

Solution Assignment 4 MAC3309 Mathematical Analysis

1. Suppose that $x_n \to \infty$ as $n \to \infty$. Show that if $\{y_n\}$ is bounded and $x_n \neq 0$, then

$$
\lim_{n \to \infty} \frac{y_n}{x_n} = 0.
$$

Proof. Suppose $x_n \to \infty$ as $n \to \infty$ and $\{y_n\}$ is bounded and $x_n \neq 0$. Let $\varepsilon > 0$. Then there is a $K > 0$ such that $|y_n| \leq K$ for all $n \in \mathbb{N}$. Set $M = \frac{K}{A}$ $\frac{K}{\varepsilon} > 0$. There is an $N \in \mathbb{N}$, $n \ge N$ implies $x_n > M$ or $x_n > \frac{K}{\varepsilon}$ $\frac{a}{\varepsilon}$. Then $x_n > 0$ for $n \geq N$ and

$$
\frac{1}{|x_n|} = \frac{1}{x_n} \le \frac{\varepsilon}{K}
$$

.

Let $n \in \mathbb{N}$ such that $n \geq N$. We obtain

$$
\left|\frac{y_n}{x_n}\right| = |y_n| \cdot \frac{1}{|x_n|} < K \cdot \frac{\varepsilon}{K} = \varepsilon.
$$

Hence, $\lim_{n\to\infty} \frac{y_n}{x_n}$ $\frac{3n}{x_n} = 0.$

2. Prove **the Comparison Theorem (Theorem 2.2.12)** :

Suppose that $\{x_n\}$ and $\{y_n\}$ are convergent sequences. If there is an $N_0 \in \mathbb{N}$ such that

$$
x_n \le y_n
$$
 for all $n \ge N_0$, then $\lim_{n \to \infty} x_n \le \lim_{n \to \infty} y_n$.

Proof. Let $x_n \to a$ and $y_n \to b$ as $n \to \infty$. Assume that there is an $N_0 \in \mathbb{N}$ such that

$$
x_n \le y_n
$$
 for all $n \ge N_0$.

Suppose that $\lim_{n\to\infty} x_n > \lim_{n\to\infty} y_n$, i.e., $a > b$. Then $a - b > 0$. By assumption, there is an $N_1, N_2 \in \mathbb{N}$ such that

$$
n \ge N_1 \quad \text{implies} \quad |x_n - a| < \frac{a - b}{2}
$$
\n
$$
n \ge N_2 \quad \text{implies} \quad |y_n - b| < \frac{a - b}{2}.
$$

For each $n \ge \max\{N_0, N_1, N_2\}$, it follows that

$$
y_n < b + \frac{a - b}{2} = a - \frac{a - b}{2} < x_n
$$

which contradics the assumption. Thus, $a \leq b$.

3. Prove that

$$
\lim_{n \to \infty} \frac{n^2}{1 + 2n} = +\infty.
$$

Proof. Let $M \in \mathbb{R}$. By Arichimedean property, there is an $N \in \mathbb{N}$ such that $\frac{4M+1}{2} < N$. It is equivalent to

$$
\frac{1}{4}(2n-1) > \frac{1}{4}(2N-1) > M.
$$

Let *n* ∈ N such that *n* ≥ *N*. Then $2n - 1 > 2N - 1$. Since $0 > -\frac{1}{4}$ $\frac{1}{4}$, $n^2 > n^2 - \frac{1}{4}$ $\frac{1}{4}$. We obtain

$$
\frac{n^2}{1+2n} > \frac{n^2 - \frac{1}{4}}{1+2n} = \frac{\frac{1}{4}(2n-1)(2n+1)}{1+2n} = \frac{1}{4}(2n-1) > \frac{1}{4}(2N-1) > M.
$$

Hence, $\lim_{n\to\infty} \frac{n^2}{1+i}$ $\frac{n}{1 + 2n} = +\infty.$

4. Prove that

$$
\lim_{n \to \infty} \frac{2 - n^2}{2 + n} = -\infty.
$$

Proof. Let $M \in \mathbb{R}$. By Arichimedean property, there is an $N \in \mathbb{N}$ such that $2 - M \leq N$. It is equivalent to

2 *− N < M.*

Let *n* ∈ N such that *n* ≥ *N*. Then $-n \leq -N$. So, 2 − *n* ≤ 2 − *N*. We obtain

$$
\frac{2-n^2}{2+n} = \frac{-n^2+2}{2+n} < \frac{-n^2+4}{2+n} = \frac{(2-n)(2+n)}{2+n} = 2-n < 2-N < M.
$$

Hence, $\lim_{n\to\infty} \frac{2-n^2}{2+n}$ $\frac{n}{2+n} = -\infty.$

5. (**Theorem 2.2.20**) Let $\{x_n\}$ be a real sequence and $\alpha > 0$. Prove that

if
$$
x_n \to -\infty
$$
 as $n \to \infty$, then $\lim_{n \to \infty} (\alpha x_n) = -\infty$.

Proof. Assume that $x_n \to -\infty$ as $n \to \infty$. Let $M \in \mathbb{R}$ and $\alpha > 0$. By assumption, there is an $N \in \mathbb{N}$ such that

$$
n \ge N \quad \text{ implies } \quad x_n < \frac{M}{\alpha}.
$$

Let $n \in \mathbb{N}$ such that $n \geq N$. We obtain

$$
\alpha x_n < \alpha \cdot \frac{M}{\alpha} = M.
$$

Thus, $\lim_{n \to \infty} \alpha x_n = -\infty$.

 \Box

 \Box

6. (**Theorem 2.2.22**) Let $\{x_n\}$ and $\{y_n\}$ be real sequences such that

 $y_n > K$ for some $K > 0$ and all $n \in \mathbb{N}$.

Prove that if $x_n \to -\infty$ as $n \to \infty$, then $\lim_{n \to \infty} (x_n y_n) = -\infty$.

Proof. Let $\{x_n\}$ and $\{y_n\}$ be real sequences such that

 $y_n > K$ for some $K > 0$ and all $n \in \mathbb{N}$.

Assume that $x_n \to -\infty$ as $n \to \infty$. Let $M \in \mathbb{R}$. Case $M = 0$. There is an $N \in \mathbb{N}$ such that

 $n \geq N$ implies $x_n < 0$.

Let $n \in \mathbb{N}$ such that $n \geq N$. Since $y_n > K > 0$, we obtain

$$
x_n \cdot y_n < 0 = M
$$

Case $M > 0$. There is an $N \in \mathbb{N}$ such that

$$
n\geq N\quad\text{ implies }\quad x_n<-\frac{M}{K}<0.
$$

Let $n \in \mathbb{N}$ such that $n \geq N$. Since $y_n > K > 0$, $-y_n < -K < 0$. We obtain

$$
x_n \cdot y_n < -\frac{M}{K} \cdot y_n = \frac{M}{K} \cdot (-y_n) < \frac{M}{K} \cdot (-K) = -M < 0 < M.
$$

Case $M < 0$. There is an $N \in \mathbb{N}$ such that

$$
n \ge N \quad \text{ implies } \quad x_n < \frac{M}{K} < 0.
$$

Let $n \in \mathbb{N}$ such that $n \geq N$. Since $y_n > K > 0$, $-y_n < -K < 0$. We obtain

$$
x_n \cdot y_n < \frac{M}{K} \cdot y_n = \frac{-M}{K} \cdot (-y_n) < \frac{-M}{K} \cdot (-K) = M.
$$

Thus, $\lim_{n\to\infty} x_n y_n = -\infty$.

7. Prove that $\begin{cases} \frac{1}{2} \end{cases}$ *n*2 λ is Cauchy.

Proof. Let $\varepsilon > 0$. By Arichimedean property, there is an $N \in \mathbb{N}$ such that $\frac{1}{N} < \frac{\varepsilon}{2}$ $\frac{\varepsilon}{2}$. Let $n, m \in \mathbb{N}$ such that $n, m \geq N$. Then $\frac{1}{m} \leq \frac{1}{N}$ $\frac{1}{N}$ and $\frac{1}{n} \leq \frac{1}{N}$ $\frac{1}{N}$. Since $n^2 \geq n$ and $m^2 \geq m$, $\frac{1}{m^2} \leq \frac{1}{m}$ $\frac{1}{m}$ and $\frac{1}{n^2} \leq \frac{1}{n}$ $\frac{1}{n}$. We obtain

$$
\left| \frac{1}{m^2} - \frac{1}{n^2} \right| \le \frac{1}{m^2} + \frac{1}{n^2} \le \frac{1}{m} + \frac{1}{n} < \frac{1}{N} + \frac{1}{N} = \frac{2}{N} < \varepsilon.
$$

Thus, $\left\{\frac{1}{4}\right\}$ *n*2 \mathcal{L} is Cauchy.

 \Box

8. Prove that the sum of two Cauchy sequence is Cauchy.

Proof. Let $\{x_n\}$ and $\{y_n\}$ be Cauchy. Let $\varepsilon > 0$. There are $N_1 \in \mathbb{N}$ and $N_2 \in \mathbb{N}$ such that

$$
m, n \ge N_1 \quad \to \quad |x_n - x_m| < \frac{\varepsilon}{2}
$$
\n
$$
m, n \ge N_2 \quad \to \quad |y_n - y_m| < \frac{\varepsilon}{2}
$$

Choose $N = \max\{N_1, N_2\}$. For $m, n \geq N_1$, we obtain

$$
\left| (x_n + y_n) - (x_m + y_m) \right| = \left| (x_n - x_m) + (y_n - y_m) \right|
$$

\n
$$
\leq |x_n - x_m| + |y_n - y_m|
$$

\n
$$
< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon
$$

Thus, $\{x_n + y_n\}$ is Cauchy.

9. Prove that any real sequence $\{x_n\}$ that satisfies

$$
|x_n - x_{n+1}| \le \frac{1}{2^{n+1}}, \qquad n \in \mathbb{N}
$$

is convergent by showing the sequence is Cauchy. (Use the fact that $n < 2^n$ for all $n \in \mathbb{N}$)

Proof. Let $\varepsilon > 0$. By Archimedean property, there is an $N \in \mathbb{N}$ such that $\frac{1}{N} < \varepsilon$. Let *n*, *m* \in N such that *n*, *m* \geq *N*. Then $\frac{1}{n} \leq \frac{1}{N}$ $\frac{1}{N}$. By the fact that $n < 2^n$ for all $n \in \mathbb{N}$, we get $\frac{1}{2^n}$ $\frac{1}{2^n} < \frac{1}{n}$ $\frac{1}{n}$. Suppose that $m > n$. We obtain

$$
|x_n - x_m| = |x_n - x_{n+1} + x_{n+1} - x_{n+2} + x_{n+2} - \dots + x_{m-1} - x_m|
$$

\n
$$
\le |x_n - x_{n+1}| + |x_{n+1} - x_{n+2}| + \dots + |x_{m-1} - x_m|
$$

\n
$$
< \frac{1}{2^n} + \frac{1}{2^{n+1}} + \dots + \frac{1}{2^{m-1}}
$$

\n
$$
= \frac{1}{2^{n-1}} \left[\frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^{m-n}} \right]
$$

\n
$$
= \frac{1}{2^{n-1}} \sum_{k=1}^{m-n} \frac{1}{2^k}
$$

\n
$$
= \frac{1}{2^n} \left[1 - \frac{1}{2^{m-n}} \right]
$$

\n
$$
\le \frac{1}{2^n}
$$

\n
$$
\le \frac{1}{n}
$$

\n
$$
\le \frac{1}{n}
$$

\n
$$
\le \frac{1}{N} < \varepsilon
$$

Thus, $\{x_n\}$ is Cauchy. Therefore, $\{x_n\}$ is convergent.

10. Use the MCT to prove **Theorem 2.3.4** : if $|a| < 1$, then $a^n \to 0$ as $n \to \infty$.

Proof. Assume that $|a| < 1$. Case 1 $a = 0$. Then $a^n = 0$ for all $n \in \mathbb{N}$, and it follows that $a^n \to 0$ as $n \to \infty$. Case 2 $a \neq 0$. Then $|a| > 0$. So, $0 < |a| < 1$. We obtain

$$
0 < |a|^{n+1} < |a|^n < 1 \quad \text{ for all } n \in \mathbb{N}.
$$

So, $\{|a|^n\}$ is decreasing and bounded below by 1 . By MCT, $|a|^n \to L$ as $n \to \infty$. Suppose that $L \neq 0$. Then

$$
L = \lim_{n \to \infty} |a|^{n+1} = \lim_{n \to \infty} |a|^n |a| = |a| \lim_{n \to \infty} |a|^n = |a| L.
$$

We have $|a| = 1$ which contradics $|a| < 1$. Thus, $L = 0$.

 \Box

 \Box