

Assignment 4 MAC3309 Mathematical Analysis

TopicDivergence, Monotone & Cauchy SequencesScore10 marksTime4th WeekScore10 marksTeacherAssistant Professor Thanatyod Jampawai, Ph.D.
Division of Mathematics, Faculty of Education,Suan Sunandha Rajabhat University

1. Suppose that $x_n \to \infty$ as $n \to \infty$. Show that if $\{y_n\}$ is bounded and $x_n \neq 0$, then

$$\lim_{n \to \infty} \frac{y_n}{x_n} = 0$$

2. Prove the Comparison Theorem (Theorem 2.2.12) : Suppose that $\{x_n\}$ and $\{y_n\}$ are convergent sequences. If there is an $N_0 \in \mathbb{N}$ such that

$$x_n \le y_n$$
 for all $n \ge N_0$, then $\lim_{n \to \infty} x_n \le \lim_{n \to \infty} y_n$.

3. Prove that

$$\lim_{n \to \infty} \frac{n^2}{1+2n} = +\infty$$

4. Prove that

$$\lim_{n \to \infty} \frac{2 - n^2}{2 + n} = -\infty$$

5. (**Theorem 2.2.20**) Let $\{x_n\}$ be a real sequence and $\alpha > 0$. Prove that

if $x_n \to -\infty$ as $n \to \infty$, then $\lim_{n \to \infty} (\alpha x_n) = -\infty$.

6. (Theorem 2.2.22) Let $\{x_n\}$ and $\{y_n\}$ be real sequences such that

 $y_n > K$ for some K > 0 and all $n \in \mathbb{N}$.

Prove that if $x_n \to -\infty$ as $n \to \infty$, then $\lim_{n \to \infty} (x_n y_n) = -\infty$.

7. Prove that $\left\{\frac{1}{n^2}\right\}$ is Cauchy.

- 8. Prove that the sum of two Cauchy sequence is Cauchy.
- 9. Prove that any real sequence $\{x_n\}$ that satisfies

$$|x_n - x_{n+1}| \le \frac{1}{2^{n+1}}, \qquad n \in \mathbb{N}$$

is convergent by showing the sequence is Cauchy. (Use the fact that $n < 2^n$ for all $n \in \mathbb{N}$)

10. Use the MCT to prove **Theorem 2.3.4** : if |a| < 1, then $a^n \to 0$ as $n \to \infty$.