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1. Dertermine whether the following series are convergent.
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Solution. Since 1 < k for all £ € N,

1< Vk.
We obtain .
ogig‘/f for all k > 1.
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It’s easy to see that Z z diverges because it is a p-series such that p = 1.

k=1
By the Comparision Test, it implies that

—VE
Z— diverges.
k
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(b) i 1+1 k™™
k
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Solution. Consider
= 1, . =1 <1
Z(Hk)’f =D =t
k=1 k=1 k=1

Then, two parts are p-series such that p =7 > 1and p =147 > 1. So, each part of the series is converges.
We conclude that

oo

1
Z (1 + k) k™™ converges.
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2. Find all p € R such that the following series are convergent.
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(a) 3 Hint: Use the Integral Test.
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Solution. Let f(x) = — Wwhere x> 1. First, we consider the derivative of the function:
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So, f is decreasing on [3,00). Next, we find p satisfying / f(z)dx < o0, ie.,
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By the Integral Test, we conclude that

1
z—f if and only if p > 1.
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(b) Hint: Use the Integral Test
kZ::Q k(In k)P

Solution. Let f(x) = where z > 2. First, we consider the derivative of the function:

z(lnx)

F(2) = —1(a(no)?)2 (an 2P + pa(in @1)

= —W ((lna:)p +p(ln:c)p_1)
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Next, we find p satisfying / f(z)dr < oo, ie.,
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/200 f(x)dx = /200 az(hia:)de
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Recheck in (), we get f/(x) < 0if p > 1. So, f is decreasing when = > 2.
By the Integral Test, we conclude that

if and only if p > 1.



3. Prove that
. k
if Z |ag| converges, then Z T converges for all p > 0.
k=1 k=1
Hint: Use The Limit Comparision Test.
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Proof. Let p > 0. Assume that Z |ag| converges. Consider
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By the Limit Comparision Test, we conclude that Z |k:1]Z|'
k=1

4. Use the Limit Comparision Test to show that
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Zarctan (kﬂ’) converges if p > 1.
k=1
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Solution. Let p > 1 and a; = arctan (k:p> Choose by, = "
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Then the series Z by, converges because it is a p—series such that p > 1. We obtain
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By the Limit Comparision Test, it implies that

> 1
; arctan (/{:p> COHVGI‘geS.



