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1. Let A= {n—'—l 'n € N}. Find inf A and sup A with proving them.
n

Claim that inf A =0 and sup A = 1.
Proof. inf A = 0.
Let neN. Then1<nor0<n-—1<n+ 1. It’s clear that

n—1
“n+1

Thus, 0 is a lower bound of A.
Let £ be a lower bound of A. For n =1, we get 0 € A. So, £ < 0. Hence, inf A = 0.

supA = 1.
Let neN. Then1<nor0<n-—1<n+1. It’s clear that

n—1
n—+1

<1.

Thus, 1 is an upper bound of A.

Assume that that there is an upper bound wug of A such that
ug < 1.

By definition,

n—1
n-+1

<wuy forall neN (%)

— ug

Since ug < 1, > 0. By Archimendean property, there is ng € N such that

1 1-—
<Y

no 2

By the fact that ng + 1 > ny,
1 1 1—ug

< <
ng+1 ng 2

2 _no—l

<1l- = .
4o ng + 1 ng + 1

This is contradiction to (x). Therefore, sup A = 1.



2. Let A= { in € N}. Find inf A and sup A with proving them.

n?+1

Claim that inf A =0 and sup A = %

Proof. inf A = 0.
Let n € N. Then n? + 1 > 0. We obtain

1
0< .
“n?+1
Thus, 0 is a lower bound of A.
Suppose that there is a lower bound ¢y of A such that
£y > 0.
By definition,
10§n2—|—1 forall n € N
By Archimendean property, there is ng € N such that
1
— < .
no
Since n3 > ng and nZ +1 > n3 > 0,
1 1 1

_— < = < — < 4.
n%+1 n% ng 0

It contradicts to the lower bound ¢y3. Hence, inf A = 0.
1

3

Let n € N. Then 1 < n?. We get 2 < n? + 1. So,

sup A =

1
n2+1

<

N

Thus, % is an upper bound of A.

Let u be an upper bound of A. For n = 1, we get % € A. So, % < u. Hence, inf A = %

. Prove Approximation Property for Infimum (API)
If A has an infimum and € > 0 is any positive number, then there is a point a € A such that

infA<a<infA+e¢

Proof. Assume that A has an infimum, say £y. Suppose that there a positve ¢g > 0 such that
a<ty or a>fy+tegforallac A

In this case a < £y, it is imposible beacause £; is a lower bound of A.
From a > £y + ¢ for all a € A, it means that £y + £¢ is a lower bound of A. But

bo +¢e0 > £y

It’s imposible because £ is the greatest lower bound of A.



4. Let r be a rational number and s be an irrational number. Prove that

4.1

4.2

r + s is an irrational number.

Proof. Let r be a rational number and s be an irrational number. Then there are two integers p and
q such that

ngwhenq#().
q

Suppose that r + s is a rational number. Then there are two integers z and y such that

T—i-SZEWheny;éO.
Yy

So,

ISl k]

rq —py cQ
Yyq

LSRR

_P_
q

This is contradiction because s € Q°. ]
if r #£ 0, then rs is always an irrational number.

Proof. Let r be a non-zero rational number and s be an irrational number. Then there are two non-zero
integers p and g such that

r==
q

Suppose that rs is a rational number. Then there are two integers x and y such that

rs:gwheny#().
Y

So,
x
Fe_ 2
q (]
x
s = ' eQ
pYy
This is contradiction because s € Q°. O

5. Show that /2 is an irrational number.

Proof. Assume that v/2 is a rational number. Then there are two integers p and ¢ such that

V2= g when ¢ # 0 and ged(p, q) = 1.

We have 2¢% = p?. It implies that p is an even number. Then there is an k € Z such that p = 2k. So,

2¢° = (2k)? = 4k*
¢* = 2k>

It implies again that ¢ is an even number. Thus, ged(p, ¢) # 1. This is contradiction. O



6. Let VK € Q¢ and a,b, z,y € Z. Prove that
if a + bvVK = x + yVK, then a = z and b = y.
Proof. Let VK € Q° and a,b,z,y € Z. Assume that a + bv/K = 2 + yvK. Then
(a—x)+(b—yVK =0

Suppose that b —y # 0. Then

This is contradiction to vV K € Q°. Thus, b —y = 0. It implies also that a — xz = 0.
7. Prove Theorem 1.3.13 : If x be a real number, then there exists an n € Z such that
n—1<x<n.

Proof. Let x € R. If x = 0, we choose n = 1. We are done.
Case 1. & > 0. Define S = {n € N:n >z} C N. By Archemedian property, S # &.
By WOP, S has the least element, say ng. Since ng — 1 < ng, no — 1 ¢ A. So, ng — 1 < z. Thus,

ng—1<x<ng

The proof is complete in this case.
Case 2. x < 0. Then —z > 0. By Case 1, there is an m € N such that m — 1 < —x < m. Then

-m<z<-—-m+1
If £ = —m + 1, we choose n = —m + 2. So,
n—l=-m+4+l=zxz<norn—1<z<n.
If -m<xz<-—-m+1, wechoosen=—-m+1. So,n— 1<z <n. It implies that

n—1<z<n.

8. Use Theorem 1.3.13 to prove Density of Rationals :
If a,b € R satisfy a < b, then there is a rational number r such that

a<r<hb.

Proof. Let a,b € R such that a < b. Then b —a > 0.
1

By AP, there is an N € N such that — < b — a. It follows that
n

na+ 1 < nb.
By Theorem 1.3.13, there is an m € Z such that m — 1 < na < m. It implies that
na<m<na+1<nb.

m
Set r := —. We obtain a < r < b.
n



9. Use the Density of Rationals to Prove Density of Irratioals :
If a,b € R satisfy a < b, then there is an irrational number ¢ such that

a<t<hb.

Proof. Let a,b € R such that a < b. Then
that

% < \% By the Density of Rational, there is an r € Q such
a b
E <r< E

It follows that

a<rv2<b.

If r # 0, then t := /2 is irrational (see Exercise). It is done.
Case r = 0. By the Density of Rational, there is an s € Q such that

a b
— < 0<s< —.
V2 V2
It follows that
a<sV2<b.

Set t = s5/2, irrational. Thus, the proof is complete. O
10. Let f(z) = 22e”” where x € R. Show that f is 1-1 on (0, 00).

Proof. Let x1,z9 € (0,00) such that z1 # zo. WLOG z1 > 29 > 0.
Then z? > 23 > 0. We obtain e*! > 2 > (0. It implies that
rie™ > gl

f(@1) > f(x2).
Thus, f(z1) # f(x2). We conclude that f is 1-1 on (0, 00). O



