

Solution Assignment 13 MAC3309 Mathematical Analysis

1. Use the **Root Test** to find all of $x \in \mathbb{R}$ such that

$$
\sum_{k=1}^{\infty} \left(\frac{(kx+1)^2}{k^2+1} \right)^k
$$
 converges.

Solution. Let $a_k =$ $((kx+1)^2)$ $\left(\frac{kx+1}{k^2+1}\right)^k$. We consider

$$
\limsup_{k \to \infty} (|a_k|)^{\frac{1}{k}} = \limsup_{k \to \infty} \left(\left| \left(\frac{(kx+1)^2}{k^2+1} \right)^k \right| \right)^{\frac{1}{k}}
$$

$$
= \limsup_{k \to \infty} \left| \left(\frac{x^2k^2 + 2kx + 1}{k^2+1} \right) \right|
$$

$$
= \limsup_{n \to \infty} \left| \left(\frac{x^2k^2 + 2kx + 1}{k^2+1} \right) \right|
$$

$$
= \lim_{n \to \infty} \left| \left(\frac{x^2n^2 + 2nx + 1}{n^2+1} \right) \right|
$$

$$
= x^2
$$

By the Root Test, the series converges if $x^2 < 1$. Then $|x| < 1$ or $x \in (-1, 1)$. Therefore,

$$
\sum_{k=1}^{\infty} \left(\frac{(kx+1)^2}{k^2+1} \right)^k
$$
 converges if and only if $|x| < 1$.

2. Use the **Ratio Test** to find all of $x \in \mathbb{R}$ such that Bessel function of first order $J_1(x)$ **converges** where

$$
J_1(x) = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{k!(k+1)!2^{2k+1}}.
$$

Solution. Let
$$
a_k = \frac{(-1)^k x^{2k+1}}{k! (k+1)! 2^{2k+1}}
$$
. Then
\n
$$
\lim_{k \to \infty} \left| \frac{a_{k+1}}{a_k} \right| = \lim_{k \to \infty} \left| \frac{(-1)^{k+1} x^{2k+3}}{(k+1)! (k+2)! 2^{2k+3}} \cdot \frac{k! (k+1)! 2^{2k+1}}{(-1)^k x^{2k+1}} \right|
$$
\n
$$
= \lim_{k \to \infty} \left| \frac{(-1) x^2}{(k+1) (k+2) 2^2} \right|
$$
\n
$$
= x^2 \lim_{k \to \infty} \frac{1}{4(k+1) (k+2)}
$$
\n
$$
= x^2 \cdot 0 = 0 < 1
$$

By the Ratio Test, we conclude that $J_1(x)$ converges for all $x \in \mathbb{R}$.

3. Dethermine whether the following series are absolutely convergent or NOT.

(a)
$$
\sum_{k=1}^{\infty} \left(\frac{k+1}{k+2}\right)^{k^2}
$$

Solution. Consider

$$
\limsup_{k \to \infty} \left(\left| \left(\frac{k+1}{k+2} \right)^{k^2} \right| \right)^{\frac{1}{k}} = \limsup_{k \to \infty} \left| \left(\frac{k+1}{k+2} \right)^k \right|
$$

$$
= \limsup_{n \to \infty} \left| \left(\frac{k+1}{k+2} \right)^k \right|
$$

$$
= \lim_{n \to \infty} \left(\frac{n+1}{n+2} \right)^n
$$

Then,

$$
L = \left(\frac{n+1}{n+2}\right)^n
$$

\n
$$
\ln L = n \ln \left(\frac{n+1}{n+2}\right)
$$

\n
$$
\lim_{n \to \infty} \ln L = \lim_{n \to \infty} n \ln \left(\frac{n+1}{n+2}\right)
$$

\n
$$
= \lim_{n \to \infty} \frac{\ln \left(\frac{n+1}{n+2}\right)}{\frac{1}{n}} = \lim_{n \to \infty} \frac{\frac{n+2}{n+1} \cdot \left(\frac{n+1}{n+2}\right)^n}{-\frac{1}{n^2}}
$$

\n
$$
= \lim_{n \to \infty} \frac{\frac{n+2}{n+1} \cdot \frac{1}{(n+2)^2}}{-\frac{1}{n^2}}
$$

\n
$$
= \lim_{n \to \infty} \frac{-n^2}{(n+1)(n+2)} = -1
$$

\n
$$
\lim_{n \to \infty} L = e^{-1}
$$

So,

$$
\lim_{n \to \infty} \left(\frac{n+1}{n+2}\right)^n = e^{-1} < 1
$$

By the Root Test, we conclude that

$$
\sum_{k=1}^{\infty} \left(\frac{k+1}{k+2}\right)^{k^2}
$$
 is absolutely convergent.

(b)
$$
\sum_{k=1}^{\infty} \frac{(1 + (-1)^k)^k}{e^k}
$$
Solution. Consider

$$
\limsup_{k \to \infty} \left(\left| \frac{(1 + (-1)^k)^k}{e^k} \right| \right)^{\frac{1}{k}} = \limsup_{k \to \infty} \frac{|1 + (-1)^k|}{e}
$$
\n
$$
= \limsup_{n \to \infty} \sup_{k \ge n} \frac{|1 + (-1)^k|}{e}
$$
\n
$$
= \limsup_{n \to \infty} \sup_{k \ge n} \left\{ \frac{|1 + (-1)^n|}{e}, \frac{|1 + (-1)^{n+1}|}{e}, \frac{|1 + (-1)^{n+2}|}{e}, \dots \right\}
$$
\n
$$
= \limsup_{n \to \infty} \left\{ 0, \frac{2}{e} \right\}
$$
\n
$$
= \lim_{n \to \infty} \frac{2}{e}
$$
\n
$$
= \frac{2}{e} < 1
$$

By the Root Test, we conclude that

$$
\sum_{k=1}^{\infty} \frac{(1+(-1)^k)^k}{e^k}
$$
 is absolutely convergent.

- 4. Dethermine whether the following series are conditionally convergent or NOT.
	- (a) [∑]*[∞] k*=2 (*−*1)*^k k* ln *k* **Solution.** Consider

$$
\sum_{k=2}^{\infty} \left| \frac{(-1)^k}{k \ln k} \right| = \sum_{k=2}^{\infty} \frac{1}{k \ln k}.
$$

Let $f(x) = \frac{1}{x \ln x}$ where $x \ge 2$. Then

$$
f'(x) = -(x \ln x)^2 (\ln x + 1) = -\frac{(1 + \ln x)}{(x \ln x)^2} < 0 \quad \text{for all } x \ge 2.
$$

So, f is decreasing on $[2, \infty)$ and

$$
\lim_{k \to \infty} \frac{1}{x \ln x} = 0
$$

by the Alternating Series Test, [∑]*[∞] k*=2 (*−*1)*^k* $\frac{(-1)}{k \ln k}$ converges.

$$
\int_{2}^{\infty} f(x)dx = \int_{2}^{\infty} \frac{1}{x \ln x} dx
$$

$$
= \lim_{t \to \infty} \int_{2}^{t} \frac{1}{x \ln x} dx
$$

$$
= \lim_{t \to \infty} [\ln |\ln x|]_{2}^{t}
$$

$$
= \lim_{t \to \infty} \ln |\ln t| - \ln |\ln 2| = +\infty
$$

Thus, [∑]*[∞] k*=2 1 $\frac{1}{k \ln k}$ diverges. We conclude that

$$
\sum_{k=2}^{\infty} \frac{(-1)^k}{k \ln k}
$$
 is conditionally convergent.

(b)
$$
\sum_{k=1}^{\infty} \frac{(-1)^k \sin k}{k!}
$$
Solution. Consider

$$
\sum_{k=1}^{\infty} \left| \frac{(-1)^k \sin k}{k!} \right| = \sum_{k=1}^{\infty} \frac{|\sin k|}{k!}.
$$

Since $0 \leq |\sin k| \leq 1$,

$$
0 \le \frac{|\sin k|}{k!} \le \frac{1}{k!}.
$$

Then

$$
\lim_{k \to \infty} \left| \frac{1}{(k+1)!} \cdot k! \right| = \lim_{k \to \infty} \frac{1}{k+1} = 0 < 1.
$$

By the Ratio Test, [∑]*[∞] k*=1 1 $\frac{1}{k!}$ converges. We conclude that

$$
\sum_{k=1}^{\infty} \frac{(-1)^k \sin k}{k!}
$$
 is absolutely convergent.

5. For each the following, find all values of $p \in \mathbb{R}$ for which the given series converges absolutely.

(a)
$$
\sum_{k=1}^{\infty} \frac{k^p}{p^k}
$$

Solution. By The Ratio Test,

$$
\lim_{k \to \infty} \left| \frac{(k+1)^p}{p^{k+1}} \cdot \frac{p^k}{k^p} \right| = \lim_{k \to \infty} \left| \frac{1}{p} \cdot \left(\frac{k+1}{k} \right)^p \right| = \left| \frac{1}{p} \right| < 1.
$$

Then, $|p| > 1$. Therefore,

$$
\sum_{k=1}^{\infty} \frac{k^p}{p^k}
$$
 converges if and only if $|p| > 1$.

(b)
$$
\sum_{k=1}^{\infty} \frac{2^{kp}k!}{k^k}
$$

Solution. By The Ratio Test,

$$
\lim_{k \to \infty} \left| \frac{2^{(k+1)p}(k+1)!}{(k+1)^{k+1}} \cdot \frac{k^k}{2^{kp}k!} \right| = \lim_{k \to \infty} \left| \frac{2^{kp+p}(k+1)!}{(k+1)^k(k+1)} \cdot \frac{k^k}{2^{kp}k!} \right|
$$
\n
$$
= \lim_{k \to \infty} 2^p \left(\frac{k}{k+1} \right)^k
$$
\n
$$
= 2^p \lim_{k \to \infty} \left(\frac{k}{k+1} \right)^k
$$

Then,

$$
L = \left(\frac{k}{k+1}\right)^k
$$

\n
$$
\ln L = k \ln \left(\frac{k}{k+1}\right)
$$

\n
$$
\lim_{k \to \infty} \ln L = \lim_{k \to \infty} k \ln \left(\frac{k}{k+1}\right)
$$

\n
$$
= \lim_{k \to \infty} \frac{\ln \left(\frac{k}{k+1}\right)}{\frac{1}{k}} = \lim_{k \to \infty} \frac{\frac{k+1}{k} \cdot \left(\frac{k}{k+1}\right)^{\prime}}{-\frac{1}{k^2}}
$$

\n
$$
= \lim_{k \to \infty} \frac{\frac{k+1}{k} \cdot \frac{1}{(k+1)^2}}{-\frac{1}{k^2}}
$$

\n
$$
= \lim_{k \to \infty} \frac{-k^2}{k(k+1)} = -1
$$

\n
$$
\lim_{n \to \infty} L = e^{-1} = \frac{1}{e}
$$

So,

$$
\lim_{k \to \infty} \left(\frac{k}{k+1} \right)^k = \frac{1}{e}
$$

We obtain

$$
\lim_{k \to \infty} \left| \frac{2^{(k+1)p}(k+1)!}{(k+1)^{k+1}} \cdot \frac{k^k}{2^{kp}k!} \right| = 2^p \cdot \frac{1}{e} < 1.
$$

Then, $2^p < e$, i.e., $p < \log_2 e$. Therefore,

$$
\sum_{k=1}^{\infty} \frac{2^{kp}k!}{k^k}
$$
 converges if and only if $p < \log_2 e$.

6. Assume that $\sum_{n=1}^{\infty}$ *k*=1 *a^k* coverges absolutely. Use **Cauchy Criterion** to prove that

$$
\sum_{k=1}^{\infty} \frac{a_k}{k}
$$
 converges absolutely.

Proof. Assume that $\sum_{n=1}^{\infty}$ *k*=1 a_k coverges absoluetly. Then $\sum_{k=1}^{\infty} a_k$ *k*=1 $|a_k|$ converges. Let $\varepsilon > 0$. There is an $N \in \mathbb{N}$ such that

$$
m > n \ge N
$$
 implies $\sum_{k=n}^{m} |a_k| < \varepsilon$.

Let $m, n \in \mathbb{N}$ such that $m > n \ge N$. If $n \le k \le m$, then $\frac{1}{k} \le 1$. We obatin

$$
\left|\sum_{k=n}^m \frac{a_k}{k}\right| \le \sum_{k=n}^m \left|\frac{a_k}{k}\right| = \sum_{k=n}^m \frac{|a_k|}{k} \le \sum_{k=n}^m |a_k| < \varepsilon.
$$

Thus, [∑]*[∞] k*=1 $|a_k|$ converges absolutely.

7. Prove that

$$
\sum_{k=1}^{\infty} (-1)^k \arctan\left(\frac{1}{k}\right)
$$

is conditionally convergent.

Hint: Use Alternating Series Test and Limit Comparision Test.

Solution. Firstly, we see that

$$
\lim_{k \to \infty} \arctan\left(\frac{1}{k}\right) = 0.
$$

Next, let $f(x) = \arctan\left(\frac{1}{x}\right)$ *x* \setminus where $x \geq 1$. The derivative of $f(x)$ is

$$
f'(x) = \frac{1}{1 + \frac{1}{x^2}} \cdot \left(-\frac{1}{x^2}\right) = -\frac{1}{1 + x^2} < 0 \quad \text{for all } x \ge 1.
$$

So, $\left\{\arctan\left(\frac{1}{\epsilon}\right)\right\}$ $\left\{\frac{1}{k}\right\}$ is decreasing. By Alternating Series Test (AST),

$$
\sum_{k=1}^{\infty} (-1)^k \arctan\left(\frac{1}{k}\right) \quad \text{converges.}
$$

Finally, we consider

$$
\sum_{k=1}^{\infty} \left| (-1)^k \arctan\left(\frac{1}{k}\right) \right| = \sum_{k=1}^{\infty} \arctan\left(\frac{1}{k}\right)
$$

and

$$
\lim_{k \to \infty} \frac{\arctan\left(\frac{1}{k}\right)}{\frac{1}{k}} = \lim_{k \to \infty} \frac{\frac{1}{1 + \frac{1}{k^2}}\left(-\frac{1}{k^2}\right)}{-\frac{1}{k^2}} = \lim_{k \to \infty} \frac{1}{1 + \frac{1}{k^2}} = 1 > 0
$$

Since [∑]*[∞] k*=1 1 $\frac{1}{k}$ diverges, by the Limit Comparision Test, it implies that

$$
\sum_{k=1}^{\infty} \arctan\left(\frac{1}{k}\right) \quad \text{diverges.}
$$

Therefore, we conclude that

$$
\sum_{k=1}^{\infty} (-1)^k \arctan\left(\frac{1}{k}\right)
$$
 is conditionally convergent.