

Solution Assignment 2 MAC3309 Mathematical Analysis

1. Let $A =$ $\int n-1$ $\frac{n}{n+1}$: $n \in \mathbb{N}$ \mathcal{L} . Find inf *A* and sup *A* with proving them. **Claim that** $\inf A = 0$ and $\sup A = 1$.

Proof. inf $A = 0$. Let $n \in \mathbb{N}$. Then $1 \leq n$ or $0 \leq n-1 < n+1$. It's clear that

$$
0\leq \frac{n-1}{n+1}.
$$

Thus, 0 is a lower bound of *A*. Let ℓ be a lower bound of *A*. For $n = 1$, we get $0 \in A$. So, $\ell \leq 0$. Hence, inf $A = 0$.

 $\sup A = 1$. Let $n \in \mathbb{N}$. Then $1 \leq n$ or $0 \leq n-1 \leq n+1$. It's clear that

$$
\frac{n-1}{n+1}\leq 1.
$$

Thus, 1 is an upper bound of *A*.

Assume that that there is an upper bound u_0 of A such that

 $u_0 < 1$.

By definition,

$$
\frac{n-1}{n+1} \le u_0 \quad \text{ for all } n \in \mathbb{N} \qquad (*)
$$

Since $u_0 < 1$, $\frac{1 - u_0}{2}$ $\frac{\alpha_0}{2} > 0$. By Archimendean property, there is $n_0 \in \mathbb{N}$ such that

$$
\frac{1}{n_0} < \frac{1 - u_0}{2}.
$$

By the fact that $n_0 + 1 > n_0$,

$$
\frac{1}{n_0+1} < \frac{1}{n_0} < \frac{1-u_0}{2}
$$
\n
$$
u_0 < 1 - \frac{2}{n_0+1} = \frac{n_0-1}{n_0+1}.
$$

This is contradiction to $(*)$. Therefore, sup $A = 1$.

2. Let *A* = $\begin{pmatrix} 1 \end{pmatrix}$ $\frac{1}{n^2+1}$: $n \in \mathbb{N}$ \mathcal{L} . Find inf *A* and sup *A* with proving them.

Claim that $\inf A = 0$ and $\sup A = \frac{1}{2}$ $\frac{1}{2}$.

Proof. inf $A = 0$. Let $n \in \mathbb{N}$. Then $n^2 + 1 \geq 0$. We obtain

 $0 \leq \frac{1}{2}$ $\frac{1}{n^2+1}$.

Thus, 0 is a lower bound of *A*.

Suppose that there is a lower bound ℓ_0 of A such that

 $\ell_0 > 0$.

By definition,

$$
l_0 \leq \frac{1}{n^2+1} \quad \text{ for all } \, n \in \mathbb{N}
$$

By Archimendean property, there is $n_0 \in \mathbb{N}$ such that

$$
\frac{1}{n_0} < \ell_0.
$$

Since $n_0^2 > n_0$ and $n_0^2 + 1 > n_0^2 > 0$,

$$
\frac{1}{n_0^2+1} < \frac{1}{n_0^2} < \frac{1}{n_0} < \ell_0.
$$

It contradicts to the lower bound ℓ_0 . Hence, inf $A = 0$. $\sup A = \frac{1}{2}$ $\frac{1}{2}$. Let $n \in \mathbb{N}$. Then $1 \leq n^2$. We get $2 < n^2 + 1$. So,

$$
\frac{1}{n^2+1} \le \frac{1}{2}.
$$

Thus, $\frac{1}{2}$ is an upper bound of A.

Let *u* be an upper bound of *A*. For $n = 1$, we get $\frac{1}{2} \in A$. So, $\frac{1}{2} \le u$. Hence, $\inf A = \frac{1}{2}$ $\frac{1}{2}$.

3. Prove **Approximation Property for Infimum (API)**

If *A* has an infimum and $\varepsilon > 0$ is any positive number, then there is a point $a \in A$ such that

$$
\inf A \le a < \inf A + \varepsilon
$$

Proof. Assume that *A* has an infimum, say ℓ_0 . Suppose that there a positve $\varepsilon_0 > 0$ such that

$$
a < \ell_0
$$
 or $a \ge \ell_0 + \varepsilon_0$ for all $a \in A$

In this case $a < l_0$, it is imposible beacause l_0 is a lower bound of A. From $a \geq \ell_0 + \varepsilon_0$ for all $a \in A$, it means that $\ell_0 + \varepsilon_0$ is a lower bound of A. But

$$
\ell_0 + \varepsilon_0 > \ell_0
$$

It's imposible because *ℓ*⁰ is the greatest lower bound of *A*.

 \Box

4. Let *r* be a rational number and *s* be an irrational number. Prove that

4.1 $r + s$ is an irrational number.

Proof. Let *r* be a rational number and *s* be an irrational number. Then there are two integers *p* and *q* such that

$$
r = \frac{p}{q} \text{ when } q \neq 0.
$$

Suppose that $r + s$ is a rational number. Then there are two integers x and y such that

 $r + s = \frac{x}{s}$ $\frac{w}{y}$ when $y \neq 0$.

So,

$$
\frac{p}{q} + s = \frac{x}{y}
$$

$$
s = \frac{x}{y} - \frac{p}{q} = \frac{xq - py}{yq} \in \mathbb{Q}
$$

This is contradiction because $s \in \mathbb{Q}^c$.

4.2 if $r \neq 0$, then *rs* is always an irrational number.

Proof. Let *r* be a non-zero rational number and *s* be an irrational number. Then there are two non-zero integers *p* and *q* such that

$$
r = \frac{p}{q}
$$

Suppose that *rs* is a rational number. Then there are two integers *x* and *y* such that

$$
rs = \frac{x}{y} \text{ when } y \neq 0.
$$

So,

$$
\frac{p}{q}s = \frac{x}{y}
$$

$$
s = \frac{xq}{py} \in \mathbb{Q}
$$

This is contradiction because $s \in \mathbb{Q}^c$.

5. Show that $\sqrt{2}$ is an irrational number.

Proof. Assume that $\sqrt{2}$ is a rational number. Then there are two integers *p* and *q* such that

$$
\sqrt{2} = \frac{p}{q}
$$
 when $q \neq 0$ and $gcd(p, q) = 1$.

We have $2q^2 = p^2$. It implies that *p* is an even number. Then there is an $k \in \mathbb{Z}$ such that $p = 2k$. So,

$$
2q2 = (2k)2 = 4k2
$$

$$
q2 = 2k2
$$

It implies again that *q* is an even number. Thus, $gcd(p, q) \neq 1$. This is contradiction.

 \Box

 \Box

6. Let $\sqrt{K} \in \mathbb{Q}^c$ and $a, b, x, y \in \mathbb{Z}$. Prove that

if
$$
a + b\sqrt{K} = x + y\sqrt{K}
$$
, then $a = x$ and $b = y$.

Proof. Let $\sqrt{K} \in \mathbb{Q}^c$ and $a, b, x, y \in \mathbb{Z}$. Assume that $a + b\sqrt{A}$ $K = x + y$ *√ K*. Then

$$
(a-x) + (b-y)\sqrt{K} = 0
$$

Suppose that $b - y \neq 0$. Then

$$
\sqrt{K} = -\frac{a-x}{b-y} \in \mathbb{Q}
$$

This is contradiction to $\sqrt{K} \in \mathbb{Q}^c$. Thus, *b* − *y* = 0. It implies also that *a* − *x* = 0.

7. Prove **Theorem 1.3.13** : If *x* be a real number, then there exists an $n \in \mathbb{Z}$ such that

$$
n-1 \le x < n.
$$

Proof. Let $x \in \mathbb{R}$. If $x = 0$, we choose $n = 1$. We are done. Case 1. $x > 0$. Define $S = \{n \in \mathbb{N} : n > x\} \subseteq \mathbb{N}$. By Archemedian property, $S \neq \emptyset$. By WOP, *S* has the least element, say n_0 . Since $n_0 - 1 < n_0$, $n_0 - 1 \notin A$. So, $n_0 - 1 \leq x$. Thus,

$$
n_0 - 1 \le x < n_0
$$

The proof is complete in this case.

Case 2. $x < 0$. Then $-x > 0$. By Case 1, there is an $m \in \mathbb{N}$ such that $m - 1 \leq -x < m$. Then

$$
-m < x \leq -m + 1
$$

If $x = -m + 1$, we choose $n = -m + 2$. So,

$$
n - 1 = -m + 1 = x < n \text{ or } n - 1 \le x < n.
$$

If $-m < x < -m+1$, we choose $n = -m+1$. So, $n-1 < x < n$. It implies that

$$
n-1 \le x < n.
$$

8. Use Theorem 1.3.13 to prove **Density of Rationals** :

If $a, b \in \mathbb{R}$ satisfy $a < b$, then there is a rational number *r* such that

$$
a < r < b.
$$

Proof. Let $a, b \in \mathbb{R}$ such that $a < b$. Then $b - a > 0$. By AP, there is an $N \in \mathbb{N}$ such that $\frac{1}{n} < b - a$. It follows that

$$
na + 1 < nb.
$$

By Theorem 1.3.13, there is an $m \in \mathbb{Z}$ such that $m - 1 \leq na < m$. It implies that

$$
na < m \le na + 1 < nb.
$$

Set $r := \frac{m}{n}$ $\frac{m}{n}$. We obtain $a < r < b$.

 \Box

 \Box

9. Use the Density of Rationals to Prove **Density of Irratioals** : If $a, b \in \mathbb{R}$ satisfy $a < b$, then there is an irrational number t such that

$$
a < t < b.
$$

Proof. Let $a, b \in \mathbb{R}$ such that $a < b$. Then $\frac{a}{a}$ 2 *< b √* $\frac{1}{2}$. By the Density of Rational, there is an $r \in \mathbb{Q}$ such that

a √ 2 *< r < b √* 2

.

It follows that

 $a < r\sqrt{2} < b$.

If $r \neq 0$, then $t := r$ *√* 2 is irrational (see Exercise). It is done. Case $r = 0$. By the Density of Rational, there is an $s \in \mathbb{Q}$ such that

$$
\frac{a}{\sqrt{2}} < 0 < s < \frac{b}{\sqrt{2}}.
$$

It follows that

$$
a < s\sqrt{2} < b.
$$

Set $t = s$ *√* 2, irrational. Thus, the proof is complete.

10. Let $f(x) = x^2 e^{x^2}$ where $x \in \mathbb{R}$. Show that f is 1-1 on $(0, \infty)$.

Proof. Let $x_1, x_2 \in (0, \infty)$ such that $x_1 \neq x_2$. WLOG $x_1 > x_2 > 0$. Then $x_1^2 > x_2^2 > 0$. We obtain $e^{x_1} > e^{x_2} > 0$. It implies that

$$
x_1^2 e^{x_1} > x_2^2 e^{x_2}
$$

$$
f(x_1) > f(x_2).
$$

Thus, $f(x_1) \neq f(x_2)$. We conclude that *f* is 1-1 on $(0, \infty)$.

 \Box