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1. Use definition to prove that lim
n→∞

2n+ 1

n+ 1
exists.

Proof. Let ε > 0. By Archimedean principle, there is N ∈ N such that 1

N
< ε.

Let n ∈ N such that n ≥ N . We obtain 1

n
≤ 1

N
. Since n+ 1 > n, 1

n+ 1
<

1

n
. Hence,∣∣∣∣2n+ 1

n+ 1
− 2

∣∣∣∣ = 1

n+ 1
<

1

n
≤ 1

N
< ε.

Thus, lim
n→∞

2n+ 1

n+ 1
= 2.

2. Use definition to prove that lim
n→∞

n2

n2 + 1
exists.

Proof. Let ε > 0. Then
√
ε > 0. By Archimedean principle, there is an N ∈ N such that 1

N
<

√
ε.

Let n ∈ N such that n ≥ N . Then n2 ≥ N2. We obtain 1

n2
≤ 1

N2
. Since n2 + 1 > n2, 1

n2 + 1
<

1

n2
.

Hence, ∣∣∣∣ n2

n2 + 1
− 1

∣∣∣∣ = 1

n2 + 1
<

1

n2
≤ 1

N2
< ε.

Thus, lim
n→∞

n2

n2 + 1
= 1.

3. Prove by contradiction to show that lim
n→∞

sin
(nπ

2

)
does not exist (DNE).

Proof. Suppose that sin
(
nπ
2

)
→ a as n → ∞ for some a ∈ R.

Given ε = 1. There is an N ∈ N, for all n ≥ N implies∣∣∣sin(nπ
2

)
− a

∣∣∣ < 1.

Since sin
(
nπ
2

)
equals to either 0 or 1 or -1, we obtian |0− a| < 1 and |1− a| < 1 and |−1− a| < 1, i.e,

|a| < 1 and |1− a| < 1 and |1 + a| < 1.

We have
2 = |(1 + a) + (1− a)| ≤ |1 + a|+ |1− a| < 1 + 1 = 2.

It is imposible.
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4. Assume that xn → 1 as n → ∞. Show that

1

(xn)2
→ 1 as n → ∞

Proof. Assume that xn → 1 as n → ∞.
Given ε = 1

2 . There is an N1 ∈ N such that

n ≥ N1 implies |xn − 1| < 1
2 .

Then

|xn| − 1 ≤ |xn − 1| ≤ 1

2

|xn| ≤
3

2

and

1 = |1− xn + xn| ≤ |1− xn|+ |xn| ≤
1

2
+ |xn|

1

2
≤ |xn|

1

|xn|
≤ 2

Let ε > 0. There is an N2 ∈ N such that

n ≥ N2 implies |xn − 1| < ε

10
.

Choose N = max{N1, N2}. Let n ∈ N such that n ≥ N . We obtain∣∣∣∣ 1

(xn)2
− 1

∣∣∣∣ = ∣∣∣∣1− (xn)
2

(xn)2

∣∣∣∣ = ∣∣∣∣(1− xn)(1 + xn)

(xn)2

∣∣∣∣
≤ |1− xn||1 + xn|

|xn|2

≤ 1

|xn|2
· (1 + |xn|) · |1− xn|

< 22 ·
(
1 +

3

2

)
· ε

10
= ε

Thus, 1

(xn)2
→ 1 as n → ∞
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5. Assume that xn → 0 as n → ∞. Show that

1 + (xn)
2

xn + 1
→ 1 as n → ∞

Proof. Assume that xn → 0 as n → ∞.
Given ε =

1

2
. There is an N1 ∈ N such that

n ≥ N1 implies |xn| <
1

2
.

Then

1 = |1 + xn + xn| ≤ |1 + xn|+ |xn| ≤ |1 + xn|+
1

2
1

2
≤ |1 + xn|

1

|1 + xn|
≤ 2.

Let ε > 0. There is an N2 ∈ N such that

n ≥ N2 implies |xn| <
ε

3
.

Choose N = max{N1, N2}. Let n ∈ N such that n ≥ N . We obtain∣∣∣∣1 + (xn)
2

xn + 1
− 1

∣∣∣∣ = ∣∣∣∣(xn)2 − xn
xn + 1

∣∣∣∣ = ∣∣∣∣xn(xn − 1)

xn + 1

∣∣∣∣
≤ |xn||xn − 1|

|xn + 1|
= |xn| ·

1

|xn + 1|
· (|xn|+ 1)

≤ ε

3
· 2 · (1

2
+ 1) = ε.

Hence, Thus, 1 + (xn)
2

xn + 1
→ 1 as n → ∞

6. Let α ∈ R and {xn} be a convergent sequence. Prove that

lim
n→∞

(αxn) = α lim
n→∞

xn

Proof. Assume that xn → a as n → ∞.
Let ε > 0 and α ∈ R. Then |α|+ 1 > |α| ≥ 0. So, |α|

|α|+ 1
< 1. By assumption, there is an N ∈ N such that

n ≥ N implies |xn − x| < ε

|α|+ 1
.

Let n ∈ N. For each n ≥ N , we obtain

|αxn − αx| = |α||xn − x| < |α| · ε

|α|+ 1
=

|α|
|α|+ 1

ε < 1 · ε = ε.

Thus, lim
n→∞

(αxn) = αa = α lim
n→∞

xn.
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7. If A has a finite infimum, then there is a sequence xn ∈ A such that

xn → infA as n → ∞.

Proof. Suppose A has a finite infimum. By API, there is x ∈ A such that

infA ≤ x ≤ infA+ ε for all ε > 0.

We construct a sequence {xn} by

ε1 = 1, ∃x1 ∈ A such that infA ≤ x1 ≤ infA+ 1

ε2 =
1

2
, ∃x2 ∈ A such that infA ≤ x2 ≤ infA+

1

2

ε3 =
1

3
, ∃x3 ∈ A such that infA ≤ x3 ≤ infA+

1

3
...

εn =
1

n
, ∃xn ∈ A such that infA ≤ xn ≤ infA+

1

n

Thus, {xn} is a sequence in A and satisfies

infA ≤ xn < infA+
1

n

By the Squeez Theorem,

lim
n→∞

infA ≤ lim
n→∞

xn ≤ lim
n→∞

(
infA+

1

n

)
infA ≤ lim

n→∞
xn ≤ infA

Therefore,
lim
n→∞

xn = infA.
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8. If {xn} is a convergent sequence, then
lim
n→∞

1

xn
=

1

lim
n→∞

xn

when lim
n→∞

xn ̸= 0 and xn ̸= 0.

Proof. Assume that {xn} converges to a such that a ̸= 0. Let ε > 0. There is an N1 ∈ N such that

n ≥ N1 implies |xn − a| < |a|
2 .

Then

|a| = |a− xn + xn| ≤ |xn − a|+ |xn| ≤
|a|
2

+ |xn|

|a|
2

≤ |xn|
1

|xn|
≤ 2

|a|

There is an N2 ∈ N such that

n ≥ N2 implies |xn − a| < |a|2

2
ε.

Choose N = max{N1, N2}. Let n ∈ N such that n ≥ N . We have∣∣∣∣ 1xn − 1

a

∣∣∣∣ = ∣∣∣∣a− xn
axn

∣∣∣∣
≤ 1

|xn|
· |xn − a|

|a|

<
2

|a|
· |a|

2

2|a|
ε = ε

Therefore, lim
n→∞

1

xn
=

1

lim
n→∞

xn
.

9. Let {xn} be convergent such that converges to a. Prove that

lim
n→∞

|xn| = |a|.

Proof. Assume that {xn} converges to a. Let ε > 0. There is an N ∈ N such that

n ≥ N implies |xn − a| < ε.

For each n ∈ N such that n ≥ N , by part 4 of the Apply Triangle Inequality,

||xn| − |a|| ≤ |xn − a| < ε.

Therefore, |xn| → |a| as n → ∞.
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10. Let xn > 0 such that converges to a > 0, then prove that

lim
n→∞

√
xn =

√
a.

Proof. Assume that xn > 0 converges to a > 0. Then
√
a > 0.

Let ε > 0. There is an N ∈ N such that

n ≥ N implies |xn − a| < ε
√
a.

Since √
xn > 0, √xn +

√
a >

√
a. It follows that

1
√
xn +

√
a
<

1√
a
.

For each n ∈ N such that n ≥ N , we obtain

|
√
xn −

√
a| =

∣∣∣∣(√xn −
√
a) ·

√
xn +

√
a

√
xn +

√
a

∣∣∣∣
=

∣∣∣∣ xn − a
√
xn +

√
a

∣∣∣∣ = 1
√
xn +

√
a
· |xn − a|

<
1√
a
· |xn − a|

<
1√
a
· ε
√
a = ε.

Therefore, √xn →
√
a as n → ∞.
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