

Solution Assignment 5 MAC3309 Mathematical Analysis

1. Let $U \subseteq \mathbb{R}$ be a nonempty open set. Assume that *U* has a supremum and infimum. Show that

$$
\sup U \notin U \text{ and } \inf U \notin U.
$$

Proof. Let $U \subseteq \mathbb{R}$ be a nonempty open set. Assume that *U* has a supremum and infimum. Suppose that $s := \sup U \in U$. Since *U* is open, there is $\varepsilon > 0$ such that

$$
(s-\varepsilon,s)\cup(s,s+\varepsilon)\subseteq U.
$$

Then $s < \frac{s + (s + \varepsilon)}{2} < s + \varepsilon$, i.e., $\frac{s + (s + \varepsilon)}{2} \in U$. This is contraction to *s* is an upper bound of *U*. Suppose that $\ell := \inf U \in U$. Since *U* is open, there is $\zeta > 0$ such that

$$
(\ell - \zeta, \ell) \cup (\ell, \ell + \zeta) \subseteq U.
$$

 \Box

 \Box

Then $\ell - \zeta < \frac{(\ell - \zeta) + \ell}{2} < \ell$, i.e., $\frac{(\ell - \zeta) + \ell}{2} \in U$. This is contraction to ℓ is a lower bound of *U*.

2. Prove **Theorem 3.3.11** : Let $A \subseteq \mathbb{R}$. Then \overline{A} is closed.

Proof. Let $x \in (\overline{A})^c = (A \cup A')^c$. Then $x \notin A$ and $x \notin A'$. There is an $\varepsilon > 0$ such that

$$
(x - \varepsilon, x + \varepsilon) \cap A = [(x - \varepsilon, x) \cup (x, x + \varepsilon)] \cap A = \varnothing.
$$

Since $x \notin A$, $(x - \varepsilon, x + \varepsilon) \cap A = [(x - \varepsilon, x) \cup (x, x + \varepsilon)] \cap A$. Use the fact that $A \subseteq \overline{A}$, we obtain

$$
(x - \varepsilon, x + \varepsilon) \cap \overline{A} = \varnothing.
$$

So, $(x - \varepsilon, x + \varepsilon) \subseteq (\overline{A})^c$. Thus, $(\overline{A})^c$ is open. We conclude that \overline{A} is closed.

3. Let *A* and *B* be subsets of R. Prove that

$$
(A \cup B)' = A' \cup B'.
$$

Use the resulte to confirm that $\overline{A \cup B} = \overline{A} \cup \overline{B}$.

Proof. Let *A* and *B* be subsets of R. Let $x \in (A \cup B)'$. Then, for all $\varepsilon > 0$, we obtain

$$
[(x - \varepsilon, x) \cup (x, x + \varepsilon)] \cap (A \cup B) \neq \varnothing
$$

$$
[[(x - \varepsilon, x) \cup (x, x + \varepsilon)] \cap A] \cup [[(x - \varepsilon, x) \cup (x, x + \varepsilon)] \cap B] \neq \varnothing
$$

Then,

$$
[(x - \varepsilon, x) \cup (x, x + \varepsilon)] \cap A \neq \varnothing \text{ or } [(x - \varepsilon, x) \cup (x, x + \varepsilon)] \cap B \neq \varnothing.
$$

So, $x \in A' \cup B' \subseteq \overline{A} \cup \overline{B}$. Thus, $(A \cup B)' \subseteq A' \cup B'$. Let $x \in A' \cup B'$. WLOG, let $x \in A'$. Then, for all $\varepsilon > 0$, we obtain

$$
[(x - \varepsilon, x) \cup (x, x + \varepsilon)] \cap A \neq \varnothing.
$$

Since *A* \subseteq *A* $∪$ *B*,

$$
[(x - \varepsilon, x) \cup (x, x + \varepsilon)] \cap (A \cup B) \neq \varnothing.
$$

So, $x \in (A \cup B)'$. Thus, $A' \cup B' \subseteq (A \cup B)'$. We conclude that $(A \cup B)' = A' \cup B'$. This result will confirm that

$$
\overline{A \cup B} = (A \cup B) \cup (A \cup B)'
$$

= $(A \cup B) \cup (A' \cup B')$
= $(A \cup A') \cup (B \cup B')$
= $\overline{A} \cup \overline{B}$

Thus, $\overline{A \cup B} = \overline{A} \cup \overline{B}$.

4. Prove converse of **Theorem 3.3.13** :

If the limit of every convergent sequence in *F* belongs to $F \subseteq \mathbb{R}$, then *F* is closed.

Proof. We will prove by contrapositive. Assume that *F* is not closed. Then F^c is not open. There is an $x \in F^c$ such that

$$
(x - \delta, x + \delta) \nsubseteq F^c
$$
 for all $\delta > 0$.

It follows that

$$
(x - \delta, x + \delta) \cap F \neq \emptyset
$$
 for all $\delta > 0$.

Choose $\delta = \frac{1}{\sqrt{2}}$ $\frac{1}{n}$ and $x_n \in$ $\sqrt{ }$ *x −* 1 $\frac{1}{n}$, $x + \frac{1}{n}$ *n* \setminus *∩ F* for each *n ∈* N. Then *xⁿ* is a sequence in *F*. It implies that

$$
|x_n - x| < \frac{1}{n}.
$$

We obtain that $x_n \to x$ as $n \to \infty$.

We conclude that there is a convergent sequence in *F* such that the limit is not in *F*.

5. Use definition to prove that lim *x→*1 $x^2 + x + 1 = 3.$

Proof. Let
$$
\varepsilon > 0
$$
. Choose $\delta = \min\left\{1, \frac{\varepsilon}{4}\right\}$. Suppose that $0 < |x - 1| < \delta$. Then $0 < |x - 1| < 1$

$$
|x| - 1 \le |x - 1| < 1
$$

$$
|x| < 2
$$

We obtain

$$
|(x^{2} + x + 1) - 3| = |x^{2} + x - 2|
$$

= |(x + 2)(x - 1)|
= |x + 2||x - 1|
< (|x| + 2)\delta
< (2 + 2)\frac{\varepsilon}{4} = \varepsilon.

Therefore, lim *x→*1 $x^2 + x + 1 = 3.$

 \Box

 \Box

 \Box

6. Use definition to prove that lim *x→−*1 $x^2 - x + 1 = 3.$

Proof. Let $\varepsilon > 0$. Choose $\delta = \min\left\{1, \frac{\varepsilon}{4}\right\}$ 4 }. Suppose that $0 < |x + 1| < \delta$. Then $0 < |x + 1| < 1$ *|x| −* 1 *≤ |x* + 1*| <* 1 $|x| < 2$

We obtain

$$
|(x^{2} - x + 1) - 3| = |x^{2} - x - 2|
$$

= |(x - 2)(x + 1)|
= |x - 2||x + 1|
< (|x| + 2)\delta
< (2 + 2)\frac{\varepsilon}{4} = \varepsilon.

Therefore, lim *x→−*1 $x^2 - x + 1 = 3.$

7. Use definition to prove that lim *x→*0 $x^2 + 1$ $\frac{x+1}{x+1} = 1.$

Proof. Let $\varepsilon > 0$. Choose $\delta = \min\left\{0.5, \frac{\varepsilon}{2}\right\}$ 3 }. Suppose that $0 < |x| < δ$. Then $0 < |x| < 0.5$, $-0.5 < x < 0$ or $0 < x < 0.5$. So, $0.5 < x + 1 < 1$ or $1 < x + 1 < 1.5$.

Thus, $0.5 < |x + 1| < 1.5$. We get $\frac{1}{|x + 1|} < 2$. Then,

$$
\left|\frac{x^2+1}{x+1}-1\right| = \left|\frac{x^2-x}{x+1}\right|
$$

$$
= \left|\frac{x(x-1)}{x+1}\right|
$$

$$
= |x| \cdot |x-1| \cdot \frac{1}{|x+1|}
$$

$$
< \delta \cdot (|x|+1) \cdot 2
$$

$$
< \frac{\varepsilon}{3} \cdot 1.5 \cdot 2 = \varepsilon.
$$

Therefore, lim *x→*0 $x^2 + 1$ $\frac{x+1}{x+1} = 1.$

8. Use definition to prove that lim *x→*0 $x^2 + 1$ $\frac{x-1}{x-1} = -1.$

Proof. Let
$$
\varepsilon > 0
$$
. Choose $\delta = \min \left\{ 0.5, \frac{\varepsilon}{3} \right\}$. Suppose that $0 < |x| < \delta$. Then $0 < |x| < 0.5$,
-0.5 < x < 0 or 0 < x < 0.5. So, -1.5 < x - 1 < -1 or -1 < x - 1 < -0.5.

 \Box

 \Box

Thus, $0.5 < |x - 1| < 1.5$. We get $\frac{1}{|x - 1|} < 2$. Then,

$$
\begin{aligned}\n\frac{x^2+1}{x-1} + 1 &= \left| \frac{x^2+x}{x+1} \right| \\
&= \left| \frac{x(x+1)}{x-1} \right| \\
&= |x| \cdot |x+1| \cdot \frac{1}{|x-1|} \\
&< \delta \cdot (|x|+1) \cdot 1 \\
&< \frac{\varepsilon}{3} \cdot 1.5 \cdot 2 = \varepsilon.\n\end{aligned}
$$

Therefore, lim *x→*0 $x^2 + 1$ $\frac{x-1}{x-1} = -1.$

9. Let $y = f(x)$ be a real value function. Assume that

$$
\lim_{x \to 1} \frac{f(x)}{x - 1}
$$
 exists.

Prove that lim *x→*1 $f(x) = 0.$

Proof. Assume that $\frac{f(x)}{f(x)}$ $\frac{f(x)}{x-1} \to a$ as $x \to 1$ for some $a \in \mathbb{R}$. Given $\varepsilon = 1$. Then there $\delta_0 > 0$ such that $0 < |x - 1| < \delta_0$, implies that

$$
\left|\frac{f(x)}{x-1} - a\right| < 1.
$$

Let $\varepsilon > 0$. Choose $\delta = \min\left\{\frac{\varepsilon}{1+\varepsilon}\right\}$ $\frac{\varepsilon}{1+|a|}, \delta_0$. Then $0 < |x-1| < \delta$. We obtain

$$
|f(x) - 0| = |f(x)| = \left| \frac{f(x)}{x - 1} \cdot (x - 1) \right|
$$

$$
= \left| \frac{f(x)}{x - 1} \right| |x - 1|
$$

$$
= \left| \frac{f(x)}{x - 1} - a + a \right| |x - 1|
$$

$$
\leq \left(\left| \frac{f(x)}{x - 1} - a \right| + |a| \right) |x - 1|
$$

$$
< (1 + |a|) |x - 1|
$$

$$
< (1 + |a|) \cdot \frac{\varepsilon}{1 + |a|} = \varepsilon.
$$

 \Box

10. Let $y = f(x)$ be a real value function. Assume that

$$
\lim_{x \to 0} \frac{f(x)}{x}
$$
 exists.

Prove that lim *x→*0 $f(x) = 0.$

Proof. Assume that $\frac{f(x)}{x} \to a$ as $x \to 0$ for some $a \in \mathbb{R}$. Given $\varepsilon = 1$. Then there $\delta_0 > 0$ such that $0 < |x| < \delta_0$, it implies that

$$
\left|\frac{f(x)}{x} - a\right| < 1.
$$

Let $\varepsilon > 0$. Choose $\delta = \min \left\{ \frac{\varepsilon}{1 - \varepsilon} \right\}$ $\frac{1}{1+|a|}, \delta_0$ λ . Then $0 < |x| < \delta$. We obtain

$$
|f(x) - 0| = |f(x)| = \left| \frac{f(x)}{x} \cdot x \right|
$$

$$
= \left| \frac{f(x)}{x} \right| |x|
$$

$$
= \left| \frac{f(x)}{x} - a + a \right| |x|
$$

$$
\leq \left(\left| \frac{f(x)}{x} - a \right| + |a| \right) |x|
$$

$$
< (1 + |a|) |x|
$$

$$
< (1 + |a|) \cdot \frac{\varepsilon}{1 + |a|} = \varepsilon.
$$

