

Solution Assignment 3 MAC3309 Mathematical Analysis

Topic	Limit of Sequences & Limit Theorems	Score	10 marks
Time	3rd Week		
Teacher	Assistant Professor Thanatyod Jampawai, Ph.D.		
	Division of Mathematics, Faculty of Education,	Suan Su	nandha Rajabhat University

1. Use definition to prove that $\lim_{n \to \infty} \frac{2n+1}{n+1}$ exists.

Proof. Let $\varepsilon > 0$. By Archimedean principle, there is $N \in \mathbb{N}$ such that $\frac{1}{N} < \varepsilon$. Let $n \in \mathbb{N}$ such that $n \ge N$. We obtain $\frac{1}{n} \le \frac{1}{N}$. Since n + 1 > n, $\frac{1}{n+1} < \frac{1}{n}$. Hence,

$$\left|\frac{2n+1}{n+1} - 2\right| = \frac{1}{n+1} < \frac{1}{n} \le \frac{1}{N} < \varepsilon.$$

Thus, $\lim_{n \to \infty} \frac{2n+1}{n+1} = 2.$

2. Use definition to prove that $\lim_{n \to \infty} \frac{n^2}{n^2 + 1}$ exists.

Proof. Let $\varepsilon > 0$. Then $\sqrt{\varepsilon} > 0$. By Archimedean principle, there is an $N \in \mathbb{N}$ such that $\frac{1}{N} < \sqrt{\varepsilon}$. Let $n \in \mathbb{N}$ such that $n \ge N$. Then $n^2 \ge N^2$. We obtain $\frac{1}{n^2} \le \frac{1}{N^2}$. Since $n^2 + 1 > n^2$, $\frac{1}{n^2 + 1} < \frac{1}{n^2}$. Hence,

$$\left|\frac{n^2}{n^2+1} - 1\right| = \frac{1}{n^2+1} < \frac{1}{n^2} \le \frac{1}{N^2} < \varepsilon.$$

Thus, $\lim_{n \to \infty} \frac{n^2}{n^2 + 1} = 1.$

3. Prove by contradiction to show that $\lim_{n \to \infty} \sin\left(\frac{n\pi}{2}\right)$ does not exist (DNE).

Proof. Suppose that $\sin\left(\frac{n\pi}{2}\right) \to a$ as $n \to \infty$ for some $a \in \mathbb{R}$. Given $\varepsilon = 1$. There is an $N \in \mathbb{N}$, for all $n \ge \mathbb{N}$ implies

$$\left|\sin\left(\frac{n\pi}{2}\right) - a\right| < 1.$$

Since $\sin\left(\frac{n\pi}{2}\right)$ equals to either 0 or 1 or -1, we obtain |0-a| < 1 and |1-a| < 1 and |-1-a| < 1, i.e.

$$|a| < 1$$
 and $|1 - a| < 1$ and $|1 + a| < 1$.

We have

$$2 = |(1+a) + (1-a)| \le |1+a| + |1-a| < 1+1 = 2.$$

It is imposible.

			L	
			L	
			L	
			L	
-	_	_		

4. Assume that $x_n \to 1$ as $n \to \infty$. Show that

$$\frac{1}{(x_n)^2} \to 1 \text{ as } n \to \infty$$

Proof. Assume that $x_n \to 1$ as $n \to \infty$. Given $\varepsilon = \frac{1}{2}$. There is an $N_1 \in \mathbb{N}$ such that

$$n \ge N_1$$
 implies $|x_n - 1| < \frac{1}{2}$.

Then

$$|x_n| - 1 \le |x_n - 1| \le \frac{1}{2}$$

 $|x_n| \le \frac{3}{2}$

and

$$1 = |1 - x_n + x_n| \le |1 - x_n| + |x_n| \le \frac{1}{2} + |x_n|$$
$$\frac{1}{2} \le |x_n|$$
$$\frac{1}{|x_n|} \le 2$$

Let $\varepsilon > 0$. There is an $N_2 \in \mathbb{N}$ such that

$$n \ge N_2$$
 implies $|x_n - 1| < \frac{\varepsilon}{10}$

Choose $N = \max\{N_1, N_2\}$. Let $n \in \mathbb{N}$ such that $n \ge N$. We obtain

$$\begin{aligned} \left| \frac{1}{(x_n)^2} - 1 \right| &= \left| \frac{1 - (x_n)^2}{(x_n)^2} \right| = \left| \frac{(1 - x_n)(1 + x_n)}{(x_n)^2} \right| \\ &\leq \frac{|1 - x_n||1 + x_n|}{|x_n|^2} \\ &\leq \frac{1}{|x_n|^2} \cdot (1 + |x_n|) \cdot |1 - x_n| \\ &< 2^2 \cdot \left(1 + \frac{3}{2} \right) \cdot \frac{\varepsilon}{10} = \varepsilon \end{aligned}$$

Thus, $\frac{1}{(x_n)^2} \to 1$ as $n \to \infty$

		•
_		

5. Assume that $x_n \to 0$ as $n \to \infty$. Show that

$$\frac{1+(x_n)^2}{x_n+1} \to 1 \text{ as } n \to \infty$$

Proof. Assume that $x_n \to 0$ as $n \to \infty$. Given $\varepsilon = \frac{1}{2}$. There is an $N_1 \in \mathbb{N}$ such that

$$n \ge N_1$$
 implies $|x_n| < \frac{1}{2}$.

Then

$$1 = |1 + x_n + x_n| \le |1 + x_n| + |x_n| \le |1 + x_n| + \frac{1}{2}$$
$$\frac{1}{2} \le |1 + x_n|$$
$$\frac{1}{|1 + x_n|} \le 2.$$

Let $\varepsilon > 0$. There is an $N_2 \in \mathbb{N}$ such that

$$n \ge N_2$$
 implies $|x_n| < \frac{\varepsilon}{3}$.

Choose $N = \max\{N_1, N_2\}$. Let $n \in \mathbb{N}$ such that $n \ge N$. We obtain

$$\left|\frac{1+(x_n)^2}{x_n+1} - 1\right| = \left|\frac{(x_n)^2 - x_n}{x_n+1}\right| = \left|\frac{x_n(x_n-1)}{x_n+1}\right|$$
$$\leq \frac{|x_n||x_n-1|}{|x_n+1|} = |x_n| \cdot \frac{1}{|x_n+1|} \cdot (|x_n|+1)$$
$$\leq \frac{\varepsilon}{3} \cdot 2 \cdot (\frac{1}{2}+1) = \varepsilon.$$

Hence, Thus, $\frac{1+(x_n)^2}{x_n+1} \to 1$ as $n \to \infty$

6. Let $\alpha \in \mathbb{R}$ and $\{x_n\}$ be a convergent sequence. Prove that

$$\lim_{n \to \infty} (\alpha x_n) = \alpha \lim_{n \to \infty} x_n$$

Proof. Assume that $x_n \to a$ as $n \to \infty$.

Let $\varepsilon > 0$ and $\alpha \in \mathbb{R}$. Then $|\alpha| + 1 > |\alpha| \ge 0$. So, $\frac{|\alpha|}{|\alpha| + 1} < 1$. By assumption, there is an $N \in \mathbb{N}$ such that

$$n \ge N$$
 implies $|x_n - x| < \frac{\varepsilon}{|\alpha| + 1}$.

Let $n \in \mathbb{N}$. For each $n \ge N$, we obtain

$$|\alpha x_n - \alpha x| = |\alpha| |x_n - x| < |\alpha| \cdot \frac{\varepsilon}{|\alpha| + 1} = \frac{|\alpha|}{|\alpha| + 1} \varepsilon < 1 \cdot \varepsilon = \varepsilon$$

Thus, $\lim_{n \to \infty} (\alpha x_n) = \alpha a = \alpha \lim_{n \to \infty} x_n.$

7. If A has a finite infimum, then there is a sequence $x_n \in A$ such that

$$x_n \to \inf A$$
 as $n \to \infty$.

Proof. Suppose A has a finite infimum. By API, there is $x \in A$ such that

$$\inf A \le x \le \inf A + \varepsilon \quad \text{ for all } \varepsilon > 0.$$

We construct a sequence $\{x_n\}$ by

$$\begin{split} \varepsilon_1 &= 1, \quad \exists x_1 \in A \text{ such that} & \inf A \leq x_1 \leq \inf A + 1\\ \varepsilon_2 &= \frac{1}{2}, \quad \exists x_2 \in A \text{ such that} & \inf A \leq x_2 \leq \inf A + \frac{1}{2}\\ \varepsilon_3 &= \frac{1}{3}, \quad \exists x_3 \in A \text{ such that} & \inf A \leq x_3 \leq \inf A + \frac{1}{3}\\ &\vdots\\ \varepsilon_n &= \frac{1}{n}, \quad \exists x_n \in A \text{ such that} & \inf A \leq x_n \leq \inf A + \frac{1}{n} \end{split}$$

Thus, $\{x_n\}$ is a sequence in A and satisfies

$$\inf A \le x_n < \inf A + \frac{1}{n}$$

By the Squeez Theorem,

$$\lim_{n \to \infty} \inf A \le \lim_{n \to \infty} x_n \le \lim_{n \to \infty} \left(\inf A + \frac{1}{n} \right)$$
$$\inf A \le \lim_{n \to \infty} x_n \le \inf A$$

Therefore,

$$\lim_{n \to \infty} x_n = \inf A.$$

- 6		

8. If $\{x_n\}$ is a convergent sequence, then

$$\lim_{n \to \infty} \frac{1}{x_n} = \frac{1}{\lim_{n \to \infty} x_n}$$

when $\lim_{n \to \infty} x_n \neq 0$ and $x_n \neq 0$.

Proof. Assume that $\{x_n\}$ converges to a such that $a \neq 0$. Let $\varepsilon > 0$. There is an $N_1 \in \mathbb{N}$ such that

$$n \ge N_1$$
 implies $|x_n - a| < \frac{|a|}{2}$.

Then

$$|a| = |a - x_n + x_n| \le |x_n - a| + |x_n| \le \frac{|a|}{2} + |x_n|$$
$$\frac{|a|}{2} \le |x_n|$$
$$\frac{1}{|x_n|} \le \frac{2}{|a|}$$

There is an $N_2 \in \mathbb{N}$ such that

$$n \ge N_2$$
 implies $|x_n - a| < \frac{|a|^2}{2}\varepsilon$.

Choose $N = \max\{N_1, N_2\}$. Let $n \in \mathbb{N}$ such that $n \ge N$. We have

$$\frac{1}{x_n} - \frac{1}{a} \bigg| = \bigg| \frac{a - x_n}{ax_n} \bigg|$$
$$\leq \frac{1}{|x_n|} \cdot \frac{|x_n - a|}{|a|}$$
$$< \frac{2}{|a|} \cdot \frac{|a|^2}{2|a|} \varepsilon = \varepsilon$$

Therefore, $\lim_{n \to \infty} \frac{1}{x_n} = \frac{1}{\lim_{n \to \infty} x_n}.$

9. Let $\{x_n\}$ be convergent such that converges to a. Prove that

$$\lim_{n \to \infty} |x_n| = |a|$$

Proof. Assume that $\{x_n\}$ converges to a. Let $\varepsilon > 0$. There is an $N \in \mathbb{N}$ such that

$$n \ge N$$
 implies $|x_n - a| < \varepsilon$.

For each $n \in \mathbb{N}$ such that $n \ge N$, by part 4 of the Apply Triangle Inequality,

$$||x_n| - |a|| \le |x_n - a| < \varepsilon.$$

Therefore, $|x_n| \to |a|$ as $n \to \infty$.

10. Let $x_n > 0$ such that converges to a > 0, then prove that

$$\lim_{n \to \infty} \sqrt{x_n} = \sqrt{a}$$

Proof. Assume that $x_n > 0$ converges to a > 0. Then $\sqrt{a} > 0$. Let $\varepsilon > 0$. There is an $N \in \mathbb{N}$ such that

$$n \ge N$$
 implies $|x_n - a| < \varepsilon \sqrt{a}$.

Since $\sqrt{x_n} > 0$, $\sqrt{x_n} + \sqrt{a} > \sqrt{a}$. It follows that

$$\frac{1}{\sqrt{x_n} + \sqrt{a}} < \frac{1}{\sqrt{a}}$$

For each $n \in \mathbb{N}$ such that $n \ge N$, we obtain

$$\begin{aligned} |\sqrt{x_n} - \sqrt{a}| &= \left| (\sqrt{x_n} - \sqrt{a}) \cdot \frac{\sqrt{x_n} + \sqrt{a}}{\sqrt{x_n} + \sqrt{a}} \right| \\ &= \left| \frac{x_n - a}{\sqrt{x_n} + \sqrt{a}} \right| = \frac{1}{\sqrt{x_n} + \sqrt{a}} \cdot |x_n - a| \\ &< \frac{1}{\sqrt{a}} \cdot |x_n - a| \\ &< \frac{1}{\sqrt{a}} \cdot \varepsilon \sqrt{a} = \varepsilon. \end{aligned}$$

Therefore, $\sqrt{x_n} \to \sqrt{a}$ as $n \to \infty$.

-	_	_	-
г			п
L			L