

Solution Assignment 4 MAC3309 Mathematical Analysis

Topic	Divergence, Monotone & Cauchy Sequences	Score	10 marks
Time	4th Week		
Teacher	Assistant Professor Thanatyod Jampawai, Ph.D.		
	Division of Mathematics, Faculty of Education,	Suan Su	nandha Rajabhat University

1. Suppose that $x_n \to \infty$ as $n \to \infty$. Show that if $\{y_n\}$ is bounded and $x_n \neq 0$, then

$$\lim_{n \to \infty} \frac{y_n}{x_n} = 0.$$

Proof. Suppose $x_n \to \infty$ as $n \to \infty$ and $\{y_n\}$ is bounded and $x_n \neq 0$. Let $\varepsilon > 0$. Then there is a K > 0 such that $|y_n| \leq K$ for all $n \in \mathbb{N}$. Set $M = \frac{K}{\varepsilon} > 0$. There is an $N \in \mathbb{N}$, $n \geq N$ implies $x_n > M$ or $x_n > \frac{K}{\varepsilon}$. Then $x_n > 0$ for $n \geq N$ and

$$\frac{1}{|x_n|} = \frac{1}{x_n} \le \frac{\varepsilon}{K}$$

Let $n \in \mathbb{N}$ such that $n \ge N$. We obtain

$$\left|\frac{y_n}{x_n}\right| = |y_n| \cdot \frac{1}{|x_n|} < K \cdot \frac{\varepsilon}{K} = \varepsilon.$$

Hence, $\lim_{n \to \infty} \frac{y_n}{x_n} = 0.$

2. Prove the Comparison Theorem (Theorem 2.2.12) :

Suppose that $\{x_n\}$ and $\{y_n\}$ are convergent sequences. If there is an $N_0 \in \mathbb{N}$ such that

$$x_n \le y_n$$
 for all $n \ge N_0$, then $\lim_{n \to \infty} x_n \le \lim_{n \to \infty} y_n$

Proof. Let $x_n \to a$ and $y_n \to b$ as $n \to \infty$. Assume that there is an $N_0 \in \mathbb{N}$ such that

$$x_n \leq y_n$$
 for all $n \geq N_0$.

Suppose that $\lim_{n\to\infty} x_n > \lim_{n\to\infty} y_n$, i.e., a > b. Then a - b > 0. By assumption, there is an $N_1, N_2 \in \mathbb{N}$ such that

$$n \ge N_1$$
 implies $|x_n - a| < \frac{a - b}{2}$
and
 $n \ge N_2$ implies $|y_n - b| < \frac{a - b}{2}$.

For each $n \ge \max\{N_0, N_1, N_2\}$, it follows that

$$y_n < b + \frac{a-b}{2} = a - \frac{a-b}{2} < x_r$$

which contradics the assumption. Thus, $a \leq b$.

3. Prove that

$$\lim_{n \to \infty} \frac{n^2}{1+2n} = +\infty.$$

Proof. Let $M \in \mathbb{R}$. By Arichimedean property, there is an $N \in \mathbb{N}$ such that $\frac{4M+1}{2} < N$. It is equivalent to

$$\frac{1}{4}(2n-1) > \frac{1}{4}(2N-1) > M.$$

Let $n \in \mathbb{N}$ such that $n \ge N$. Then 2n - 1 > 2N - 1. Since $0 > -\frac{1}{4}$, $n^2 > n^2 - \frac{1}{4}$. We obtain

$$\frac{n^2}{1+2n} > \frac{n^2 - \frac{1}{4}}{1+2n} = \frac{\frac{1}{4}(2n-1)(2n+1)}{1+2n} = \frac{1}{4}(2n-1) > \frac{1}{4}(2N-1) > M.$$

Hence, $\lim_{n \to \infty} \frac{n^2}{1+2n} = +\infty.$

4. Prove that

$$\lim_{n \to \infty} \frac{2 - n^2}{2 + n} = -\infty$$

Proof. Let $M \in \mathbb{R}$. By Arichimedean property, there is an $N \in \mathbb{N}$ such that 2 - M < N. It is equivalent to

2 - N < M.

Let $n \in \mathbb{N}$ such that $n \ge N$. Then $-n \le -N$. So, $2 - n \le 2 - N$. We obtain

$$\frac{2-n^2}{2+n} = \frac{-n^2+2}{2+n} < \frac{-n^2+4}{2+n} = \frac{(2-n)(2+n)}{2+n} = 2-n < 2-N < M.$$

Hence, $\lim_{n \to \infty} \frac{2 - n^2}{2 + n} = -\infty.$

5. (Theorem 2.2.20) Let $\{x_n\}$ be a real sequence and $\alpha > 0$. Prove that

if
$$x_n \to -\infty$$
 as $n \to \infty$, then $\lim_{n \to \infty} (\alpha x_n) = -\infty$

Proof. Assume that $x_n \to -\infty$ as $n \to \infty$. Let $M \in \mathbb{R}$ and $\alpha > 0$. By assumption, there is an $N \in \mathbb{N}$ such that

$$n \ge N$$
 implies $x_n < \frac{M}{\alpha}$.

Let $n \in \mathbb{N}$ such that $n \geq N$. We obtain

$$\alpha x_n < \alpha \cdot \frac{M}{\alpha} = M$$

Thus, $\lim_{n \to \infty} \alpha x_n = -\infty$.

6. (Theorem 2.2.22) Let $\{x_n\}$ and $\{y_n\}$ be real sequences such that

 $y_n > K$ for some K > 0 and all $n \in \mathbb{N}$.

Prove that if $x_n \to -\infty$ as $n \to \infty$, then $\lim_{n \to \infty} (x_n y_n) = -\infty$.

Proof. Let $\{x_n\}$ and $\{y_n\}$ be real sequences such that

 $y_n > K$ for some K > 0 and all $n \in \mathbb{N}$.

Assume that $x_n \to -\infty$ as $n \to \infty$. Let $M \in \mathbb{R}$. Case M = 0. There is an $N \in \mathbb{N}$ such that

 $n \ge N$ implies $x_n < 0$.

Let $n \in \mathbb{N}$ such that $n \geq N$. Since $y_n > K > 0$, we obtain

$$x_n \cdot y_n < 0 = M$$

Case M > 0. There is an $N \in \mathbb{N}$ such that

$$n \ge N$$
 implies $x_n < -\frac{M}{K} < 0.$

Let $n \in \mathbb{N}$ such that $n \geq N$. Since $y_n > K > 0, -y_n < -K < 0$. We obtain

$$x_n \cdot y_n < -\frac{M}{K} \cdot y_n = \frac{M}{K} \cdot (-y_n) < \frac{M}{K} \cdot (-K) = -M < 0 < M$$

Case M < 0. There is an $N \in \mathbb{N}$ such that

$$n \ge N$$
 implies $x_n < \frac{M}{K} < 0.$

Let $n \in \mathbb{N}$ such that $n \ge N$. Since $y_n > K > 0, -y_n < -K < 0$. We obtain

$$x_n \cdot y_n < \frac{M}{K} \cdot y_n = \frac{-M}{K} \cdot (-y_n) < \frac{-M}{K} \cdot (-K) = M.$$

Thus, $\lim_{n \to \infty} x_n y_n = -\infty$.

7. Prove that $\left\{\frac{1}{n^2}\right\}$ is Cauchy.

Proof. Let $\varepsilon > 0$. By Arichimedean property, there is an $N \in \mathbb{N}$ such that $\frac{1}{N} < \frac{\varepsilon}{2}$. Let $n, m \in \mathbb{N}$ such that $n, m \ge N$. Then $\frac{1}{m} \le \frac{1}{N}$ and $\frac{1}{n} \le \frac{1}{N}$. Since $n^2 \ge n$ and $m^2 \ge m$, $\frac{1}{m^2} \le \frac{1}{m}$ and $\frac{1}{n^2} \le \frac{1}{n}$. We obtain

$$\left|\frac{1}{m^2} - \frac{1}{n^2}\right| \le \frac{1}{m^2} + \frac{1}{n^2} \le \frac{1}{m} + \frac{1}{n} < \frac{1}{N} + \frac{1}{N} = \frac{2}{N} < \varepsilon.$$

Thus, $\left\{\frac{1}{n^2}\right\}$ is Cauchy.

8. Prove that the sum of two Cauchy sequence is Cauchy.

Proof. Let $\{x_n\}$ and $\{y_n\}$ be Cauchy. Let $\varepsilon > 0$. There are $N_1 \in \mathbb{N}$ and $N_2 \in \mathbb{N}$ such that

$$m, n \ge N_1 \quad \rightarrow \quad |x_n - x_m| < \frac{\varepsilon}{2}$$

 $m, n \ge N_2 \quad \rightarrow \quad |y_n - y_m| < \frac{\varepsilon}{2}$

Choose $N = \max\{N_1, N_2\}$. For $m, n \ge N_1$, we obtain

$$\begin{aligned} (x_n + y_n) - (x_m + y_m)| &= |(x_n - x_m) + (y_n - y_m)| \\ &\leq |x_n - x_m| + |y_n - y_m| \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \end{aligned}$$

Thus, $\{x_n + y_n\}$ is Cauchy.

9. Prove that any real sequence $\{x_n\}$ that satisfies

$$|x_n - x_{n+1}| \le \frac{1}{2^{n+1}}, \qquad n \in \mathbb{N}$$

is convergent by showing the sequence is Cauchy. (Use the fact that $n < 2^n$ for all $n \in \mathbb{N}$)

Proof. Let $\varepsilon > 0$. By Archimedean property, there is an $N \in \mathbb{N}$ such that $\frac{1}{N} < \varepsilon$. Let $n, m \in \mathbb{N}$ such that $n, m \ge N$. Then $\frac{1}{n} \le \frac{1}{N}$. By the fact that $n < 2^n$ for all $n \in \mathbb{N}$, we get $\frac{1}{2^n} < \frac{1}{n}$. Suppose that m > n. We obtain

$$\begin{split} x_n - x_m &| = |x_n - x_{n+1} + x_{n+1} - x_{n+2} + x_{n+2} - \dots + x_{m-1} - x_m| \\ &\leq |x_n - x_{n+1}| + |x_{n+1} - x_{n+2}| + \dots + |x_{m-1} - x_m| \\ &< \frac{1}{2^n} + \frac{1}{2^{n+1}} + \dots + \frac{1}{2^{m-1}} \\ &= \frac{1}{2^{n-1}} \left[\frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^{m-n}} \right] \\ &= \frac{1}{2^{n-1}} \sum_{k=1}^{m-n} \frac{1}{2^k} \\ &= \frac{1}{2^n} \left[1 - \frac{1}{2^{m-n}} \right] \\ &\leq \frac{1}{2^n} & \because 1 - \frac{1}{2^{m-n}} \leq 1 \quad \text{when } m - n > 0 \\ &< \frac{1}{n} & & \because n < 2^n \\ &< \frac{1}{N} < \varepsilon \end{split}$$

Thus, $\{x_n\}$ is Cauchy. Therefore, $\{x_n\}$ is convergent.

10. Use the MCT to prove **Theorem 2.3.4** : if |a| < 1, then $a^n \to 0$ as $n \to \infty$.

Proof. Assume that |a| < 1. Case 1 a = 0. Then $a^n = 0$ for all $n \in \mathbb{N}$, and it follows that $a^n \to 0$ as $n \to \infty$. Case 2 $a \neq 0$. Then |a| > 0. So, 0 < |a| < 1. We obtain

$$0 < |a|^{n+1} < |a|^n < 1 \quad \text{for all } n \in \mathbb{N}.$$

So, $\{|a|^n\}$ is decreasing and bounded below by 1. By MCT, $|a|^n \to L$ as $n \to \infty$. Suppose that $L \neq 0$. Then

$$L = \lim_{n \to \infty} |a|^{n+1} = \lim_{n \to \infty} |a|^n |a| = |a| \lim_{n \to \infty} |a|^n = |a|L.$$

We have |a| = 1 which contradics |a| < 1. Thus, L = 0.