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1. Suppose that xn → ∞ as n → ∞. Show that if {yn} is bounded and xn ̸= 0, then

lim
n→∞

yn
xn

= 0.

Proof. Suppose xn → ∞ as n → ∞ and {yn} is bounded and xn ̸= 0.
Let ε > 0. Then there is a K > 0 such that |yn| ≤ K for all n ∈ N.
Set M =

K

ε
> 0. There is an N ∈ N, n ≥ N implies xn > M or xn >

K

ε
. Then xn > 0 for n ≥ N and

1

|xn|
=

1

xn
≤ ε

K
.

Let n ∈ N such that n ≥ N . We obtain∣∣∣∣ ynxn
∣∣∣∣ = |yn| ·

1

|xn|
< K · ε

K
= ε.

Hence, lim
n→∞

yn
xn

= 0.

2. Prove the Comparison Theorem (Theorem 2.2.12) :
Suppose that {xn} and {yn} are convergent sequences. If there is an N0 ∈ N such that

xn ≤ yn for all n ≥ N0, then lim
n→∞

xn ≤ lim
n→∞

yn.

Proof. Let xn → a and yn → b as n → ∞. Assume that there is an N0 ∈ N such that

xn ≤ yn for all n ≥ N0.

Suppose that lim
n→∞

xn > lim
n→∞

yn, i.e., a > b. Then a − b > 0. By assumption, there is an N1, N2 ∈ N such
that

n ≥ N1 implies |xn − a| < a− b

2
and

n ≥ N2 implies |yn − b| < a− b

2
.

For each n ≥ max{N0, N1, N2}, it follows that

yn < b+
a− b

2
= a− a− b

2
< xn

which contradics the assumption. Thus, a ≤ b.
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3. Prove that
lim
n→∞

n2

1 + 2n
= +∞.

Proof. Let M ∈ R. By Arichimedean property, there is an N ∈ N such that 4M + 1

2
< N. It is equivalent

to
1

4
(2n− 1) >

1

4
(2N − 1) > M.

Let n ∈ N such that n ≥ N . Then 2n− 1 > 2N − 1. Since 0 > −1
4 , n2 > n2 − 1

4 . We obtain

n2

1 + 2n
>

n2 − 1
4

1 + 2n
=

1
4(2n− 1)(2n+ 1)

1 + 2n
=

1

4
(2n− 1) >

1

4
(2N − 1) > M.

Hence, lim
n→∞

n2

1 + 2n
= +∞.

4. Prove that
lim
n→∞

2− n2

2 + n
= −∞.

Proof. Let M ∈ R. By Arichimedean property, there is an N ∈ N such that 2−M < N. It is equivalent to

2−N < M.

Let n ∈ N such that n ≥ N . Then −n ≤ −N . So, 2− n ≤ 2−N . We obtain

2− n2

2 + n
=

−n2 + 2

2 + n
<

−n2 + 4

2 + n
=

(2− n)(2 + n)

2 + n
= 2− n < 2−N < M.

Hence, lim
n→∞

2− n2

2 + n
= −∞.

5. (Theorem 2.2.20) Let {xn} be a real sequence and α > 0. Prove that

if xn → −∞ as n → ∞, then lim
n→∞

(αxn) = −∞.

Proof. Assume that xn → −∞ as n → ∞.
Let M ∈ R and α > 0. By assumption, there is an N ∈ N such that

n ≥ N implies xn <
M

α
.

Let n ∈ N such that n ≥ N . We obtain
αxn < α · M

α
= M.

Thus, lim
n→∞

αxn = −∞.
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6. (Theorem 2.2.22) Let {xn} and {yn} be real sequences such that

yn > K for some K > 0 and all n ∈ N.

Prove that if xn → −∞ as n → ∞, then lim
n→∞

(xnyn) = −∞.

Proof. Let {xn} and {yn} be real sequences such that

yn > K for some K > 0 and all n ∈ N.

Assume that xn → −∞ as n → ∞.
Let M ∈ R.
Case M = 0. There is an N ∈ N such that

n ≥ N implies xn < 0.

Let n ∈ N such that n ≥ N . Since yn > K > 0, we obtain

xn · yn < 0 = M

Case M > 0. There is an N ∈ N such that

n ≥ N implies xn < −M

K
< 0.

Let n ∈ N such that n ≥ N . Since yn > K > 0, −yn < −K < 0. We obtain

xn · yn < −M

K
· yn =

M

K
· (−yn) <

M

K
· (−K) = −M < 0 < M.

Case M < 0. There is an N ∈ N such that

n ≥ N implies xn <
M

K
< 0.

Let n ∈ N such that n ≥ N . Since yn > K > 0, −yn < −K < 0. We obtain

xn · yn <
M

K
· yn =

−M

K
· (−yn) <

−M

K
· (−K) = M.

Thus, lim
n→∞

xnyn = −∞.

7. Prove that
{

1

n2

}
is Cauchy.

Proof. Let ε > 0. By Arichimedean property, there is an N ∈ N such that 1
N < ε

2 .
Let n,m ∈ N such that n,m ≥ N . Then 1

m ≤ 1
N and 1

n ≤ 1
N . Since n2 ≥ n and m2 ≥ m, 1

m2 ≤ 1
m and

1
n2 ≤ 1

n . We obtain ∣∣∣∣ 1

m2
− 1

n2

∣∣∣∣ ≤ 1

m2
+

1

n2
≤ 1

m
+

1

n
<

1

N
+

1

N
=

2

N
< ε.

Thus,
{

1

n2

}
is Cauchy.
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8. Prove that the sum of two Cauchy sequence is Cauchy.

Proof. Let {xn} and {yn} be Cauchy. Let ε > 0. There are N1 ∈ N and N2 ∈ N such that

m,n ≥ N1 → |xn − xm| < ε

2

m,n ≥ N2 → |yn − ym| < ε

2

Choose N = max{N1, N2}. For m,n ≥ N1, we obtain
|(xn + yn)− (xm + ym)| = |(xn − xm) + (yn − ym)|

≤ |xn − xm|+ |yn − ym|

<
ε

2
+

ε

2
= ε

Thus, {xn + yn} is Cauchy.

9. Prove that any real sequence {xn} that satisfies

|xn − xn+1| ≤
1

2n+1
, n ∈ N

is convergent by showing the sequence is Cauchy. (Use the fact that n < 2n for all n ∈ N)

Proof. Let ε > 0. By Archimedean property, there is an N ∈ N such that 1

N
< ε.

Let n,m ∈ N such that n,m ≥ N . Then 1

n
≤ 1

N
. By the fact that n < 2n for all n ∈ N, we get 1

2n
<

1

n
.

Suppose that m > n. We obtain
|xn − xm| = |xn − xn+1 + xn+1 − xn+2 + xn+2 − · · ·+ xm−1 − xm|

≤ |xn − xn+1|+ |xn+1 − xn+2|+ · · ·+ |xm−1 − xm|

<
1

2n
+

1

2n+1
+ · · ·+ 1

2m−1

=
1

2n−1

[
1

2
+

1

22
+ · · ·+ 1

2m−n

]
=

1

2n−1

m−n∑
k=1

1

2k

=
1

2n

[
1− 1

2m−n

]
≤ 1

2n
∵ 1− 1

2m−n
≤ 1 when m− n > 0

<
1

n
∵ n < 2n

<
1

N
< ε

Thus, {xn} is Cauchy. Therefore, {xn} is convergent.

10. Use the MCT to prove Theorem 2.3.4 : if |a| < 1, then an → 0 as n → ∞.

Proof. Assume that |a| < 1.
Case 1 a = 0. Then an = 0 for all n ∈ N, and it follows that an → 0 as n → ∞.
Case 2 a ̸= 0. Then |a| > 0. So, 0 < |a| < 1. We obtain

0 < |a|n+1 < |a|n < 1 for all n ∈ N.

So, {|a|n} is decreasing and bounded below by 1 . By MCT, |a|n → L as n → ∞.
Suppose that L ̸= 0. Then

L = lim
n→∞

|a|n+1 = lim
n→∞

|a|n|a| = |a| lim
n→∞

|a|n = |a|L.

We have |a| = 1 which contradics |a| < 1. Thus, L = 0.

4


