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1. Let A =

{
n− 1

n+ 1
: n ∈ N

}
. Find infA and supA with proving them.

Claim that infA = 0 and supA = 1.

Proof. infA = 0.
Let n ∈ N. Then 1 ≤ n or 0 ≤ n− 1 < n+ 1. It’s clear that

0 ≤ n− 1

n+ 1
.

Thus, 0 is a lower bound of A.
Let ℓ be a lower bound of A. For n = 1, we get 0 ∈ A. So, ℓ ≤ 0. Hence, infA = 0.

supA = 1.

Let n ∈ N. Then 1 ≤ n or 0 ≤ n− 1 ≤ n+ 1. It’s clear that

n− 1

n+ 1
≤ 1.

Thus, 1 is an upper bound of A.
Assume that that there is an upper bound u0 of A such that

u0 < 1.

By definition,
n− 1

n+ 1
≤ u0 for all n ∈ N (∗)

Since u0 < 1, 1− u0
2

> 0. By Archimendean property, there is n0 ∈ N such that

1

n0
<

1− u0
2

.

By the fact that n0 + 1 > n0,

1

n0 + 1
<

1

n0
<

1− u0
2

u0 < 1− 2

n0 + 1
=

n0 − 1

n0 + 1
.

This is contradiction to (∗). Therefore, supA = 1.
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2. Let A =

{
1

n2 + 1
: n ∈ N

}
. Find infA and supA with proving them.

Claim that infA = 0 and supA = 1
2 .

Proof. infA = 0.
Let n ∈ N. Then n2 + 1 ≥ 0. We obtain

0 ≤ 1

n2 + 1
.

Thus, 0 is a lower bound of A.
Suppose that there is a lower bound ℓ0 of A such that

ℓ0 > 0.

By definition,
l0 ≤

1

n2 + 1
for all n ∈ N

By Archimendean property, there is n0 ∈ N such that

1

n0
< ℓ0.

Since n2
0 > n0 and n2

0 + 1 > n2
0 > 0,

1

n2
0 + 1

<
1

n2
0

<
1

n0
< ℓ0.

It contradicts to the lower bound ℓ0. Hence, infA = 0.
supA = 1

2 .

Let n ∈ N. Then 1 ≤ n2. We get 2 < n2 + 1. So,

1

n2 + 1
≤ 1

2
.

Thus, 1
2 is an upper bound of A.

Let u be an upper bound of A. For n = 1, we get 1
2 ∈ A. So, 1

2 ≤ u. Hence, infA = 1
2 .

3. Prove Approximation Property for Infimum (API)
If A has an infimum and ε > 0 is any positive number, then there is a point a ∈ A such that

infA ≤ a < infA+ ε

Proof. Assume that A has an infimum, say ℓ0. Suppose that there a positve ε0 > 0 such that

a < ℓ0 or a ≥ ℓ0 + ε0 for all a ∈ A

In this case a < ℓ0, it is imposible beacause ℓ0 is a lower bound of A.
From a ≥ ℓ0 + ε0 for all a ∈ A, it means that ℓ0 + ε0 is a lower bound of A. But

ℓ0 + ε0 > ℓ0

It’s imposible because ℓ0 is the greatest lower bound of A.
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4. Let r be a rational number and s be an irrational number. Prove that

4.1 r + s is an irrational number.

Proof. Let r be a rational number and s be an irrational number. Then there are two integers p and
q such that

r =
p

q
when q ̸= 0.

Suppose that r + s is a rational number. Then there are two integers x and y such that

r + s =
x

y
when y ̸= 0.

So,
p

q
+ s =

x

y

s =
x

y
− p

q
=

xq − py

yq
∈ Q

This is contradiction because s ∈ Qc.

4.2 if r ̸= 0, then rs is always an irrational number.

Proof. Let r be a non-zero rational number and s be an irrational number. Then there are two non-zero
integers p and q such that

r =
p

q

Suppose that rs is a rational number. Then there are two integers x and y such that

rs =
x

y
when y ̸= 0.

So,
p

q
s =

x

y

s =
xq

py
∈ Q

This is contradiction because s ∈ Qc.

5. Show that
√
2 is an irrational number.

Proof. Assume that
√
2 is a rational number. Then there are two integers p and q such that

√
2 =

p

q
when q ≠ 0 and gcd(p, q) = 1.

We have 2q2 = p2. It implies that p is an even number. Then there is an k ∈ Z such that p = 2k. So,

2q2 = (2k)2 = 4k2

q2 = 2k2

It implies again that q is an even number. Thus, gcd(p, q) ̸= 1. This is contradiction.
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6. Let
√
K ∈ Qc and a, b, x, y ∈ Z. Prove that

if a+ b
√
K = x+ y

√
K, then a = x and b = y.

Proof. Let
√
K ∈ Qc and a, b, x, y ∈ Z. Assume that a+ b

√
K = x+ y

√
K. Then

(a− x) + (b− y)
√
K = 0

Suppose that b− y ̸= 0. Then
√
K = −a− x

b− y
∈ Q

This is contradiction to
√
K ∈ Qc. Thus, b− y = 0. It implies also that a− x = 0.

7. Prove Theorem 1.3.13 : If x be a real number, then there exists an n ∈ Z such that

n− 1 ≤ x < n.

Proof. Let x ∈ R. If x = 0, we choose n = 1. We are done.
Case 1. x > 0. Define S = {n ∈ N : n > x} ⊆ N. By Archemedian property, S ̸= ∅.
By WOP, S has the least element, say n0. Since n0 − 1 < n0, n0 − 1 /∈ A. So, n0 − 1 ≤ x. Thus,

n0 − 1 ≤ x < n0

The proof is complete in this case.
Case 2. x < 0. Then −x > 0. By Case 1, there is an m ∈ N such that m− 1 ≤ −x < m. Then

−m < x ≤ −m+ 1

If x = −m+ 1, we choose n = −m+ 2. So,

n− 1 = −m+ 1 = x < n or n− 1 ≤ x < n.

If −m < x < −m+ 1, we choose n = −m+ 1. So, n− 1 < x < n. It implies that

n− 1 ≤ x < n.

8. Use Theorem 1.3.13 to prove Density of Rationals :
If a, b ∈ R satisfy a < b, then there is a rational number r such that

a < r < b.

Proof. Let a, b ∈ R such that a < b. Then b− a > 0.
By AP, there is an N ∈ N such that 1

n
< b− a. It follows that

na+ 1 < nb.

By Theorem 1.3.13, there is an m ∈ Z such that m− 1 ≤ na < m. It implies that

na < m ≤ na+ 1 < nb.

Set r :=
m

n
. We obtain a < r < b.
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9. Use the Density of Rationals to Prove Density of Irratioals :
If a, b ∈ R satisfy a < b, then there is an irrational number t such that

a < t < b.

Proof. Let a, b ∈ R such that a < b. Then a√
2
<

b√
2

. By the Density of Rational, there is an r ∈ Q such
that

a√
2
< r <

b√
2
.

It follows that
a < r

√
2 < b.

If r ̸= 0, then t := r
√
2 is irrational (see Exercise). It is done.

Case r = 0. By the Density of Rational, there is an s ∈ Q such that

a√
2
< 0 < s <

b√
2
.

It follows that
a < s

√
2 < b.

Set t = s
√
2, irrational. Thus, the proof is complete.

10. Let f(x) = x2ex
2 where x ∈ R. Show that f is 1-1 on (0,∞).

Proof. Let x1, x2 ∈ (0,∞) such that x1 ̸= x2. WLOG x1 > x2 > 0.
Then x21 > x22 > 0. We obtain ex1 > ex2 > 0. It implies that

x21e
x1 > x22e

x2

f(x1) > f(x2).

Thus, f(x1) ̸= f(x2). We conclude that f is 1-1 on (0,∞).
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