

Assignment 5 MAC3309 Mathematical Analysis

Topic	Topology on \mathbb{R} and Limit of functions	Score	10 marks
Time	5th Week		
Teacher	Assistant Professor Thanatyod Jampawai, Ph.D.		
	Division of Mathematics, Faculty of Education,	Suan Su	mandha Rajabhat University

1. Let $U\subseteq \mathbb{R}$ be a nonempty open set. Assume that U has a supremum and infimum. Show that

 $\sup U \notin U$ and $\inf U \notin U$.

- 2. Prove **Theorem 3.3.11** : Let $A \subseteq \mathbb{R}$. Then \overline{A} is closed.
- 3. Let A and B be subsets of \mathbb{R} . Prove that

$$(A \cup B)' = A' \cup B'.$$

Use the result to confirm that $\overline{A \cup B} = \overline{A} \cup \overline{B}$.

- 4. Prove converse of **Theorem 3.3.13** : If the limit of every convergent sequence in F belongs to $F \subseteq \mathbb{R}$, then F is closed.
- 5. Use definition to prove that $\lim_{x \to 1} x^2 + x + 1 = 3$.
- 6. Use definition to prove that $\lim_{x \to -1} x^2 x + 1 = 3.$
- 7. Use definition to prove that $\lim_{x\to 0} \frac{x^2+1}{x+1} = 1.$
- 8. Use definition to prove that $\lim_{x\to 0} \frac{x^2+1}{x-1} = -1.$
- 9. Let y = f(x) be a real value function. Assume that

$$\lim_{x \to 1} \frac{f(x)}{x-1} \quad \text{exists.}$$

Prove that $\lim_{x \to 1} f(x) = 0.$

10. Let y = f(x) be a real value function. Assume that

$$\lim_{x \to 0} \frac{f(x)}{x} \quad \text{exists.}$$

Prove that $\lim_{x \to 0} f(x) = 0.$