

Assignment 12 MAC3309 Mathematical Analysis

TopicTest of SeriesScore10 marksTime14th WeekTeacherAssistant Professor Thanatyod Jampawai, Ph.D.
Division of Mathematics, Faculty of Education, Suan Sunandha Rajabhat University

1. Dertermine whether the following series are convergent.

(a)
$$\sum_{k=1}^{\infty} \frac{\sqrt[k]{k}}{k}$$

(b)
$$\sum_{k=1}^{\infty} \left(1 + \frac{1}{k}\right) k^{-\pi}$$

- 2. Find all $p \in \mathbb{R}$ such that the following series are convergent.
 - (a) $\sum_{k=1}^{\infty} \frac{\ln k}{k^p}$ Hint: Use the Integral Test. (b) $\sum_{k=2}^{\infty} \frac{1}{k(\ln k)^p}$ Hint: Use the Integral Test.
- 3. Prove that

if
$$\sum_{k=1}^{\infty} |a_k|$$
 converges, then $\sum_{k=1}^{\infty} \frac{|a_k|}{k^p}$ converges for all $p > 0$.

Hint: Use The Limit Comparision Test.

4. Use the **Limit Comparision Test** to show that

$$\sum_{k=1}^{\infty} \arctan\left(\frac{1}{k^p}\right) \quad \text{converges} \quad \text{if } p > 1.$$