

Assignment 6 MAC3309 Mathematical Analysis

Topic	Limit Theorems of functions, One-sided Limits and Infinite Limits	Score	10 marks
Time	6th Week		
Teacher	Assistant Professor Thanatyod Jampawai, Ph.D.		
	Division of Mathematics, Faculty of Education, Suan Sunandha Rajabl	hat Unive	ersity

1. Let

$$f(x) = \begin{cases} 2x+1 & \text{if } x > 1\\ x+2 & \text{if } x \le 1 \end{cases}.$$

Use definition to prove that $\lim_{x \to 1} f(x)$ exists.

2. Use definition to prove that

$$\lim_{x \to \infty} \frac{x}{x-1} = 1$$

3. Use definition to prove that

$$\lim_{x \to -\infty} \frac{x}{x-1} = 1.$$

4. Use definition to prove that

$$\lim_{x \to 1^+} \frac{1}{x - 1} = +\infty.$$

5. Use definition to prove that

$$\lim_{x \to 1^{-}} \frac{1}{1-x} = +\infty.$$

6. Use definition to prove that

$$\lim_{x \to 2^+} \frac{1}{2 - x} = -\infty.$$

7. Use definition to prove that

$$\lim_{x \to 2^{-}} \frac{1}{x - 2} = -\infty.$$

8. Let f and g be real functions defined everywhere on I except possibly at a such that

$$f(x) \le g(x)$$
 for all $x \in I - \{a\}$.

Prove that if $f(x) \to \infty$ as $x \to a$, then $g(x) \to \infty$ as $x \to a$.