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1. Let U ⊆ R be a nonempty open set. Assume that U has a supremum and infimum. Show that

supU /∈ U and infU /∈ U .

Proof. Let U ⊆ R be a nonempty open set. Assume that U has a supremum and infimum.
Suppose that s := supU ∈ U . Since U is open, there is ε > 0 such that

(s− ε, s) ∪ (s, s+ ε) ⊆ U.

Then s < s+(s+ε)
2 < s+ ε, i.e., s+(s+ε)

2 ∈ U . This is contraction to s is an upper bound of U .
Suppose that ℓ := infU ∈ U . Since U is open, there is ζ > 0 such that

(ℓ− ζ, ℓ) ∪ (ℓ, ℓ+ ζ) ⊆ U.

Then ℓ− ζ < (ℓ−ζ)+ℓ
2 < ℓ, i.e., (ℓ−ζ)+ℓ

2 ∈ U . This is contraction to ℓ is a lower bound of U .

2. Prove Theorem 3.3.11 : Let A ⊆ R. Then Ā is closed.

Proof. Let x ∈ (Ā)c = (A ∪A′)c. Then x /∈ A and x /∈ A′. There is an ε > 0 such that

(x− ε, x+ ε) ∩A = [(x− ε, x) ∪ (x, x+ ε)] ∩A = ∅.

Since x /∈ A, (x− ε, x+ ε) ∩A = [(x− ε, x) ∪ (x, x+ ε)] ∩A. Use the fact that A ⊆ Ā, we obtain

(x− ε, x+ ε) ∩ Ā = ∅.

So, (x− ε, x+ ε) ⊆ (Ā)c. Thus, (Ā)c is open. We conclude that Ā is closed.

3. Let A and B be subsets of R. Prove that

(A ∪B)′ = A′ ∪B′.

Use the resulte to confirm that A ∪B = Ā ∪ B̄.

Proof. Let A and B be subsets of R.
Let x ∈ (A ∪B)′. Then, for all ε > 0, we obtain

[(x− ε, x) ∪ (x, x+ ε)] ∩ (A ∪B) ̸= ∅
[[(x− ε, x) ∪ (x, x+ ε)] ∩A] ∪ [[(x− ε, x) ∪ (x, x+ ε)] ∩B] ̸= ∅

Then,

[(x− ε, x) ∪ (x, x+ ε)] ∩A ̸= ∅ or [(x− ε, x) ∪ (x, x+ ε)] ∩B ̸= ∅.
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So, x ∈ A′ ∪B′ ⊆ Ā ∪ B̄. Thus, (A ∪B)′ ⊆ A′ ∪B′.
Let x ∈ A′ ∪B′. WLOG, let x ∈ A′. Then, for all ε > 0, we obtain

[(x− ε, x) ∪ (x, x+ ε)] ∩A ̸= ∅.

Since A ⊆ A ∪B,

[(x− ε, x) ∪ (x, x+ ε)] ∩ (A ∪B) ̸= ∅.

So, x ∈ (A ∪B)′. Thus, A′ ∪B′ ⊆ (A ∪B)′. We conclude that (A ∪B)′ = A′ ∪B′.
This result will confirm that

A ∪B = (A ∪B) ∪ (A ∪B)′

= (A ∪B) ∪ (A′ ∪B′)

= (A ∪A′) ∪ (B ∪B′)

= Ā ∪ B̄

Thus, A ∪B = Ā ∪ B̄.

4. Prove converse of Theorem 3.3.13 :
If the limit of every convergent sequence in F belongs to F ⊆ R, then F is closed.

Proof. We will prove by contrapositive.
Assume that F is not closed. Then F c is not open. There is an x ∈ F c such that

(x− δ, x+ δ) * F c for all δ > 0.

It follows that

(x− δ, x+ δ) ∩ F ̸= ∅ for all δ > 0.

Choose δ =
1

n
and xn ∈

(
x− 1

n
, x+

1

n

)
∩ F for each n ∈ N. Then xn is a sequence in F . It implies that

|xn − x| < 1

n
.

We obtain that xn → x as n → ∞.
We conclude that there is a convergent sequence in F such that the limit is not in F .

5. Use definition to prove that lim
x→1

x2 + x+ 1 = 3.

Proof. Let ε > 0. Choose δ = min
{
1,

ε

4

}
. Suppose that 0 < |x− 1| < δ. Then 0 < |x− 1| < 1

|x| − 1 ≤ |x− 1| < 1

|x| < 2

We obtain

|(x2 + x+ 1)− 3| = |x2 + x− 2|
= |(x+ 2)(x− 1)|
= |x+ 2||x− 1|
< (|x|+ 2)δ

< (2 + 2)
ε

4
= ε.

Therefore, lim
x→1

x2 + x+ 1 = 3.
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6. Use definition to prove that lim
x→−1

x2 − x+ 1 = 3.

Proof. Let ε > 0. Choose δ = min
{
1,

ε

4

}
. Suppose that 0 < |x+ 1| < δ. Then 0 < |x+ 1| < 1

|x| − 1 ≤ |x+ 1| < 1

|x| < 2

We obtain

|(x2 − x+ 1)− 3| = |x2 − x− 2|
= |(x− 2)(x+ 1)|
= |x− 2||x+ 1|
< (|x|+ 2)δ

< (2 + 2)
ε

4
= ε.

Therefore, lim
x→−1

x2 − x+ 1 = 3.

7. Use definition to prove that lim
x→0

x2 + 1

x+ 1
= 1.

Proof. Let ε > 0. Choose δ = min
{
0.5,

ε

3

}
. Suppose that 0 < |x| < δ. Then 0 < |x| < 0.5,

−0.5 < x < 0 or 0 < x < 0.5. So, 0.5 < x+ 1 < 1 or 1 < x+ 1 < 1.5.

Thus, 0.5 < |x+ 1| < 1.5. We get 1

|x+ 1|
< 2. Then,

∣∣∣∣x2 + 1

x+ 1
− 1

∣∣∣∣ = ∣∣∣∣x2 − x

x+ 1

∣∣∣∣
=

∣∣∣∣x(x− 1)

x+ 1

∣∣∣∣
= |x| · |x− 1| · 1

|x+ 1|
< δ · (|x|+ 1) · 2

<
ε

3
· 1.5 · 2 = ε.

Therefore, lim
x→0

x2 + 1

x+ 1
= 1.

8. Use definition to prove that lim
x→0

x2 + 1

x− 1
= −1.

Proof. Let ε > 0. Choose δ = min
{
0.5,

ε

3

}
. Suppose that 0 < |x| < δ. Then 0 < |x| < 0.5,

−0.5 < x < 0 or 0 < x < 0.5. So, −1.5 < x− 1 < −1 or −1 < x− 1 < −0.5.
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Thus, 0.5 < |x− 1| < 1.5. We get 1

|x− 1|
< 2. Then,

∣∣∣∣x2 + 1

x− 1
+ 1

∣∣∣∣ = ∣∣∣∣x2 + x

x+ 1

∣∣∣∣
=

∣∣∣∣x(x+ 1)

x− 1

∣∣∣∣
= |x| · |x+ 1| · 1

|x− 1|
< δ · (|x|+ 1) · 1

<
ε

3
· 1.5 · 2 = ε.

Therefore, lim
x→0

x2 + 1

x− 1
= −1.

9. Let y = f(x) be a real value function. Assume that

lim
x→1

f(x)

x− 1
exists.

Prove that lim
x→1

f(x) = 0.

Proof. Assume that f(x)

x− 1
→ a as x → 1 for some a ∈ R.

Given ε = 1. Then there δ0 > 0 such that 0 < |x− 1| < δ0, implies that∣∣∣∣ f(x)x− 1
− a

∣∣∣∣ < 1.

Let ε > 0. Choose δ = min{ ε
1+|a| , δ0}. Then 0 < |x− 1| < δ. We obtain

|f(x)− 0| = |f(x)| =
∣∣∣∣ f(x)x− 1

· (x− 1)

∣∣∣∣
=

∣∣∣∣ f(x)x− 1

∣∣∣∣ |x− 1|

=

∣∣∣∣ f(x)x− 1
− a+ a

∣∣∣∣ |x− 1|

≤
(∣∣∣∣ f(x)x− 1

− a

∣∣∣∣+ |a|
)
|x− 1|

< (1 + |a|)|x− 1|

< (1 + |a|) · ε

1 + |a|
= ε.
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10. Let y = f(x) be a real value function. Assume that

lim
x→0

f(x)

x
exists.

Prove that lim
x→0

f(x) = 0.

Proof. Assume that f(x)

x
→ a as x → 0 for some a ∈ R.

Given ε = 1. Then there δ0 > 0 such that 0 < |x| < δ0, it implies that∣∣∣∣f(x)x
− a

∣∣∣∣ < 1.

Let ε > 0. Choose δ = min
{

ε

1 + |a|
, δ0

}
. Then 0 < |x| < δ. We obtain

|f(x)− 0| = |f(x)| =
∣∣∣∣f(x)x

· x
∣∣∣∣

=

∣∣∣∣f(x)x

∣∣∣∣ |x|
=

∣∣∣∣f(x)x
− a+ a

∣∣∣∣ |x|
≤

(∣∣∣∣f(x)x
− a

∣∣∣∣+ |a|
)
|x|

< (1 + |a|) |x|

< (1 + |a|) · ε

1 + |a|
= ε.
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