

Solution Assignment 1 MAC3309 Mathematical Analysis

Topic Ordered field axiom & Well-Ordering Principle **Score** 10 marks **Time** 1*st* Week **Teacher** Assistant Professor Thanatyod Jampawai, Ph.D. Division of Mathematics, Faculty of Education, Suan Sunandha Rajabhat University

1. Define $(\sqrt{a})^2 = a$ for all $a \ge 0$. Prove that

$$
\sqrt{x^2} = |x| \text{ for all } x \in \mathbb{R}.
$$

Proof. Let $x \in \mathbb{R}$. By the fact that (*√* $\sqrt{x^2}$)² = x^2 and $|x|^2 = x^2$,

$$
(\sqrt{x^2})^2 - |x|^2 = x^2 - x^2 = 0
$$

$$
(\sqrt{x^2} - |x|)(\sqrt{x^2} + |x|) = 0.
$$

Case $x = 0$. Then $\sqrt{x^2} = 0 = |x|$ Case $x \neq 0$. Then $\sqrt{x^2} = 0 = |x|$
Case $x \neq 0$. Then $\sqrt{x^2} > 0$ and $|x| > 0$. So, $\sqrt{x^2} + |x| > 0$. Then (*√* $\sqrt{x^2} + |x|$ ^{-1} $\in \mathbb{R}$. We obtain *√* $\overline{x^2} - |x| = (\sqrt{x^2} - |x|)(\sqrt{x^2} + |x|)(\sqrt{x^2} + |x|)^{-1} = 0 \cdot (\sqrt{x^2} - 1)$ $\overline{x^2} + |x|$ ^{-1} = 0

Thus, $\sqrt{x^2} = |x|$. The proof is complete.

2. Let *a* and *b* be real numbers. Prove that

if
$$
0 < a < b
$$
, then $\sqrt{a} < \sqrt{b}$.

Proof. Let *a* and *b* be real numbers. Assume that $0 < a < b$. Then

$$
a - b < 0
$$
\n
$$
(\sqrt{a})^2 - (\sqrt{b})^2 < 0
$$
\n
$$
(\sqrt{a} + \sqrt{b})(\sqrt{a} - \sqrt{b}) < 0
$$

Since \sqrt{a} + *√* \bar{b} is always a positive number, (\sqrt{a} + *√* \overline{b} ^{-1} > 0. By O4.1, we obtain

$$
\sqrt{a} - \sqrt{b} = (\sqrt{a} + \sqrt{b})^{-1}(\sqrt{a} + \sqrt{b})(\sqrt{a} - \sqrt{b}) < (\sqrt{a} + \sqrt{b})^{-1} \cdot 0 = 0.
$$

Hence, $\sqrt{a} < \sqrt{b}$.

3. Let $x \in \mathbb{R}$. Prove that

 $-1 \le x \le 2$ implies $|x^2 + x - 2| \le 4|x - 1|$.

Proof. Let $x \in \mathbb{R}$. Suppose that $-1 \leq x \leq 2$. Then

 $1 \leq x + 2 \leq 4.$

It implies $|x+2| \leq 4$. If $x = 1$, then $|x^2 + x - 2| = 0 \leq 0 = 4|x-1|$. For case $x \neq 1$, we give $|x - 1| > 0$. Thus,

$$
|x + 2||x - 1| \le 4|x - 1|
$$

$$
|x^2 + x - 2| \le 4|x - 1|
$$

 \Box

4. Let *x* and *y* be two distinct real numbers. Prove that

$$
\frac{x+y}{2}
$$
 lies between x and y .

Proof. Let *x* and *y* be two distinct real numbers.

By Trinochomy rule, $x \neq y$. WLOG $x < y$. Then $x + x < x + y$ and $x + y < y + y$. By transitive rule,

$$
2x < x + y < 2y
$$
\n
$$
x < \frac{x + y}{2} < y
$$

 \Box

 \Box

5. Let *a* and *b* be positive real numbers. Prove that

$$
\sqrt{ab} \leq \frac{a+b}{2}.
$$

Proof. Let *a* and *b* be positive real numbers. Then \sqrt{a} and \sqrt{b} are reals. By fact that $(\sqrt{a} - \sqrt{b})^2 \ge 0$, we give

$$
a - 2\sqrt{a}\sqrt{b} + b \ge 0
$$

$$
a + b \ge 2\sqrt{ab}
$$

The proof is complete.

6. Let *a* and *b* be positive real numbers. Use 5 to prove that

$$
\frac{2ab}{a+b} \le \sqrt{ab}.
$$

Proof. Let *a* and *b* be positive real numbers. By 5., we give

$$
\frac{1}{a} + \frac{1}{b} \ge 2\sqrt{\frac{1}{a} \cdot \frac{1}{b}}
$$

$$
\frac{a+b}{ab} \ge \frac{2}{\sqrt{ab}}
$$

Since $\frac{ab\sqrt{ab}}{b}$ $\frac{a \times b}{a + b}$ is posotive, by O4.1, we obtain

$$
\frac{a+b}{ab} \cdot \frac{ab\sqrt{ab}}{a+b} \ge \frac{2}{\sqrt{ab}} \cdot \frac{ab\sqrt{ab}}{a+b}
$$

$$
\sqrt{ab} \ge \frac{2ab}{a+b}
$$

The proof is complete.

7. Let $a, b, x, y \in \mathbb{R}$. Prove that

$$
(ab+xy)^2 \le (a^2+x^2)(b^2+y^2).
$$

Proof. Let $a, b, x, y \in \mathbb{R}$. By the fact that $(ay - xb)^2 \geq 0$, we have

$$
(ab+xy)^2 \le (ab+xy)^2 + (ay - xb)^2
$$

= $(a^2b^2 + 2abxy + x^2y^2) + (a^2y^2 - 2abxy + x^2b^2)$
= $a^2b^2 + a^2y^2 + x^2b^2 + x^2y^2$
= $a^2(b^2 + y^2) + x^2(b^2 + y^2)$
= $(a^2 + x^2)(b^2 + y^2)$

The proof is complete.

 \Box

 \Box

8. Let *a* and *b* be real number. Use Triangle Inequality to prove that

||a| − |b|| ≤ |a − b|

Proof. Let $a, b \in \mathbb{R}$. From $|a| - |b| \leq |a - b|$, we obtain

$$
|a| \le |a - b| + |b| \tag{*}
$$

From $|a| - |b| \leq |a + b|$, we substitue *a* and *b* by *b* and $a - b$, respectively. Then

$$
|b| - |a - b| \le |a| \tag{**}
$$

From (*∗*) and (*∗∗*), and by transitive law, we get

$$
|b| - |a - b| \le |a| \le |a - b| + |b|
$$

-|a - b| \le |a| - |b| \le |a - b|

Thus, $||a| - |b|| \leq |a - b|$.

9. Let $x, y \in \mathbb{R}$. Prove that

 $x > y - \varepsilon$ for all $\varepsilon > 0$ if and only if $x \ge y$

Proof. Let $x, y \in \mathbb{R}$.

(*→*) We will prove by contradiction. Assume that

 $x > y - \varepsilon$ for all $\varepsilon > 0$ and $x < y$.

Then $y - x > 0$, it is a role of ε in the assumption. We obtain

$$
x > y - (y - x)
$$

$$
x > x.
$$

This is contradiction because *x* is not greater than *x*.

(←) We will prove by contrapositive. Assume that there is $\varepsilon > 0$ such that $x \leq y - \varepsilon$. Then $-\varepsilon < 0$. We obtain $y - \varepsilon < y$. By assumption,

$$
x\leq y-\varepsilon
$$

Thus, $x < y$.

10. Prove **Mathematical Induction (Theorem 1.2.2 page19)**.

Mathematical Induction: Suppose for each $n \in \mathbb{N}$ that $P(n)$ is a statement that satisfies the following two properties:

- (1) Basic step : $P(1)$ is true
- (2) Inductive step : For every $k \in \mathbb{N}$ for which $P(k)$ is true, $P(k+1)$ is also true.

Then $P(n)$ is true for all $n \in \mathbb{N}$.

Proof. We will prove by contradiction. Assume that (1) and (2) are ture and there is an $n_0 \in \mathbb{N}$ such that $P(n_0)$ is false. Define

$$
S = \{ n \in \mathbb{N} : P(n) \text{ is false } \}.
$$

Then, $n_0 \in S \subseteq \mathbb{N}$. By WOP, *S* has a least element, said $m \in S$. Since (1) is true, $m \neq 1$. Then $m > 1$ or $m - 1 > 0$. So, $m - 1 \in \mathbb{N}$. But $m-1 < m$ and m is the least element in *S*, so $m-1 \notin S$. Set

 $k = m - 1 \in \mathbb{N}$. We obtain $P(k)$ is true.

By (2), $P(k+1) = P(m)$ is true. This contradicts $m \in S$.

 \Box

 \Box

 \Box