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1. Let f(z) = / sec?(t?)dt. Use integration by part to show that
0

1 1
2/ sec?(x?) dIL‘—4/ xf(x)dx = tanl.
0 0

Solution. By the First Fundamental Theorem of Calculus and Chain rule,
f'(x) = sec®((z%)?) - (22) = 2z sec?(z?).

We obtain

4/lef(3c)dx _ 2/01(2:c)f(x)dx _ 2/01(w2)’f(x)dac
—2 ([ 2 (a)d
=2 <1f —0f(0 /01 2?2z secZ(:c“)da:)

2f(1) — / 4a3 sec? (z1)dx

1
:2/ e’ d:z:—/ (tan zt)'dzx
0 0

1 1
= 2/ e da — [tan(:n4)](1] = 2/ sec?(z%)dx — tan1
0 0

Thus,
1 1
2/ sec?(z?) dx — 4/ xf(x)dx = tan1.
0 0

2. Let f:[—a,a] — R where a > 0. Suppose that f(—z ) for all z € [—a,a]. Show that

_af dm_2/ f(z

Hint: By dividing the integral into two parts and changing of variable.

Solution. Consider

a 0 a
wf(m)dx = 5 f(z)dx +/0 f(z)dz

0
Next, we rewrite f(z)dz by changing of variable ¢(z) = —z. From f(—x) = f(x), we obatin

0 0 0
| f@)de= | f(-z)de=— [ f(=z)(—z) dx

- —/aof(x)dm - /Oaf(:c)d:zr



Hence,
_Z f(x)de = /0 flx)de + /0 f(z)dz =2 /0 f(w)da

0
3. Let / f(t)dt = 2022. Estimate the integral
~1

[,

(x +1)2

Solution. Let ¢(z) = —— =1 — L Then, ¢(0) = —1, ¢(1) = 0 and

We obtain

/01 {:U(iJrll)) do = ;/lf (i;—i) ' (avjl)2 dz
/f (z) dz
- /¢> (;1) F(t) dt

1 /0 1
——— f(t)dt = = -2022 = 1011 #
2/ 4 2

(k+1)2

Solution. We will rewrite the infinite sum in term of telescoping series:
> k(k+2)> = (k(k+2) = ko k+2
Zm(2:2m2:2m-
— (k+1) — (k+1) P k+1 k+1
[ (i) ()]
Z In{—— ) —-In{——
P kE+1 k42

1 k+1
=In( )~ lim n
1 (3) - dmin (i)

=—In2—-Inl=-1n2.

> 2
4. Show that Z In (lMH> converges and find its value.

1)
5. Use Telescoping Seires to show that Guass’ formula : Z k= L

Proof. By the that (k +1)? — k? = 2k + 1, we obtain

(2k + 1) Z[(k+ 1)2 — k]
k=1

"I

2 k+21_ (n+1)2-12=n2+2n
k=1 k=1

n
2Zk+n:n2+2n

k=1



6. Use Telescoping Seires to show that

k-1
Z 2k

k=1

converges and find its values.

Solution. Consider the difference of

k—1 2k—k—-1 2k k+1 k  k+1

ok 9k ok 9k  9k—1 9k
By Telescopic series, we have
o0 o0
k—1 k k+1 1 . k41
2 o 2 e m i e =10

7. Find all x € R for which

converges. For each such z, find the value of this series.

Solution. Consider

Case £ = +1. Then 22" = 1. So
lim S, = lim 3(1—-1)=0

n—o0 n—oo

Case |z| < 1. Then
lim S, = lim 3(z*" —1)=3(0—1) = -3

n—o0 n—oo

Case |z| > 1. Then lim S, go to infinity.
n—oo

o0
Hence, Z 3(z% — 2* 1) (aF + 271 conveges if and only if || < 1 and
k=1
00 0 if v =41
d 3k -+ aF ) =4 -3 i< 1.
k=1 oo iffz| >1



8. Let m be a Pi constant. Show that

< , 2k R\ F
D i
k=1

converges and find its value.

Solution. We rewrite the term of this series
N o Ca 1 1 7t
e IR ey [l

A 1 1\*
~\E TRz ) 7

Then, the first term is telescoping series and the second term is geometric series. Thus,
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> - (3) |- e )+ 2 ()
52 2 E—1)2
=17 [ T g =1 \T (k1) =1 \T
[e'e) o] k
1 1) <1>
S (e )
—1)2 =
k:1<7T( oo =1 \T
1
=il et
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