

Solution Assignment 3 MAC3309 Mathematical Analysis

1. Use definition to prove that $2n + 1$ *n* + 1 exists.

Proof. Let $\varepsilon > 0$. By Archimedean principle, there is $N \in \mathbb{N}$ such that $\frac{1}{N} < \varepsilon$. Let $n \in \mathbb{N}$ such that $n \geq N$. We obtain $\frac{1}{n} \leq \frac{1}{N}$ $\frac{1}{N}$. Since $n + 1 > n$, $\frac{1}{n + 1}$ $\frac{1}{n+1} < \frac{1}{n}$ $\frac{1}{n}$. Hence,

$$
\left|\frac{2n+1}{n+1}-2\right|=\frac{1}{n+1}<\frac{1}{n}\leq\frac{1}{N}<\varepsilon.
$$

Thus, $\lim_{n\to\infty} \frac{2n+1}{n+1}$ $\frac{n+1}{n+1} = 2.$

2. Use definition to prove that *n* 2 $\frac{n}{n^2+1}$ exists.

Proof. Let $\varepsilon > 0$. Then $\sqrt{\varepsilon} > 0$. By Archimedean principle, there is an $N \in \mathbb{N}$ such that $\frac{1}{N} <$ *√ ε*. Let *n* \in N such that *n* \geq *N*. Then *n*² \geq *N*². We obtain $\frac{1}{n^2} \leq \frac{1}{N}$ $\frac{1}{N^2}$. Since $n^2 + 1 > n^2$, $\frac{1}{n^2 - 1}$ $\frac{1}{n^2+1} < \frac{1}{n^2}$ $\frac{1}{n^2}$. Hence,

$$
\left| \frac{n^2}{n^2 + 1} - 1 \right| = \frac{1}{n^2 + 1} < \frac{1}{n^2} \le \frac{1}{N^2} < \varepsilon.
$$

Thus, $\lim_{n \to \infty} \frac{n^2}{n^2 + 1}$ $\frac{n}{n^2+1} = 1.$

3. Prove by contradiction to show that lim*n→∞* $\sin\left(\frac{n\pi}{2}\right)$) does not exist (DNE).

Proof. Suppose that $\sin\left(\frac{n\pi}{2}\right)$ $\left(\frac{n\pi}{2}\right) \to a$ as $n \to \infty$ for some $a \in \mathbb{R}$. Given $\varepsilon = 1$. There is an $N \in \mathbb{N}$, for all $n \geq \mathbb{N}$ implies

$$
\left|\sin\left(\frac{n\pi}{2}\right) - a\right| < 1.
$$

Since $\sin\left(\frac{n\pi}{2}\right)$ $\frac{2\pi}{2}$ equals to either 0 or 1 or -1, we obtian $|0 - a| < 1$ and $|1 - a| < 1$ and $|-1 - a| < 1$, i.e,

$$
|a| < 1
$$
 and $|1 - a| < 1$ and $|1 + a| < 1$.

We have

$$
2 = |(1+a) + (1-a)| \le |1+a| + |1-a| < 1+1 = 2.
$$

It is imposible.

 \Box

4. Assume that $x_n \to 1$ as $n \to \infty$. Show that

$$
\frac{1}{(x_n)^2} \to 1 \text{ as } n \to \infty
$$

Proof. Assume that $x_n \to 1$ as $n \to \infty$. Given $\varepsilon = \frac{1}{2}$ $\frac{1}{2}$. There is an $N_1 \in \mathbb{N}$ such that

$$
n \ge N_1 \quad \text{implies} \quad |x_n - 1| < \frac{1}{2}.
$$

Then

$$
|x_n| - 1 \le |x_n - 1| \le \frac{1}{2}
$$

 $|x_n| \le \frac{3}{2}$

and

$$
1 = |1 - x_n + x_n| \le |1 - x_n| + |x_n| \le \frac{1}{2} + |x_n|
$$

$$
\frac{1}{2} \le |x_n|
$$

$$
\frac{1}{|x_n|} \le 2
$$

Let $\varepsilon > 0$. There is an $N_2 \in \mathbb{N}$ such that

$$
n \ge N_2
$$
 implies $|x_n - 1| < \frac{\varepsilon}{10}$.

Choose $N = \max\{N_1, N_2\}$. Let $n \in \mathbb{N}$ such that $n \geq N$. We obtain

$$
\left| \frac{1}{(x_n)^2} - 1 \right| = \left| \frac{1 - (x_n)^2}{(x_n)^2} \right| = \left| \frac{(1 - x_n)(1 + x_n)}{(x_n)^2} \right|
$$

$$
\leq \frac{|1 - x_n||1 + x_n|}{|x_n|^2}
$$

$$
\leq \frac{1}{|x_n|^2} \cdot (1 + |x_n|) \cdot |1 - x_n|
$$

$$
< 2^2 \cdot \left(1 + \frac{3}{2}\right) \cdot \frac{\varepsilon}{10} = \varepsilon
$$

Thus, $\frac{1}{\sqrt{1}}$ $\frac{1}{(x_n)^2} \to 1$ as $n \to \infty$

5. Assume that $x_n \to 0$ as $n \to \infty$. Show that

$$
\frac{1 + (x_n)^2}{x_n + 1} \to 1 \text{ as } n \to \infty
$$

Proof. Assume that $x_n \to 0$ as $n \to \infty$. Given $\varepsilon = \frac{1}{2}$ $\frac{1}{2}$. There is an $N_1 \in \mathbb{N}$ such that

$$
n \ge N_1
$$
 implies $|x_n| < \frac{1}{2}$.

Then

$$
1 = |1 + x_n + x_n| \le |1 + x_n| + |x_n| \le |1 + x_n| + \frac{1}{2}
$$

$$
\frac{1}{2} \le |1 + x_n|
$$

$$
\frac{1}{|1 + x_n|} \le 2.
$$

Let $\varepsilon > 0$. There is an $N_2 \in \mathbb{N}$ such that

$$
n \ge N_2
$$
 implies $|x_n| < \frac{\varepsilon}{3}$.

Choose $N = \max\{N_1, N_2\}$. Let $n \in \mathbb{N}$ such that $n \geq N$. We obtain

$$
\left| \frac{1 + (x_n)^2}{x_n + 1} - 1 \right| = \left| \frac{(x_n)^2 - x_n}{x_n + 1} \right| = \left| \frac{x_n(x_n - 1)}{x_n + 1} \right|
$$

$$
\leq \frac{|x_n||x_n - 1|}{|x_n + 1|} = |x_n| \cdot \frac{1}{|x_n + 1|} \cdot (|x_n| + 1)
$$

$$
\leq \frac{\varepsilon}{3} \cdot 2 \cdot (\frac{1}{2} + 1) = \varepsilon.
$$

Hence, Thus, $\frac{1 + (x_n)^2}{\sigma^2}$ $\frac{f(x_n)}{x_n+1}$ \to 1 as $n \to \infty$

6. Let $\alpha \in \mathbb{R}$ and $\{x_n\}$ be a convergent sequence. Prove that

$$
\lim_{n \to \infty} (\alpha x_n) = \alpha \lim_{n \to \infty} x_n
$$

Proof. Assume that $x_n \to a$ as $n \to \infty$.

Let $\varepsilon > 0$ and $\alpha \in \mathbb{R}$. Then $|\alpha| + 1 > |\alpha| \ge 0$. So, $\frac{|\alpha|}{|\alpha| + 1} < 1$. By assumption, there is an $N \in \mathbb{N}$ such that

$$
n \ge N
$$
 implies $|x_n - x| < \frac{\varepsilon}{|\alpha| + 1}$.

Let $n \in \mathbb{N}$. For each $n \geq N$, we obtain

$$
|\alpha x_n - \alpha x| = |\alpha||x_n - x| < |\alpha| \cdot \frac{\varepsilon}{|\alpha| + 1} = \frac{|\alpha|}{|\alpha| + 1} \varepsilon < 1 \cdot \varepsilon = \varepsilon.
$$

Thus, $\lim_{n \to \infty} (\alpha x_n) = \alpha a = \alpha \lim_{n \to \infty} x_n$.

 \Box

7. If *A* has a finite infimum, then there is a sequence $x_n \in A$ such that

 $x_n \to \inf A$ as $n \to \infty$.

Proof. Suppose *A* has a finite infimum. By API, there is $x \in A$ such that

$$
\inf A \le x \le \inf A + \varepsilon \quad \text{ for all } \varepsilon > 0.
$$

We construct a sequence $\{x_n\}$ by

$$
\varepsilon_1 = 1, \quad \exists x_1 \in A \text{ such that } \quad \inf A \le x_1 \le \inf A + 1
$$

\n
$$
\varepsilon_2 = \frac{1}{2}, \quad \exists x_2 \in A \text{ such that } \quad \inf A \le x_2 \le \inf A + \frac{1}{2}
$$

\n
$$
\varepsilon_3 = \frac{1}{3}, \quad \exists x_3 \in A \text{ such that } \quad \inf A \le x_3 \le \inf A + \frac{1}{3}
$$

\n:
\n:
\n:
\n
$$
\varepsilon_n = \frac{1}{n}, \quad \exists x_n \in A \text{ such that } \quad \inf A \le x_n \le \inf A + \frac{1}{n}
$$

Thus, $\{x_n\}$ is a sequence in *A* and satisfies

$$
\inf A \le x_n < \inf A + \frac{1}{n}
$$

By the Squeez Theorem,

$$
\lim_{n \to \infty} \inf A \le \lim_{n \to \infty} x_n \le \lim_{n \to \infty} \left(\inf A + \frac{1}{n} \right)
$$

$$
\inf A \le \lim_{n \to \infty} x_n \le \inf A
$$

Therefore,

$$
\lim_{n \to \infty} x_n = \inf A.
$$

8. If $\{x_n\}$ is a convergent sequence, then

$$
\lim_{n \to \infty} \frac{1}{x_n} = \frac{1}{\lim_{n \to \infty} x_n}
$$

when $\lim_{n\to\infty} x_n \neq 0$ and $x_n \neq 0$.

Proof. Assume that $\{x_n\}$ converges to *a* such that $a \neq 0$. Let $\varepsilon > 0$. There is an $N_1 \in \mathbb{N}$ such that

$$
n \ge N_1 \quad \text{implies} \quad |x_n - a| < \frac{|a|}{2}.
$$

Then

$$
|a| = |a - x_n + x_n| \le |x_n - a| + |x_n| \le \frac{|a|}{2} + |x_n|
$$

$$
\frac{|a|}{2} \le |x_n|
$$

$$
\frac{1}{|x_n|} \le \frac{2}{|a|}
$$

There is an $N_2\in\mathbb{N}$ such that

$$
n \ge N_2
$$
 implies $|x_n - a| < \frac{|a|^2}{2}\varepsilon$.

Choose $N = \max\{N_1, N_2\}$. Let $n \in \mathbb{N}$ such that $n \geq N$. We have

$$
\left|\frac{1}{x_n} - \frac{1}{a}\right| = \left|\frac{a - x_n}{ax_n}\right|
$$

$$
\leq \frac{1}{|x_n|} \cdot \frac{|x_n - a|}{|a|}
$$

$$
< \frac{2}{|a|} \cdot \frac{|a|^2}{2|a|} \varepsilon = \varepsilon
$$

Therefore, $\lim_{n\to\infty} \frac{1}{x_n}$ $\frac{1}{x_n} = \frac{1}{\lim}$ $\frac{1}{\lim_{n\to\infty}x_n}$.

9. Let $\{x_n\}$ be convergent such that converges to *a*. Prove that

$$
\lim_{n \to \infty} |x_n| = |a|.
$$

Proof. Assume that $\{x_n\}$ converges to *a*. Let $\varepsilon > 0$. There is an $N \in \mathbb{N}$ such that

$$
n \ge N \quad \text{implies} \quad |x_n - a| < \varepsilon.
$$

For each $n \in \mathbb{N}$ such that $n \geq N$, by part 4 of the Apply Triangle Inequality,

$$
||x_n| - |a|| \le |x_n - a| < \varepsilon.
$$

Therefore, $|x_n| \to |a|$ as $n \to \infty$.

 \Box

 \Box

10. Let $x_n > 0$ such that converges to $a > 0$, then prove that

$$
\lim_{n \to \infty} \sqrt{x_n} = \sqrt{a}.
$$

Proof. Assume that $x_n > 0$ converges to $a > 0$. Then $\sqrt{a} > 0$. Let $\varepsilon > 0$. There is an $N \in \mathbb{N}$ such that

$$
n \ge N \quad \text{ implies } \quad |x_n - a| < \varepsilon \sqrt{a}.
$$

Since $\sqrt{x_n} > 0$, $\sqrt{x_n} + \sqrt{a} > \sqrt{a}$. It follows that

$$
\frac{1}{\sqrt{x_n} + \sqrt{a}} < \frac{1}{\sqrt{a}}
$$

.

For each $n \in \mathbb{N}$ such that $n \geq N,$ we obtain

$$
\begin{aligned} |\sqrt{x_n} - \sqrt{a}| &= \left| (\sqrt{x_n} - \sqrt{a}) \cdot \frac{\sqrt{x_n} + \sqrt{a}}{\sqrt{x_n} + \sqrt{a}} \right| \\ &= \left| \frac{x_n - a}{\sqrt{x_n} + \sqrt{a}} \right| = \frac{1}{\sqrt{x_n} + \sqrt{a}} \cdot |x_n - a| \\ &< \frac{1}{\sqrt{a}} \cdot |x_n - a| \\ &< \frac{1}{\sqrt{a}} \cdot \varepsilon \sqrt{a} = \varepsilon. \end{aligned}
$$

Therefore, $\sqrt{x_n} \to \sqrt{a}$ as $n \to \infty$.

