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1. Let f(x) =

∫ x2

0
sec2(t2)dt. Use integration by part to show that

2

∫ 1

0
sec2(x2) dx− 4

∫ 1

0
xf(x) dx = tan 1.

2. Let f : [−a, a] → R where a > 0. Suppose that f(−x) = f(x) for all x ∈ [−a, a]. Show that∫ a

−a
f(x)dx = 2

∫ a

0
f(x)dx.

Hint: By dividing the integral into two parts and changing of variable.

3. Let
∫ 0

−1
f(t) dt = 2022. Estimate the integral

∫ 1

0

f
(
x−1
x+1

)
(x+ 1)2

dx

4. Show that
∞∑
k=1

ln
(
k(k + 2)

(k + 1)2

)
converges and find its value.

5. Use Telescoping Seires to show that Guass’ formula :
n∑

k=1

k =
n(n+ 1)

2
.

6. Use Telescoping Seires to show that
∞∑
k=1

k − 1

2k

converges and find its values.

7. Find all x ∈ R for which
∞∑
k=1

3(xk − xk−1)(xk + xk−1)

converges. For each such x, find the value of this series.

8. Let π be a Pi constant. Show that
∞∑
k=1

1

πk2

[
1− π2k

π
+

(
πk

π

)k
]

converges and find its value.
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