

Solution Assignment 2 MAC3309 Mathematical Analysis

Topic	Completeness Axiom & Functions	Score	10 marks
Time	2nd Week		
Teacher	Assistant Professor Thanatyod Jampawai, Ph.D.		
	Division of Mathematics, Faculty of Education,	Suan Su	nandha Rajabhat University

1. Let $A = \left\{ \frac{n-1}{n+1} : n \in \mathbb{N} \right\}$. Find $\inf A$ and $\sup A$ with proving them. Claim that $\inf A = 0$ and $\sup A = 1$.

Proof. inf A = 0. Let $n \in \mathbb{N}$. Then $1 \le n$ or $0 \le n - 1 < n + 1$. It's clear that

$$0 \le \frac{n-1}{n+1}$$

Thus, 0 is a lower bound of A.

Let ℓ be a lower bound of A. For n = 1, we get $0 \in A$. So, $\ell \leq 0$. Hence, $\inf A = 0$.

 $\sup A = 1$. Let $n \in \mathbb{N}$. Then $1 \le n$ or $0 \le n - 1 \le n + 1$. It's clear that

$$\frac{n-1}{n+1} \le 1.$$

Thus, 1 is an upper bound of A.

Assume that there is an upper bound u_0 of A such that

 $u_0 < 1.$

By definition,

$$\frac{n-1}{n+1} \le u_0 \quad \text{ for all } n \in \mathbb{N} \qquad (*)$$

Since $u_0 < 1$, $\frac{1-u_0}{2} > 0$. By Archimendean property, there is $n_0 \in \mathbb{N}$ such that

$$\frac{1}{n_0} < \frac{1-u_0}{2}.$$

By the fact that $n_0 + 1 > n_0$,

$$\frac{1}{n_0+1} < \frac{1}{n_0} < \frac{1-u_0}{2}$$
$$u_0 < 1 - \frac{2}{n_0+1} = \frac{n_0-1}{n_0+1}.$$

This is contradiction to (*). Therefore, $\sup A = 1$.

2. Let $A = \left\{ \frac{1}{n^2 + 1} : n \in \mathbb{N} \right\}$. Find $\inf A$ and $\sup A$ with proving them.

Claim that $\inf A = 0$ and $\sup A = \frac{1}{2}$.

Proof. inf A = 0. Let $n \in \mathbb{N}$. Then $n^2 + 1 \ge 0$. We obtain

 $0 \le \frac{1}{n^2 + 1}.$

Thus, 0 is a lower bound of A.

Suppose that there is a lower bound ℓ_0 of A such that

 $\ell_0 > 0.$

By definition,

$$l_0 \le \frac{1}{n^2 + 1}$$
 for all $n \in \mathbb{N}$

By Archimendean property, there is $n_0 \in \mathbb{N}$ such that

$$\frac{1}{n_0} < \ell_0.$$

Since $n_0^2 > n_0$ and $n_0^2 + 1 > n_0^2 > 0$,

$$\frac{1}{n_0^2 + 1} < \frac{1}{n_0^2} < \frac{1}{n_0} < \ell_0.$$

It contradicts to the lower bound ℓ_0 . Hence, $\inf A = 0$. $\sup A = \frac{1}{2}$. Let $n \in \mathbb{N}$. Then $1 \le n^2$. We get $2 < n^2 + 1$. So,

$$\frac{1}{n^2+1} \leq \frac{1}{2}$$

Thus, $\frac{1}{2}$ is an upper bound of A.

Let u be an upper bound of A. For n = 1, we get $\frac{1}{2} \in A$. So, $\frac{1}{2} \leq u$. Hence, $\inf A = \frac{1}{2}$.

3. Prove Approximation Property for Infimum (API)

If A has an infimum and $\varepsilon > 0$ is any positive number, then there is a point $a \in A$ such that

$$\inf A \le a < \inf A + \varepsilon$$

Proof. Assume that A has an infimum, say ℓ_0 . Suppose that there a positive $\varepsilon_0 > 0$ such that

$$a < \ell_0$$
 or $a \ge \ell_0 + \varepsilon_0$ for all $a \in A$

In this case $a < \ell_0$, it is imposible because ℓ_0 is a lower bound of A. From $a \ge \ell_0 + \varepsilon_0$ for all $a \in A$, it means that $\ell_0 + \varepsilon_0$ is a lower bound of A. But

$$\ell_0 + \varepsilon_0 > \ell_0$$

It's imposible because ℓ_0 is the greatest lower bound of A.

4. Let r be a rational number and s be an irrational number. Prove that

4.1 r + s is an irrational number.

Proof. Let r be a rational number and s be an irrational number. Then there are two integers p and q such that

$$r = \frac{p}{q}$$
 when $q \neq 0$.

Suppose that r + s is a rational number. Then there are two integers x and y such that

$$r+s = \frac{x}{y}$$
 when $y \neq 0$.

So,

$$\frac{p}{q} + s = \frac{x}{y}$$
$$s = \frac{x}{y} - \frac{p}{q} = \frac{xq - py}{yq} \in \mathbb{Q}$$

This is contradiction because $s \in \mathbb{Q}^c$.

4.2 if $r \neq 0$, then rs is always an irrational number.

Proof. Let r be a non-zero rational number and s be an irrational number. Then there are two non-zero integers p and q such that

$$r = \frac{p}{q}$$

Suppose that rs is a rational number. Then there are two integers x and y such that

$$rs = \frac{x}{y}$$
 when $y \neq 0$.

So,

$$\frac{p}{q}s = \frac{x}{y}$$
$$s = \frac{xq}{py} \in \mathbb{Q}$$

This is contradiction because $s \in \mathbb{Q}^c$.

5. Show that $\sqrt{2}$ is an irrational number.

Proof. Assume that $\sqrt{2}$ is a rational number. Then there are two integers p and q such that

$$\sqrt{2} = \frac{p}{q}$$
 when $q \neq 0$ and $gcd(p,q) = 1$.

We have $2q^2 = p^2$. It implies that p is an even number. Then there is an $k \in \mathbb{Z}$ such that p = 2k. So,

$$2q^2 = (2k)^2 = 4k^2$$
$$q^2 = 2k^2$$

It implies again that q is an even number. Thus, $gcd(p,q) \neq 1$. This is contradiction.

6. Let $\sqrt{K} \in \mathbb{Q}^c$ and $a, b, x, y \in \mathbb{Z}$. Prove that

if
$$a + b\sqrt{K} = x + y\sqrt{K}$$
, then $a = x$ and $b = y$.

Proof. Let $\sqrt{K} \in \mathbb{Q}^c$ and $a, b, x, y \in \mathbb{Z}$. Assume that $a + b\sqrt{K} = x + y\sqrt{K}$. Then

$$(a-x) + (b-y)\sqrt{K} = 0$$

Suppose that $b - y \neq 0$. Then

$$\sqrt{K} = -\frac{a-x}{b-y} \in \mathbb{Q}$$

This is contradiction to $\sqrt{K} \in \mathbb{Q}^c$. Thus, b - y = 0. It implies also that a - x = 0.

7. Prove **Theorem 1.3.13** : If x be a real number, then there exists an $n \in \mathbb{Z}$ such that

$$n - 1 \le x < n.$$

Proof. Let $x \in \mathbb{R}$. If x = 0, we choose n = 1. We are done. Case 1. x > 0. Define $S = \{n \in \mathbb{N} : n > x\} \subseteq \mathbb{N}$. By Archemedian property, $S \neq \emptyset$. By WOP, S has the least element, say n_0 . Since $n_0 - 1 < n_0$, $n_0 - 1 \notin A$. So, $n_0 - 1 \leq x$. Thus,

$$n_0 - 1 \le x < n_0$$

The proof is complete in this case.

Case 2. x < 0. Then -x > 0. By Case 1, there is an $m \in \mathbb{N}$ such that $m - 1 \leq -x < m$. Then

$$-m < x \le -m + 1$$

If x = -m + 1, we choose n = -m + 2. So,

$$n-1 = -m+1 = x < n \text{ or } n-1 \le x < n$$

If -m < x < -m + 1, we choose n = -m + 1. So, n - 1 < x < n. It implies that

$$n - 1 \le x < n.$$

8. Use Theorem 1.3.13 to prove **Density of Rationals** :

If $a, b \in \mathbb{R}$ satisfy a < b, then there is a rational number r such that

$$a < r < b$$
.

Proof. Let $a, b \in \mathbb{R}$ such that a < b. Then b - a > 0. By AP, there is an $N \in \mathbb{N}$ such that $\frac{1}{n} < b - a$. It follows that

$$na+1 < nb$$

By Theorem 1.3.13, there is an $m \in \mathbb{Z}$ such that $m - 1 \leq na < m$. It implies that

$$na < m \le na + 1 < nb$$

Set $r := \frac{m}{n}$. We obtain a < r < b.

_		

9. Use the Density of Rationals to Prove **Density of Irratioals** : If $a, b \in \mathbb{R}$ satisfy a < b, then there is an irrational number t such that

Proof. Let $a, b \in \mathbb{R}$ such that a < b. Then $\frac{a}{\sqrt{2}} < \frac{b}{\sqrt{2}}$. By the Density of Rational, there is an $r \in \mathbb{Q}$ such that

 $\frac{a}{\sqrt{2}} < r < \frac{b}{\sqrt{2}}.$

It follows that

 $a < r\sqrt{2} < b.$

If $r \neq 0$, then $t := r\sqrt{2}$ is irrational (see Exercise). It is done. Case r = 0. By the Density of Rational, there is an $s \in \mathbb{Q}$ such that

$$\frac{a}{\sqrt{2}} < 0 < s < \frac{b}{\sqrt{2}}$$

It follows that

$$a < s\sqrt{2} < b$$

Set $t = s\sqrt{2}$, irrational. Thus, the proof is complete.

10. Let $f(x) = x^2 e^{x^2}$ where $x \in \mathbb{R}$. Show that f is 1-1 on $(0, \infty)$.

Proof. Let $x_1, x_2 \in (0, \infty)$ such that $x_1 \neq x_2$. WLOG $x_1 > x_2 > 0$. Then $x_1^2 > x_2^2 > 0$. We obtain $e^{x_1} > e^{x_2} > 0$. It implies that

$$x_1^2 e^{x_1} > x_2^2 e^{x_2}$$
$$f(x_1) > f(x_2)$$

Thus, $f(x_1) \neq f(x_2)$. We conclude that f is 1-1 on $(0, \infty)$.