

Assignment 2 MAC3309 Mathematical Analysis

Topic	Completeness Axiom & Functions	Score	10 marks	
Time	2nd Week			
Teacher	Assistant Professor Thanatyod Jampawai, Ph.D.			

Division of Mathematics, Faculty of Education, Suan S

Suan Sunandha Rajabhat University

- 1. Let $A = \left\{ \frac{n-1}{n+1} : n \in \mathbb{N} \right\}$. Find $\inf A$ and $\sup A$ with proving them.
- 2. Let $A = \left\{ \frac{1}{n^2 + 1} : n \in \mathbb{N} \right\}$. Find $\inf A$ and $\sup A$ with proving them.
- 3. Prove Approximation Property for Infimum (API). If A has an infimum and $\varepsilon > 0$ is any positive number, then there is a point $a \in A$ such that

 $\inf A \le a < \inf A + \varepsilon.$

4. Let r be a rational number and s be an irrational number. Prove that

4.1 r + s is an irrational number.

4.2 if $r \neq 0$, then rs is always an irrational number.

- 5. Show that $\sqrt{2}$ is an irrational number.
- 6. Let $\sqrt{K} \in \mathbb{Q}^c$ and $a, b, x, y \in \mathbb{Z}$. Prove that

if $a + b\sqrt{K} = x + y\sqrt{K}$, then a = x and b = y.

7. Prove **Theorem 1.3.13** : If x be a real number, then there exists an $n \in \mathbb{Z}$ such that

$$n - 1 \le x < n.$$

8. Use Theorem 1.3.13 to prove **Density of Rationals** : If $a, b \in \mathbb{R}$ satisfy a < b, then there is a rational number r such that

$$a < r < b.$$

9. Use the Density of Rationals to Prove **Density of Irratioals** : If $a, b \in \mathbb{R}$ satisfy a < b, then there is an irrational number t such that

10. Let $f(x) = x^2 e^{x^2}$ where $x \in \mathbb{R}$. Show that f is 1-1 on $(0, \infty)$.