only if f is differentiable at 1.

4.3 Prove that if f is differentiable at 1, then f ′(x) =
f ′(1)

x
for all x ∈ (0,∞).

5. Suppose that fα(x) =

|x|α sin( 1
x
) if x ̸= 0

0 if x = 0

. Show that fα(x) is continuous at x = 0 when

α > 0 and differentiable at x = 0 when α > 1. Graph these functions for α = 1 and α = 2

and give a geometric interpretation of your results.

6. Prove that if f(x) = xα where α = 1
n

for somw n ∈ N, then y = f(x) is differentiable on

f ′(x) = αxα−1 for every x ∈ (0,∞).

7. Given lim
x→0

sinx

x
= 1. Show that

7.1 (sinx)′ = cosx 7.2 (cosx)′ = − sinx

8. f is a constant function on I if and only if f ′(x) = 0 for every x ∈ I.
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6.2 Differentiability theorem

Theorem 6.2.1 (Additive Rule) Let f and g be real functions. If f and g are differentiable at

a, then f + g is differentiable at a. In fact,

(f + g)′(a) = f ′(a) + g′(a).

Theorem 6.2.2 (Scalar Multiplicative Rule) Let f be a real function and α ∈ R. If f is

differentiable at a, then αf is differentiable at a. In fact,

(αf)′(a) = αf ′(a).
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Theorem 6.2.3 (Product Rule) Let f and g be real functions. If f and g are differentiable at

a, then fg is differentiable at a. In fact,

(fg)′(a) = g(a)f ′(a) + f(a)g′(a).

Theorem 6.2.4 (Quotient Rule) Let f and g be real functions. If f and g are differentiable at

a, then f

g
is differentiable at a when g(a) ̸= 0. In fact,

(
f

g

)′

(a) =
g(a)f ′(a)− f(a)g′(a)

[g(a)]2
.
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Example 6.2.5 Let f and g be differentiable at 1 with f(1) = 1, g(1) = 2 and f ′(1) = 3, g′(1) = 4.

Evaluate the following derivatives.

1. (f + g)′(1)

2. (2f)′(1)

3. (fg)′(1)

4.
(
f

g

)′

(1)

Theorem 6.2.6 (Chain Rule) Let f and g be real functions. If f is differentiable at a and g is

differentiable at f(a), then g ◦ f is differentiable at a with

(g ◦ f)′(a) = g′(f(a))f ′(a).
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Example 6.2.7 Let f and g be differentiable on R with f(0) = 1, g(0) = −1 and f ′(0) = 2,

g′(0) = −2 ,f ′(−1) = 3, g′(1) = 4. Evaluate each of the following derivatives.

1. (f ◦ g)′(0) 2. (g ◦ f)′(0)

Example 6.2.8 Let f(x) =
√
x2 + 1. Use the Chain Rule to show that f ′(x) =

x√
x2 + 1

.
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Exercises 6.2

1. For each of the following functions, find all x for which f ′(x) exists and find a formula for f ′.

1.1 f(x) =
x3 − 2x2 + 3x√

x

1.2 f(x) =
1

x2 + x− 1

1.3 f(x) = x|x|

1.4 f(x) = |x3 + 2x2 − x− 2|

2. Let f and g be differentiable at 2 and 3 with f ′(2) = a, f ′(3) = b, g′(2) = c and g′(3) = d, If

f(2) = 1, f(3) = 2 ,g(2) = 3 and g(3) = 4. Evaluate each of the following derivatives.

2.1 (fg)′(2) 2.2
(

f
g

)′
(3) 2.3 (g ◦ f)′(3) 2.4 (f ◦ g)′(2)

3. If f, g and h is differentiable at a, prove that fgh is differentiable at a and

(fgh)′(a) = f ′(a)g(a)h(a) + f(a)g′(a)h(a) + f(a)g(a)h′(a).

4. Let f(x) = (x− 1)(x− 2)(x− 3) · · · (x− 2565). Find f ′(2565)

5. Prove that if f(x) = x
m
n for some n,m ∈ N, then y = f(x) is differentiable

and satisfies nyn−1y′ = mxm−1 for every x ∈ (0,∞).

6. (Power Rule) Prove that f(x) = xq for some q ∈ Q, then f is differentiable

and f ′(x) = qxq−1 for every x ∈ (0,∞).

7. (Reciprocal Rule) Suppose that f is differentiable at a and f(a) ̸= 0.

7.1 Show that for h sufficiently small, f(a+ h) ̸= 0.

7.2 Use Definition 6.1.1 directly, prove that 1

f(x)
is differentiable at x = a and(

1

f

)′

(a) = − f ′(a)

f 2(a)
.

8. Suppose hat n ∈ N and f, g are real functions of a real variable whose nth derivatives f (n), g(n)

exist at a point a. Prove Leibniz’s generalization of the Product Rule:

(fg)(n)(a) =
n∑

k=0

n

k

 f (k)(a)g(n−k)(a).
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6.3 Mean Value Theorem

Lemma 6.3.1 (Rolle’s Theorem) Suppose that a, b ∈ R with a ̸= b. If f is continuous on [a, b],

differentiable on (a, b), and if f(a) = f(b), then f ′(c) = 0 for some c ∈ (a, b).

X

Y

y = f(x)

f ′(c) = 0

f(a) = f(b)

a c b
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X

Y

y = f(x)

Chord

Tangent

a c b

Theorem 6.3.2 (Mean Value Theorem (MVT)) Suppose that a, b ∈ R with a ̸= b.

If f is continuous on [a, b] and differentiable on (a, b), then there is an c ∈ (a, b) such that

f(b)− f(a) = f ′(c)(b− a).
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Example 6.3.3 Prove that

sinx ≤ x for all x > 0.

Example 6.3.4 Prove that

1 + x ≤ ex for all x > 0.
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Example 6.3.5 (Bernoulli’s Inequality) Let 0 < α ≤ 1 and δ ≥ −1. Prove that

(1 + δ)α ≤ 1 + αδ.



6.3. MEAN VALUE THEOREM 161

Theorem 6.3.6 (Generalized Mean Value Theorem) Suppose that a, b ∈ R with a ̸= b.

If f and g are continuous on [a, b] and differentiable on (a, b), then there is an c ∈ (a, b) such that

g′(c)[f(b)− f(a)] = f ′(c)[g(b)− g(a)].
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Theorem 6.3.7 (L’Hôspital’s Rule) Let a be an extended real number and I be an open interval

that either contains a or has a as an endpoint. Suppose that f and g are differentiable on I\{a},

and g(x) ̸= 0 ̸= g′(x) for all x ∈ I\{a}. Suppose further that

A := lim
x→a

f(x) = lim
x→a

g(x)

is either 0 or ∞. If

B := lim
x→a

f ′(x)

g′(x)

exists as an extended real number, then

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
.
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Given (lnx)′ =
1

x
for x > 0 and (ex)′ = ex for all x ∈ R.

Example 6.3.8 Use L’Hôspital’s Rule to prove that lim
x→0

x

ex − 1
= 1.

Example 6.3.9 Use L’Hôspital’s Rule to find lim
x→0+

x lnx.

Example 6.3.10 Use L’Hôspital’s Rule to find L = lim
x→1−

(lnx)1−x.
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Exercises 6.3

1. Use the Mean Value Theorem to prove that each of the following inequalities.

1.1
√
2x+ 1 < 1 + x for all x > 0

1.2 lnx ≤ x− 1 for all x > 1

1.3 7(x− 1) < ex for all x > 2

1.4 cosx− 1 ≤ x for all x > 0

1.5 lnx+ 1 ≤ x2 + 1

2
for all x > 1

1.6 x− 1

x
≤ lnx for all x > 1

1.7
√
x ≥ x for all x ∈ [0, 1]

1.8
√
x ≤ x for all x > 1

1.9 sin2 x ≤ 2|x| for all x ∈ R

1.10 lnx ≤
√
x for all x > 1

2. (Bernoulli’s Inequality) Let α ≥ 1 and δ ≥ −1. Prove that

(1 + δ)α ≤ 1 + αδ.

3. Use L’Hôspital’s Rule to evaluate the following limits.

3.1 lim
x→0

sin(3x)
x

3.2 lim
x→0+

cosx− ex

ln(1 + x2)

3.3 lim
x→0

( x

sinx

) 1
x2

3.4 lim
x→0+

xx

3.5 lim
x→1

lnx

sin(πx)

3.6 lim
x→∞

x
(

arctanx− π

2

)
3.7 lim

x→0−

(
1 + e−x

)x
3.8 lim

x→0
(1 + x)

1
x

3.9 lim
x→∞

x(e
1
x − 1)

4. Show that the derivative of

f(x) =

e−
1
x2 if x ̸= 0

0 if x = 0

exists and continuous on R with f ′(0) = 0.

5. Suppose that f is differentiable on R.

5.1 If f ′(x) = 0 for all x ∈ R, prove that f(x) = f(0) for all x ∈ R

5.2 If f(0) = 1 and |f ′(x)| ≤ 1 for all x ∈ R, prove that |f(x)| ≤ |x|+ 1 for all x ∈ R

5.3 If ′(x) ≥ 0 for all x ∈ R, prove that a < b imply that f(a) < f(b)
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6. Let f be differentiable on a nonempty, open interval (a, b) with f ′ bounded on (a, b). Prove

that f is uniformly continuous on (a, b).

7. Let f be differentiable on (a, b), continuous on [a, b], with f(a) = f(b) = 0. Prove that if

f ′(c) > 0 for some c ∈ (a, b), then there exist x1, x2 ∈ (a, b) such that f ′(x1) > 0 > f ′(x2).

8. Let f be twice differentiable on (a, b) and let there be points x1 < x2 < x3 in (a, b) such that

f(x1) > f(x2) and f(x3) > f(x2). Prove that there is a point c ∈ (a, b) such that f ′′(c) > 0.

9. Let f be differentiable on (0,∞). If L = lim
x→∞

f ′(x) and lim
n→∞

f(n) both exist and are finite,

prove that L = 0.

10. Prove L’Hôspital’s Rule for the case B = ±∞ by first proving that

g(x)

f(x)
→ 0 when f(x)

g(x)
→ ±∞, as x → a.

11. Prove that the sequence
(
1 +

1

n

)n

is increasing, as n → ∞, and its limit e satisfies 2 < e ≤ 3

and ln e = 1.
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6.4 Monotone function

Definition 6.4.1 Let E be a nonempty subset of R and f : E → R.

1. f is said to be increasing on E if and only if

x1, x2 ∈ E and x1 < x2 imply f(x1) ≤ f(x2).

f is said to be strictly increasing on E if and only if

x1, x2 ∈ E and x1 < x2 imply f(x1) < f(x2).

2. f is said to be decreasing on E if and only if

x1, x2 ∈ E and x1 < x2 imply f(x1) ≥ f(x2).

f is said to be strictly decreasing on E if and only if

x1, x2 ∈ E and x1 < x2 imply f(x1) > f(x2).

3. f is said to be monotone on E if and only if f is either decreasing or increasing on E.

f is said to be strictly monotone on E if and only if f is either strictly decreasing or

strictly increasing on E.

Example 6.4.2 Show that f(x) = x2 is strictly monotone on [0, 1] and on [−1, 0] but not monotone

on [−1, 1].
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Theorem 6.4.3 Let f : I → R and (a, b) ⊆ I. Then

1. f is increasing on (a, b) if f ′(x) > 0 for all x ∈ (a, b)

2. f is decreasing on (a, b) if f ′(x) < 0 for all x ∈ (a, b)

3. If f ′(x) = 0 for all x ∈ (a, b), then f is constant on [a, b].

Example 6.4.4 Find each intervals of f(x) = x2 − 4x+ 3 that increasing and decreasing.
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Theorem 6.4.5 If f is 1-1 and continuous on an interval I, then f is strictly monotone on I and

f−1 is continuous and strictly monotone on f(I) := {f(x) : x ∈ I}.
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Theorem 6.4.6 (Inverse Function Theorem (IFT)) Let f be 1-1 and continuous on an open

interval I. If a ∈ f(I) and if f ′(f−1(a)) exists and is nonzero, then f−1 is differentiable at a and

(f−1)′(a) =
1

f ′(f−1(a))
.

Example 6.4.7 Use the IVT to find derivative of f(x) = arcsinx
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Example 6.4.8 Let f(x) = x+ ex where x ∈ R.

1. Show that f is 1-1 on x ∈ R.

2. Use the result from 1 and the IFT to explain that f−1 differentiable on R.

3. Compute (f−1)′(2 + ln 2).
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Exercises 6.4

1. Find each intervals of the following functions that increasing and decreasing.

1.1 f(x) = 2x− x2

1.2 f(x) = x3 − x2 − x+ 3

1.3 f(x) = (x− 1)3(x− 2)4

1.4 g(x) = xex

1.5 g(x) = ex − x

1.6 g(x) = x2ex
2

2. Find all a ∈ R such that x3 + ax2 + 3x+ 15 is strictly increasing near x = 1.

3. Find all a ∈ R such that ax2 + 3x+ 5 is strictly increasing on the interval (1, 2).

4. Find where f(x) = 2|x − 1| + 5
√
x2 + 9 is strictly increasing and where f(x) is strictly

decreasing.

5. Let f and g be 1-1 and continuous on R. If f(0) = 2, g(1) = 2, f ′(0) = π, and g′(1) = e,

compute the following derivatives.

5.1 (f−1)′(2) 5.2 (g−1)′(2) 5.3 (f−1 · g−1)′(2)

6. Let f(x) = x2ex
2 , x ∈ R.

6.1 Show that f−1 exists and its differentiable on (0,∞).

6.2 Compute (f−1)′(e)

7. Let f(x) = x+ e2x where x ∈ R.

7.1 Show that f is 1-1 on x ∈ R.

7.2 Use the result from 7.1 and the IFT to explain that f differentiable on R.

7.3 Compute (f−1)′(4 + ln 2).

8. Use the Inverse Function Theorem, prove that

8.1 (arccosx)′ = − 1√
1− x2

where x ∈ (−1, 1)

8.2 (arctanx)′ =
1

1 + x2
where x ∈ (−∞,∞)
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8.3 (
√
x)′ =

1

2
√
x

where x ∈ (0,∞)

9. Use the IFT to find derivative of invrese function f(x) = ex − e−x where x ∈ R.

10. Suppose that f ′ exists and continuous on a nonempty, open interval (a, b) with f ′(x) ̸= 0 for

all x ∈ (a, b).

10.1 Prove that f is 1-1 on (a, b) and takes (a, b) onto some open interval (c, d)

10.2 Show that (f−1)′ exists and continuous on (c, d)

10.3 Use the function f(x) = x3, show that 7.2 is false if the assumption f ′(x) ̸= 0 fails to

hold for some x ∈ (c, d)

11. Let [a, b] be a closed, bounded interval. Find all functions f that satisfy the following

conditions for some fixed α > 0 : f is continuous and 1-1 on [a, b],

f ′(x) ̸= 0 and f ′(x) = α(f−1)′(f(x)) for all x ∈ (a, b).

12. Let f be differentiable at every point in a closed, bounded interval [a, b]. Prove that if f ′ is

increasing on (a, b), then f ′ is continuous on (a, b).

13. Suppose that f is increasing on [a, b]. Prove that

13.1 if x0 ∈ [a, b), then f(x+
0 ) exists and f(x0) ≤ f(x+

0 ),

13.2 if x0 ∈ (a, b], then f(x−
0 ) exists and f(x−

0 ) ≤ f(x0).
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Integrability on R

7.1 Riemann integral

PARTITION.

Definition 7.1.1 Let a, b ∈ R with a < b.

1. A partition of the interval [a, b] is a set of points P = {x0, x1, , ..., xn} such that

a = x0 < x1 < · · · < xn = b.

2. The norm of a partition P = {x0, x1, , ..., xn} is the number

∥P∥ = max
1≤j≤n

|xj − xj−1|.

3. A refinement of a partition P = {x0, x1, , ..., xn} is a partition Q of [a, b] that satisfies

Q ⊇ P . In this case we say that Q is finer than P or Q is a refinement of P .

Example 7.1.2 Give example of partition and refinement of the interval [0, 1].

Partitions Norms of Partition

P = {0, 0.5, 1}

Q = {0, 0.25, 0.5, 0.75, 1}

R = {0, 0.2, 0.3, , 0.5, 0.6, 0.8, 1}

173
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Example 7.1.3 Prove that for each n ∈ N,

Pn =

{
j

n
: j = 0, 1, ..., n

}
is a partition of the interval [0, 1] and find a norm of Pn.

Example 7.1.4 (Dyadic Partition) Let n ∈ N and define

Pn =

{
j

2n
: j = 0, 1, ..., 2n

}
.

1. Prove that Pn is a partition of the interval [0, 1].

2. Prove that Pm is finer than Pn when m > n.

3. Find a norm of Pn.
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UPPER AND LOWER RIEMANN SUM.

Definition 7.1.5 Let a, b ∈ R with a < b, let P = {x0, x1, , ..., xn} be a partition of the interval

[a, b], and suppose that f : [a, b] → R is bounded.

1. The upper Riemann sum of f over P is the number

U(f, P ) :=
n∑

j=1

Mj(f)(xj − xj−1)

where

Mj(f) := sup
x∈[xj−1,xj ]

f(x).

2. The lower Riemann sum of f over P is the number

L(f, P ) :=
n∑

j=1

mj(f)(xj − xj−1)

where

mj(f) := inf
x∈[xj−1,xj ]

f(x).

X

Y
y = f(x)

a = x0 x1 x2 x3 xk−1 xk xn−1 xn = b

... ...

Upper Riemann Sum

X

Y
y = f(x)

a = x0 x1 x2 x3 xk−1 xk xn−1 xn = b

Lower Riemann Sum
... ...
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Example 7.1.6 Let f(x) = x2 + 1 where x ∈ [0, 1]. Find L(f, P ) and U(f, P )

1. P =

{
0,

1

4
,
1

2
,
3

4
, 1

}

X

Y f(x) = x2 + 1

0 1
4

1
2

3
4

1

2

1

X

Y f(x) = x2 + 1

0 1
4

1
2

3
4

1

2

1

2. P = {0, 0.2, 0.5, 0.6, 0.8, 1}

X

Y f(x) = x2 + 1

0 0.2 0.5 0.6 0.8 1

1

2

X

Y f(x) = x2 + 1

0 0.2 0.5 0.6 0.8 1

1

2
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Example 7.1.7 Let f(x) = x2 + 1 where x ∈ [0, 1]. Find L(Pn, f) and U(Pn, f) for n ∈ N if

Pn =

{
j

n
: j = 0, 1, ..., n

}
.

X

Y

f(x) = x2 + 1

0 1
n

2
n

3
n

k−1
n

k
n

n−1
n

1

1

2

... ...
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Theorem 7.1.8 L(f, P ) ≤ U(f, P ) for all partition P and all bounded function f .

Theorem 7.1.9 (Sum Telescopes) If g : N → R, then

n∑
k=m

[g(k + 1)− g(k)] = g(n+ 1)− g(m)

for all n ≥ m in N.
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Theorem 7.1.10 If f(x) = α is constant on [a, b], then

U(f, P ) = L(f, P ) = α(b− a)

X

Y

a = x0 x1 x2 x3 xk−1 xk xn−1 xn = b

α

... ...
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Theorem 7.1.11 If P is any partition of [a, b] and Q is a refinement of P , then

L(f, P ) ≤ L(f,Q) ≤ U(f,Q) ≤ U(f, P ).

Corollary 7.1.12 If P and Q are any partitions of [a, b], then

L(f, P ) ≤ U(f,Q).
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RIEMANN INTEGRABLE.

Definition 7.1.13 Let a, b ∈ R with a < b.

A function f : [a, b] → R is said to be Riemann integrable or integrable on [a, b] if and only

if f is bounded on [a, b], and for every ε > 0 there is a partition of [a, b] such that

U(f, P )− L(f, P ) < ε.

Theorem 7.1.14 Suppose that a, b ∈ R with a < b. If f is continuous on the interval [a, b], then

f is integrable on [a, b].
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Example 7.1.15 Prove that the function

f(x) =

1 if 0 ≤ x < 1
2

0 if 1
2
≤ x ≤ 1

is integrable on [0, 1].
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Example 7.1.16 (Dirichlet function) Prove that the function

f(x) =

1 if x ∈ Q

0 if x /∈ Q

is NOT Riemann integrable on [0, 1].
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UPPER AND LOWER INTEGRABLE.

Definition 7.1.17 Let a, b ∈ R with a < b, and f : [a, b] → R be bounded.

1. The upper integral of f on [a, b] is the number

(U)

∫ b

a

f(x) dx := inf{U(f, P ) : P is a partition of [a, b]}.

2. The lower integral of f on [a, b] is the number

(L)

∫ b

a

f(x) dx := sup{L(f, P ) : P is a partition of [a, b]}.

3. If the upper and lower integrals of f on [a, b] are equal, we define the integral of f on [a, b]

to be the common value∫ b

a

f(x) dx := (U)

∫ b

a

f(x) dx = (L)

∫ b

a

f(x) dx.

Example 7.1.18 Let f(x) = α where x ∈ [a, b]. Show that

(U)

∫ b

a

f(x) dx = (L)

∫ b

a

f(x) dx = α(b− a).

Example 7.1.19 The Dirichlet function is defined

f(x) =

1 if x ∈ Q

0 if x /∈ Q
.

Find the upper integral and lower integral of the Dirichlet function on [0, 1].
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Theorem 7.1.20 If f : [a, b] → R is bounded, then its upper and lower integrals exist and are

finite, and satisfy

(L)

∫ b

a

f(x) dx ≤ (U)

∫ b

a

f(x) dx.
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Theorem 7.1.21 Let a, b ∈ R with a < b, and f : [a, b] → R be bounded. Then f is integrable on

[a, b] if and only if

(L)

∫ b

a

f(x) dx = (U)

∫ b

a

f(x) dx.
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Theorem 7.1.22 For a constant α, ∫ b

a

α dx = α(b− a).

Example 7.1.23 Let f : [0, 2] → R defined by

f(x) =

0 if x ̸= 1

3 if x = 1

Show that f is integrable and find
∫ 2

0

f(x)dx.
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Example 7.1.24 Let f : [0, 1] → R defined by

f(x) =

2 if x ̸= 1

1 if x = 1

Show that f is integrable and find
∫ 1

0

f(x)dx.
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Exercises 7.1

1. For each of the following, compute U(f, P ), L(f, P ), and
∫ 1

0

f(x) dx, where

P =

{
0,

2

5
,
1

2
,
3

5
, 1

}
.

Find out whether the lower sum or the upper sum is better approximation to the integral.

Graph f and explain why this is so.

1.1 f(x) = 1− x2 1.2 f(x) = 2x2 + 1 1.3 f(x) = x2 − x

2. Let Pn =

{
j

n
: n = 0, 1, ..., n

}
for each n ∈ N. Prove that a bounded function f is integrable

on [0, 1] if

I0 := lim
n→∞

L(f, Pn) = lim
n→∞

U(f, Pn),

in which case
∫ 1

0

f(x) dx equals I0.

3. For each of the following functions, use Pn in 2. to find formulas for the upper and lower

sums of f on Pn, and use them to compute the value of
∫ 1

0

f(x) dx.

3.1 f(x) = x

3.2 f(x) = x2

3.3 f(x) =

1 if 0 ≤ x < 1
2

0 if 1
2
≤ x ≤ 1

4. Let E =

{
1

n
: n ∈ N

}
. Prove that the function f(x) =

1 if x ∈ E

0 if otherwise
is integrable on

[0, 1]. What is the value of
∫ 1

0

f(x) dx ?

5. Suppose that f is continuous on an interval [a, b]. Show that
∫ c

a

f(x) dx = 0 for all c ∈ [a, b]

if and only if f(x) = 0 for all x ∈ [a, b].

6. Let f be bounded on a nondegenerate interval [a, b]. Prove that f is integrable on [a, b] if

and only if given ε > 0 there is a partition Pε of [a, b] such that

P ⊇ Pε imples |U(f, P )− L(f, P )| < ε.
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7.2 Riemann sums

Definition 7.2.1 Let f : [a, b] → R.

1. A Riemann sum of f with respect to a partition P = {x0, x1, ..., xn} of [a, b] is a sum of

the form
n∑

j=1

f(tj)∆xj,

where the choice of tj ∈ [xj−1, xj] is arbitrary.

2. The Riemann sums of f are converge to I(f) as ∥P∥ → 0 if and only if given ε > 0 there

is a partition Pε of [a, b] such that

P = {x0, x1, ..., xn} ⊇ Pε implies

∣∣∣∣∣
n∑

j=1

f(tj)∆xj − I(f)

∣∣∣∣∣ < ε

for all choice of tj ∈ [xj−1, xj], j = 1, 2, ..., n. In this case we shall use the notation

I(f) = lim
∥P∥→0

n∑
j=1

f(tj)∆xj.
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Example 7.2.2 Let f(x) = x2 where x ∈ [0, 1] and

P =

{
j

n
: j = 0, 1, ..., n

}
be a partition of [0, 1]. Show that if f(ti) is choosen by the right end point and left end point in

each subinterval, then two I(f), depend on two methods, are NOT different.
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Theorem 7.2.3 Let a, b ∈ R with a < b, and suppose that f : [a, b] → R is bounded. Then f is

Riemann integrable on [a, b] if and only if

I(f) = lim
∥P∥→0

n∑
j=1

f(tj)∆xj

exists, in which case

I(f) =

∫ b

a

f(x) dx.
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Theorem 7.2.4 (Linear Property) If f, g are integrable on [a, b] and α ∈ R, then f + g and αf

are integrable on [a, b]. In fact,

1.
∫ b

a

(f(x) + g(x)) dx =

∫ b

a

f(x) dx+

∫ b

a

g(x) dx

2.
∫ b

a

αf(x) dx = α

∫ b

a

f(x) dx
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Theorem 7.2.5 If f is integrable on [a, b], then f is integrable on each subinterval [c, d] of [a, b].

Moreover, ∫ b

a

f(x) dx =

∫ c

a

f(x) dx+

∫ b

c

f(x) dx

for all c ∈ (a, b).
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By Theorem 7.2.5, we obtain∫ b

a

f(x) dx =

∫ a

a

f(x) dx+

∫ b

a

f(x) dx

Thus, ∫ a

a

f(x) dx = 0 and
∫ b

a

f(x) dx = −
∫ a

b

f(x) dx.

Example 7.2.6 Using the connection between integrals are area, evaluate
∫ 5

0

|x− 2| dx.

Example 7.2.7 Using the connection between integrals are area, evaluate
∫ 2

0

√
4− x2 dx.
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Theorem 7.2.8 (Comparison Theorem) If f, g are integrable on [a, b] and f(x) ≤ g(x) for all

x ∈ [a, b], then ∫ b

a

f(x) dx ≤
∫ b

a

g(x) dx.

In particular, if m ≤ f(x) ≤ M for x ∈ [a, b], then

m(b− a) ≤
∫ b

a

f(x) dx ≤ M(b− a).
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Theorem 7.2.9 If f is Riemann integrable on [a, b], then |f | is integrable on [a, b] and∣∣∣∣∫ b

a

f(x) dx

∣∣∣∣ ≤ ∫ b

a

|f(x)| dx.
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Exercises 7.2

1. Using the connection between integrals are area, evaluate each of the following integrals.

1.1
∫ 1

0

|x− 0.5| dx

1.2
∫ a

0

√
a2 − x2 dx, a > 0

1.3
∫ 2

−2

(|x+ 1|+ |x|) dx

1.4
∫ b

a

(3x+ 1) dx, a < b

2. Prove that if f is integrable on [0, 1] and β > 0, then

lim
n→∞

nα

∫ 1

nβ

0

f(x) dx = 0 for all α < β.

3. If f, g are integrable on [a, b] and α ∈ R, prove that∣∣∣∣∫ b

a

(f(x) + g(x)) dx

∣∣∣∣ ≤ ∫ b

a

|f(x)| dx+

∫ b

a

|g(x)| dx.

4. Suppose that gn ≥ 0 is a sequence of integrable function that satisfies lim
n→∞

∫ b

a

gn(x) dx = 0.

Show that if f : [a, b] → R is integrable on [a, b], then lim
n→∞

∫ b

a

f(x)gn(x) dx = 0.

5. Prove that if f is integrable on [0, 1], then lim
n→∞

∫ 1

0

xnf(x) dx = 0.

6. Prove that if f is integrable on [0, 1], then∫ b

a

f(x) dx = lim
n→∞

n∑
k=0

∫ 1

2k

1

2k+1

f(x) dx.

7. Let f be continuous on a closed, nondegenerate interval [a, b] and set M = sup
x∈[a,b]

|f(x)|.

7.1 Prove that if M > 0 and p > 0, then for every ε > 0 there is a nondegenerate on interval

I ⊂ [a, b] such that

(M − ε)p|I| ≤
∫ b

a

|f(x)|p dx ≤ Mp(b− a).

7.2 Prove that lim
p→∞

(∫ b

a

|f(x)|p dx
) 1

p

= M.
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7.3 Fundamental Theorem of Calculus

Define a set C1[a, b] = {f : [a, b] → R : f is differentiable and f ′ are continuous } and f ′(x) =
df

dx
.

Theorem 7.3.1 (Fundamental Theorem of Calculus) Suppose that f : [a, b] → R.

1. If f is continuous on [a, b] and F (x) =

∫ x

a

f(t) dt, then F ∈ C1[a, b] and

d

dx

∫ x

a

f(t) dt := F ′(x) = f(x)

for each x ∈ [a, b].

2. If f is differentiable on [a, b] and f ′ is integrable on [a, b], then∫ x

a

f ′(t) dt = f(x)− f(a)

for each x ∈ [a, b].
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Example 7.3.2 Assume that f is differentiable on (0, 1) and integrable on [0, 1]. Show that∫ 1

0

xf ′(x) + f(x) dx = f(1).

Theorem 7.3.3 Let α ̸= −1. Then∫ b

a

xα dx = f(b)− f(a) where f(x) =
xα+1

α + 1
.

Example 7.3.4 Find integral
∫ 1

0

x2 dx.
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Theorem 7.3.5 Suppose that f, u : [a, b] → R. If f is continuous on [a, b] and

F (x) =

∫ u(x)

a

f(t) dt, and F ∈ C1[a, b] and

F ′(x) =
d

dx

∫ u(x)

a

f(t) dt = f(u(x)) · u′(x)

for each x ∈ [a, b].

Example 7.3.6 Let F (x) =

∫ sinx

0

et
2

dt. Find F (0) and F ′(0).
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INTEGRATION BY PART.

Theorem 7.3.7 (Integration by Part) Suppose that f, g are differentiable on [a, b] with f ′, g′

integrable on [a, b], Then∫ b

a

f ′(x)g(x) dx = f(b)g(b)− f(a)g(a)−
∫ b

a

f(x)g′(x) dx.

Example 7.3.8 Use the Integration by Part to find integrals.

1.
∫ π

2

0

x sinx dx 2.
∫ 2

1

lnx dx



7.3. FUNDAMENTAL THEOREM OF CALCULUS 203

Example 7.3.9 Let f(x) =
∫ x3

0

et
2

dt. Use integration by part to show that

6

∫ 1

0

x2f(x)dx− 2

∫ 1

0

ex
2

dx = 1− e.
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CHANGE OF VARIABLES.

Theorem 7.3.10 (Change of Variables) Let ϕ be continuously differentiable on a closed interval

[a, b]. If f is continuous on ϕ([a, b]), or if ϕ is strictly incresing on [a, b] and f is integrable on

[ϕ(a), ϕ(b)], then ∫ ϕ(b)

ϕ(a)

f(t) dt =

∫ b

a

f(ϕ(x))ϕ′(x) dx.

Example 7.3.11 Find
∫ 3

0

e
√
x+1

√
x+ 1

dx
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Example 7.3.12 Evaluate ∫ 1

−1

xf(x2) dx

for any f is continuous on [0, 1].

Example 7.3.13 Let f : [−a, a] → R where a > 0. Suppose f(−x) = −f(x) for all x ∈ [−a, a].

Show that ∫ a

−a

f(x) dx = 0.
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Exercises 7.3

1. Compute each of the following integrals.

1.1
∫ 3

−3

|x2 + x− 2| dx

1.2
∫ 4

1

√
x− 1√
x

dx

1.3
∫ 1

0

(3x+ 1)99 dx

1.4
∫ e

1

x lnx dx

1.5
∫ π

2

0

ex sinx dx

1.6
∫ 1

0

√
4x2 − 4x+ 1

x2 − x+ 3
dx

2. Use First Mean Value Theorem for Integrals to prove the followingversion of the Mean Value

Theorem for Derivatives. If f ∈ C1[a, b], then there is an x0 ∈ [a, b] such that

f(b)− f(a) = (b− a)f ′(x0).

3. If f : [0,∞) → R is continuous, find d

dx

∫ x2

0

f(t) dt.

4. If g : R → R is continuous, find d

dt

∫ t

cos t
g(x) dx.

5. Let g be differentiable and integrable on R. Define f(x) =

∫ x2

1

g(t) ·
√
t dt.

Show that
∫ 1

0

xg(x) + f(x) dx = 0.

6. If f(x) =
∫ x2

0

sec2(t2)dt. show that 2

∫ 1

0

sec2(x2) dx− 4

∫ 1

0

xf(x) dx = tan 1.

7. Suppose that g is integrable and nonnegative on [1, 3] with
∫ 3

1

g(x) dt = 1. Prove that

1

π

∫ 9

1

g(
√
x) dx < 2.

8. Suppose that h is integrable and nonnegative on [1, 11] with
∫ 11

1

h(x) dt = 3. Prove that∫ 2

0

h(1 + 3x+ 3x2 − x3) dx ≤ 1.

9. If f is continuous on [a, b] and there exist numbers α ̸= β such that

α

∫ c

a

f(x) dx+ β

∫ b

c

f(x) dx = 0

holds for all c ∈ (a, b), prove that f(x) = 0 for all x ∈ [a, b].



Chapter 8

Infinite Series of Real Numbers

8.1 Introduction

Let {ak}k∈N be a sequence of numbers. We shall call an expression of the form
∞∑
k=1

ak

an infinite series with terms ak.

Definition 8.1.1 Let S =
∞∑
k=1

ak be an infinite series whose terms ak belong to R.

1. The partial sums of S of order n are the numbers defined, for each n ∈ N, by

sn :=
n∑

k=1

ak.

2. S is said to converge if and only if its sequence of partial sums {sn} to some s ∈ R as

n → ∞; i.e., for every ε > 0 there is an N ∈ N such that

n ≥ N implies |sn − s| < ε.

In this case we shall write
∞∑
k=1

ak = s

and call s the sum, or value, of the series
∞∑
k=1

ak.

3. S is said to diverge if and only if its sequence of partial sums {sn} does not converge.

207
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Example 8.1.2 Prove that
∞∑
k=1

[
1

k
− 1

k + 1

]
= 1.

Example 8.1.3 Prove that
∞∑
k=1

(−1)k diverges.

Theorem 8.1.4 (Harmonic Series) Prove that the sequence 1
k

converges but the series
∞∑
k=1

1

k
diverges.
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Theorem 8.1.5 (Divergence Test) Let {ak}k∈N be a sequence of real numbers.

If ak does not converge to zero, then the series
∞∑
k=1

ak diverges.

Example 8.1.6 Show that the series
∞∑
k=1

n

n+ 1
diverges.
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Theorem 8.1.7 (Telescopic Seires ) If {ak} is a convergent real sequence, then

∞∑
k=m

(ak − ak+1) = am − lim
k→∞

ak.

Example 8.1.8 Evaluate the series
∞∑
k=1

1

(k + 1)(k + 2)
.

Example 8.1.9 Determine whether
∞∑
k=1

1
√
k + 1 +

√
k

converges or not.
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Theorem 8.1.10 (Geometric Seires) The series
∞∑
k=1

xk converges if and only if |x| < 1, in which

case
∞∑
k=1

xk =
x

1− x
.

Example 8.1.11 Determine whether the following series converges or diverges.

1.
∞∑
k=1

2−k 2.
∞∑
k=1

(
√
2− 1)−k
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Theorem 8.1.12 Let {ak} and {bk} be a real sequences. If
∞∑
k=1

ak and
∞∑
k=1

bk are convergent series,

then
∞∑
k=1

(ak + bk) =
∞∑
k=1

ak +
∞∑
k=1

bk and
∞∑
k=1

(αak) = α
∞∑
k=1

ak

for any α ∈ R.

Theorem 8.1.13 If
∞∑
k=1

ak converges and
∞∑
k=1

bk diverges, then

∞∑
k=1

(ak + bk) diverges.
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Example 8.1.14 Evaluate
∞∑
k=1

1 + 2k+1

3k
.

Example 8.1.15 Evaluate
∞∑
k=1

k

2k
.

Example 8.1.16 Evaluate
∞∑
k=1

(
1

n(n+ 1)
+

5k

2k

)
.
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Example 8.1.17 Let π be a Pi constant. Show that

∞∑
k=1

1

πk2

[
1− π2k

π
+

(
πk

π

)k
]

converges and find its value.

Example 8.1.18 Evaluate the series
∞∑
k=2

1

k2 − 1
.
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Exercises 8.1

1. Show that
∞∑
k=n

xk =
xn

1− x

for |x| < 1 and n = 0, 1, 2, ....

2. Prove that each of the following series converges and find its value.

2.1
∞∑
k=1

√
k + 1−

√
k√

k(k + 1)

2.2
∞∑
k=1

(−1)k+1

πk

2.3
∞∑
k=1

(−1)k+1 + 4

5k

2.4
∞∑
k=1

3k

7k−1

2.5
∞∑
k=0

2ke−k

2.6
∞∑
k=1

2k − 1

2k

3. Represent each of the following series as a telescopic series and find its value.

3.1
∞∑
k=1

1

(2k − 1)(2k + 1)

3.2
∞∑
k=1

ln
(
k(k + 2)

(k + 1)2

)

3.3
∞∑
k=1

k

√
π

4

(
1−

(π
4

)jk)
, where jk = − 1

k(k + 1)
for k ∈ N

4. Find all x ∈ R for which
∞∑
k=1

3(xk − xk−1)(xk + xk−1)

converges. For each such x, find the value of this series.

5. Prove that each of the following series diverges.

5.1
∞∑
k=1

cos 1

k2
5.2

∞∑
k=1

(
1− 1

k

)k

5.3
∞∑
k=1

k + 1

k2

6. Prove that if
∞∑
k=1

ak converges, then its partial sums sn are bounded.

7. Let {bk} be a real sequence and b ∈ R.
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7.1 Suppose that there is an N ∈ N such that |b− bk| ≤ M for all k ≥ N . Prove that∣∣∣∣∣nb−
n∑

k=1

bk

∣∣∣∣∣ ≤
N∑
k=1

|bk − b|+M(n−N)

for all n > N .

7.2 Prove that if bk → b as k → ∞, then

b1 + b2 + · · ·+ bn
n

→ b as n → ∞.

7.3 Show that converse of 7.2 is false.

8. A series
∞∑
k=0

ak is said to be Cesàro summable to L ∈ R if and only if

σn :=
n−1∑
k=0

(
1− k

n

)
ak

converges to L as n → ∞.

8.1 Let sn =
∞∑
k=0

ak. Prove that σn =
s1 + s2 + · · ·+ sn

n
for each n ∈ N.

8.2 Prove that if ak ∈ R and
∞∑
k=0

ak = L converges, then c is Cesàro summable to L.

8.3 Prove that
∞∑
k=0

(−1)k is Cesàro summable to 1
2
; hence the converge of 8.2 is false.

8.4 TAUBER. Prove that if ak ≥ 0 for k ∈ N and
∞∑
k=0

ak is Cesàro summable to L, then

∞∑
k=0

ak = L.

9. Suppose that {ak} is a decreasing sequence of real numbers. Prove that if
∞∑
k=1

ak converges,

then kak → 0 as k → ∞.

10. Suppose that ak ≥ 0 for k large and
∞∑
k=0

ak
k

converges. Prove that lim
j→∞

∞∑
k=1

ak
j + k

= 0.

11. If and
∞∑
k=1

ak converges and
∞∑
k=1

bk diverges, prove that
∞∑
k=1

(ak + bk) diverges.
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8.2 Series with nonnegative terms

INTEGRAL TEST.

Theorem 8.2.1 (Integral Test) Suppose that f : [1,∞) → R is positive and decreasing on [1,∞).

Then
∞∑
k=1

f(k) converges if and only if

lim
n→∞

∫ n

1

f(x) dx < ∞.
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Example 8.2.2 Use the Integral Test to prove that
∞∑
k=1

1

k
diverges.

Example 8.2.3 Show that
∞∑
k=1

1

k2
converges.

Example 8.2.4 Show that
∞∑
k=1

1

k2 + 1
converges.
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p-SERIES TEST.

Theorem 8.2.5 (p-Series Test) The series

∞∑
k=1

1

kp

converges if and only if p > 1.
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Example 8.2.6 Find p ∈ R such that
∞∑
k=1

kp2−2 converges.

Example 8.2.7 Determine whether
∞∑
k=1

(
k + 2k

k2k

)
converges or not.
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COMPARISON TEST.

Theorem 8.2.8 Suppose that ak ≥ 0 for k ≥ N . Then
∞∑
k=1

ak converges if and only if its sequence

of partial sums {sn} is bounded, i.e., if and only if there exists a finite number M > 0 such that∣∣∣∣∣
n∑

k=1

ak

∣∣∣∣∣ ≤ M for all n ∈ N.

Theorem 8.2.9 (Comparison Test ) Suppose that there is an M ∈ N such that

0 ≤ ak ≤ bk for all k ≥ M .

1. If
∞∑
k=1

bk < ∞, then
∞∑
k=1

ak < ∞.

2. If
∞∑
k=1

ak = ∞, then
∞∑
k=1

bk = ∞.
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Example 8.2.10 Determine whether the following series converges or diverges.

1.
∞∑
k=1

1

k3 + 1
2.

∞∑
k=1

1

k3 + 3k

Example 8.2.11 Determine whether
∞∑
k=2

1

ln k
converges or diverges.
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LIMIT COMPARISON TEST.

Theorem 8.2.12 (Limit Comparison Test) Suppose that ak and bk are positive for lagre k and

L := lim
n→∞

an
bn

exists as an extended real number.

1. If 0 < L < ∞, then
∞∑
k=1

bk converges if and only if
∞∑
k=1

ak converges.

2. If L = 0 and
∞∑
k=1

bk converges, then
∞∑
k=1

ak converges.

3. If L = ∞ and
∞∑
k=1

bk diverges, then
∞∑
k=1

ak diverges.
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Example 8.2.13 Use the Limit Comparison Test to prove that
∞∑
k=1

1

k2 + 1
converge.

Example 8.2.14 Determine whether
∞∑
k=1

k

2k4 + k + 3
converges or diverges.
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Example 8.2.15 Determine whether
∞∑
k=1

1√
k + 1

converges or diverges.

Theorem 8.2.16 Let ak → 0 as k → ∞. Prove that
∞∑
k=1

sin |ak| converges if and only if
∞∑
k=1

|ak| converges.
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Exercises 8.2

1. Prove that each of the following series converges.

1.1
∞∑
k=1

k − 3

k3 + k + 1

1.2
∞∑
k=1

k − 1

k2k

1.3
∞∑
k=1

ln k

kp
, p > 1

1.4
∞∑
k=1

1√
k3k−1

1.5
∞∑
k=1

(
10 +

1

k

)
k−e

1.6
∞∑
k=1

3k2 −
√
k

k4 − k2 + 1

2. Prove that each of the following series diverges.

2.1
∞∑
k=1

k
√
k

k

2.2
∞∑
k=1

1

lnp(k + 1)
, p > 0

2.3
∞∑
k=1

k2 + 2k + 3

k3 − 2k2 +
√
2

2.4
∞∑
k=1

1

k lnp k
, p ≤ 1

3. Use the Comparison Test to determine whether
∞∑
k=1

3k

k2 + k

√
ln k

k
converges or diverges.

4. Find all p ≥ 0 such that the following series converges.
∞∑
k=1

1

k lnp(k + 1)

5. If ak ≥ 0 is a bounded sequence, prove that
∞∑
k=1

ak
(k + 1)p

converges for all p > 1.

6. If
∞∑
k=1

|ak| converges, prove that
∞∑
k=1

|ak|
kp

converges for all p ≥ 0. What happen if p < 0 ?

7. Prove that if
∞∑
k=1

ak and
∞∑
k=1

bk coverge, then
∞∑
k=1

akbk also converges.

8. Suppose tha a, b ∈ R satisfy b
a
∈ R\Z. Find all q > 0 such that

∞∑
k=1

1

(ak + b)qk
converges.

9. Suppose that ak → 0. Prove that
∞∑
k=1

ak converges if and only if the series
∞∑
k=1

(a2k + a2k+1)

converges.
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8.3 Absolute convergence

Theorem 8.3.1 (Cauchy Criterion) Let {ak} be a real sequence. Then the infinite series
∞∑
k=1

ak

converges if and only if for every ε > 0, there is an N ∈ N such that

m > n ≥ N imply

∣∣∣∣∣
m∑

k=n

ak

∣∣∣∣∣ < ε.

Corollary 8.3.2 Let {ak} be a real sequence. Then the infinite series
∞∑
k=1

ak converges if and only

if for every ε > 0, there is an N ∈ N such that

n ≥ N implies

∣∣∣∣∣
∞∑
k=n

ak

∣∣∣∣∣ < ε.
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ABSOLUTE CONVERGENCE.

Definition 8.3.3 Let S =
∞∑
k=1

ak be an infinite series.

1. S is said to converge absolutely if and only if
∞∑
k=1

|ak| < ∞.

2. S is said to converge conditionally if and only if S converges but not absolutely.

Theorem 8.3.4 A series
∞∑
k=1

ak converges absolutely if and only if for every ε > 0 there is an

N ∈ N such that

m > n ≥ N implies
m∑

k=n

|ak| < ε.

Theorem 8.3.5 If
∞∑
k=1

ak converges absolutely, then
∞∑
k=1

ak converges.
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Example 8.3.6 Prove that
∞∑
k=1

(−1)k

k2
converges absolutely but

∞∑
k=1

(−1)k

k
is not.

LIMIT SUPREMUM.

Definition 8.3.7 The supremum s of the set of adherent points of a sequence {xk} is called the

limit supremum of {xk}, denoted by s := lim sup
k→∞

xk, i.e.,

lim sup
k→∞

xk = lim
n→∞

sup{xk : k ≥ n}.

Example 8.3.8 Evaluate limit supremum of the following sequences.

1. xk =
1

k
2. yk =

(−1)k

k
3. zk = 1 + (−1)k
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Theorem 8.3.9 Let x ∈ R and {xk} be a real sequence.

1. If lim sup
k→∞

xk < x, then xk < x for large k.

2. If lim sup
k→∞

xk > x, then xk > x for infinitely many k.

Theorem 8.3.10 Let x ∈ R and {xk} be a real sequence. If xk → x as k → ∞, then

lim sup
k→∞

xk = x.

Example 8.3.11 Evaluate limit supremum of
{

k

k + 1

}
.
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ROOT TEST.

Theorem 8.3.12 (Root Test) Let ak ∈ R and r := lim sup
k→∞

|ak|
1
k .

1. If r < 1, then
∞∑
k=1

ak converges absolutely.

2. If r > 1, then
∞∑
k=1

ak diverges.
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Example 8.3.13 Prove that
∞∑
k=1

(
k

1 + 2k

)k

converges absolutely.

Example 8.3.14 Prove that
∞∑
k=1

(
3 + (−1)k

2

)k

diverges.
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RATIO TEST.

Theorem 8.3.15 (Ratio Test) Let ak ∈ R with ak ̸= 0 for large k and suppose that

r := lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣
exists as an extended real number.

1. If r < 1, then
∞∑
k=1

ak converges absolutely.

2. If r > 1, then
∞∑
k=1

ak diverges.
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Example 8.3.16 Prove that
∞∑
k=1

3k

k!
converges absolutely.

Example 8.3.17 Prove that
∞∑
k=1

k!

kk
diverges.
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Exercises 8.3

1. Prove that each of the following series converges.

1.1
∞∑
k=1

1

k!
1.2

∞∑
k=1

1

kk
1.3

∞∑
k=1

2k

k!
1.4

∞∑
k=1

(
k

k + 1

)k2

2. Decide, using results convered so far in this chapter, which of the following series converge

and which diverge.

2.1
∞∑
k=1

k2

πk

2.2
∞∑
k=1

k!

2k

2.3
∞∑
k=1

k!

2k + 3k

2.4
∞∑
k=1

(
k + 1

2k + 3

)k

2.5
∞∑
k=1

(
k

k + 1

)k2

2.6
∞∑
k=1

(
π − 1

k

)
k−1

2.7
∞∑
k=1

(
k!

(k + 2)!

)k2

2.8
∞∑
k=1

(
3 + (−1)k

3

)k

2.9
∞∑
k=1

(1 + (−1)k)k

ek

3. Define ak recursively by a1 = 1 and

ak = (−1)k
(
1 + k sin

(
1

k

))−1

ak−1, k > 1.

Prove that
∞∑
k=1

ak converges absolutely.

4. Suppose that ak ≥ 0 and k
√
ak → a as k → ∞. Prove that

∞∑
k=1

akx
k converges absolutely for

all |x| < 1
a

if a ̸= 0 and for all x ∈ R if a = 0.

5. For eachof the following, find all values of p ∈ R for which the given series converges abso-

lutely.

5.1
∞∑
k=2

1

k lnp k

5.2
∞∑
k=2

1

lnp k

5.3
∞∑
k=1

kp

pk

5.4
∞∑
k=2

1√
k(kp − 1)

5.5
∞∑
k=1

2kpk!

kk

5.6
∞∑
k=1

(
√
k2p + 1− kp)
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6. Suppose that akj ≥ 0 for k, j ∈ N. Set

Ak =
∞∑
j=1

akj

for each k ∈ N, and suppose that
∞∑
k=1

Ak converges.

6.1 Prove that
∞∑
j=1

(
∞∑
k=1

akj

)
≤

∞∑
k=1

(
∞∑
j=1

akj

)

6.2 Show that
∞∑
j=1

(
∞∑
k=1

akj

)
=

∞∑
k=1

(
∞∑
j=1

akj

)

7. Suppose that
∞∑
k=1

ak converges absolutely. Prove that
∞∑
k=1

|ak|p converges for all p ≥ 1.

8. Suppose that
∞∑
k=1

ak converges conditionally. Prove that
∞∑
k=1

kpak diverges for all p ≥ 1.

9. Let an > 0 for n ∈ N. Set b1 = 0, b2 = ln
(
a2
a1

)
, and

bk = ln
(

ak
ak−1

)
− ln

(
ak−1

ak−2

)
, k = 3, 4, ...

9.1 Prove that r = lim
n→∞

an
an−1

if exists and is positive, then

lim
n→∞

ln(an)
1
n = lim

n→∞

∞∑
k=1

(
1− k − 1

n

)
bk =

∞∑
k=1

bk = ln r.

9.2 Prove that if an ∈ R\{0} and
∣∣∣∣an+1

an

∣∣∣∣ → r as n → ∞, for some r > 0, then |an|
1
n → r

as n → ∞.
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8.4 Alternating series

Theorem 8.4.1 (Abel’s Formula) Let {ak}k∈N and {bk}k∈N be real sequences, and for each pair

of integers n ≥ m ≥ 1 set

An,m :=
n∑

k=m

ak.

Then
n∑

k=m

akbk = An,mbn −
n−1∑
k=m

Ak,m(bk+1 − bk)

for all integers n > m ≥ 1.
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Theorem 8.4.2 (Dirichilet’s Test) Let {ak} and {bk} be sequences in R. If the sequence of

partial sums sn =
n∑

k=1

ak is bounded and bk ↓ 0 as k → ∞, then

n∑
k=1

akbk converges.
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Corollary 8.4.3 (Alternating Series Test (AST)) If ak ↓ 0 as k → ∞, then
∞∑
k=1

(−1)kak converges.

Moreover, if
∞∑
k=1

ak converges, then

∞∑
k=1

(−1)kak converges conditionally.

Example 8.4.4 Prove that
∞∑
k=1

(−1)k

k
converges conditionally.

Example 8.4.5 Prove that
∞∑
k=2

(−1)k

ln k
converges conditionally.
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Example 8.4.6 Prove that S(x) =
∞∑
k=1

sin(kx)
k

converges for each x ∈ R.
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Exercises 8.4

1. Prove that each of the following series converges.

1.1
∞∑
k=1

(−1)k
(π
2
− arctan k

)
1.2

∞∑
k=1

(−1)kk2

2k

1.3
∞∑
k=1

(−1)k

k!

1.4
∞∑
k=1

(−1)k

kp
, p > 0

1.5
∞∑
k=1

sin(kx)
kp

, x ∈ R, p > 0

1.6
∞∑
k=1

(−1)k

k2

2 · 4 · · · (2k)
1 · 3 · · · (2k − 1)

1.7
∞∑
k=1

(−1)k

ln(ek + 1)

1.8
∞∑
k=1

arctan k

4k3 − 1

2. For each of the following, find all values x ∈ R for which the given series converges.

2.1
∞∑
k=1

xk

k

2.2
∞∑
k=1

x3k

2k

2.3
∞∑
k=1

(−1)kxk

√
k2 + 1

2.4
∞∑
k=1

(x+ 2)k

k
√
k + 1

2.5
∞∑
k=1

2k(x+ 1)k

k!

2.6
∞∑
k=1

(
k(x+ 3)

cos k

)k

3. Using any test coveredin this chapter, find out which of the following series converge abso-

lutely, which converge conditionally, and which diverge.

3.1
∞∑
k=1

(−1)kk3

(k + 1)!

3.2
∞∑
k=1

(−1)(−3) · · · (1− 2k)

1 · 4 · · · (3k − 2)

3.3
∞∑
k=1

(k + 1)k

pkk!
, p > e

3.4
∞∑
k=1

(−1)k
√
k

k + 1

3.5
∞∑
k=1

(−1)k
√
k + 1√

kkk

3.6
∞∑
k=1

(−1)k sin k

k!

3.7
∞∑
k=1

(−1)k√
k2 + 1

3.8
∞∑
k=1

(−1)k ln(k + 2)

k
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4. ABEL’S TEST. Suppose that
∞∑
k=1

ak converges and bk ↓ b as k → ∞. Prove that

∞∑
k=1

akbk converges.

5. Use Dirichilet’s Test to prove that

S(x) =
∞∑
k=1

cos(kx)
k2

converges for all x ∈ R.

6. Prove that
∞∑
k=1

ak cos(kx) converges for every x ∈ (0, 2π) and every ak ↓ 0.

What happens when x = 0 ?

7. Suppose that
∞∑
k=1

ak converges. Prove that if bk ↑ ∞ and
∞∑
k=1

akbk converges, then

bm

∞∑
k=m

ak → 0 as m → ∞.
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