Math SSRU

Solution Assignment 6 MAC3309 Mathematical Analysis

Topic Limit Theorems of functions, One-sided Limits and Infinite Limits Score 10 marks
Time 6th Week
Teacher Assistant Professor Thanatyod Jampawai, Ph.D.
Division of Mathematics, Faculty of Education, Suan Sunandha Rajabhat University

1. Let $f(x) = \begin{cases} 2x+1 & \text{if } x > 1\\ x+2 & \text{if } x \le 1 \end{cases}$. Use definition to prove that $\lim_{x \to 1} f(x)$ exists.

Proof. Let $\varepsilon > 0$. Choose $\delta = \min\left\{\frac{\varepsilon}{2}, \varepsilon\right\}$. Let $x \in \mathbb{R}$ such that $0 < |x - 1| < \delta$. **Case** $0 < x - 1 < \delta$. Then x > 1. We obtain

$$|f(x) - 3| = |2x + 1 - 3| = |2x - 2| = 2|x - 1| < 2\delta < \varepsilon.$$

Case $-\delta < x - 1 < 0$. Then x < 1. We obtain

$$|f(x) - 3| = |x + 2 - 3| = |x - 1| < \delta < \varepsilon.$$

We conclude that $\lim_{x \to 1} f(x) = 3$.

2. Use definition to prove that $\lim_{x \to \infty} \frac{x}{x-1} = 1$

Proof. Let $\varepsilon > 0$. Choose $M = 1 + \frac{1}{\varepsilon}$. Then $M - 1 = \frac{1}{\varepsilon} > 0$ i.e., M > 1. Let $x \in \mathbb{R}$ such that x > M > 1. It follows that x - 1 > M - 1 > 0. So, $\frac{1}{x - 1} < \frac{1}{M - 1}$. We obtain

$$\left|\frac{x}{x-1} - 1\right| = \left|\frac{1}{x-1}\right| = \frac{1}{x-1} < \frac{1}{M-1} = \varepsilon$$

Thus, $\lim_{x \to \infty} \frac{x}{x-1} = 1.$

3. Use definition to prove that $\lim_{x \to -\infty} \frac{x}{x-1} = 1$

Proof. Let $\varepsilon > 0$. Choose $M = -\frac{1}{\varepsilon}$. Then M < 0. It's clear that 0 < -M < -M + 1. So, $\frac{1}{1-M} < \frac{1}{-M}$.

Let $x \in \mathbb{R}$ such that x < M. It follows that -x > -M > 0, i.e., 1 - x > 1 - M > 1 So, $\frac{1}{1 - x} < \frac{1}{1 - M}$. We obtain

$$\left|\frac{x}{x-1} - 1\right| = \left|\frac{1}{x-1}\right| = \frac{1}{1-x} < \frac{1}{1-M} < \frac{1}{-M} = \varepsilon$$

Thus, $\lim_{x \to -\infty} \frac{x}{x-1} = 1.$

4. Use definition to prove that $\lim_{x \to 1^+} \frac{1}{x-1} = +\infty$

Proof. Let M > 0. Choose $\delta = \frac{1}{M}$. Then $\delta > 0$. Let $x \in \mathbb{R}$ such that $0 < x - 1 < \delta$. It follows that

$$\frac{1}{x-1} > \frac{1}{\delta} = M$$

Thus, $\lim_{x \to 1^+} \frac{1}{x-1} = +\infty$.

5. Use definition to prove that

$$\lim_{x \to 1^{-}} \frac{1}{1-x} = +\infty.$$

Proof. Let M > 0. Choose $\delta = \frac{1}{M}$. Then $\delta > 0$. Let $x \in \mathbb{R}$ such that $-\delta < x - 1 < 0$. Then $0 < 1 - x < \delta$. It follows that

$$\frac{1}{1-x} > \frac{1}{\delta} = M$$

Thus, $\lim_{x \to 1^{-}} \frac{1}{1-x} = +\infty.$

6. Use definition to prove that $\lim_{x \to 2^+} \frac{1}{2-x} = -\infty$

Proof. Let M < 0. Choose $\delta = -\frac{1}{M}$. Then $\delta > 0$. Let $x \in \mathbb{R}$ such that $0 < x - 2 < \delta$. So, $-\delta < 2 - x < 0$. We obtain

$$\frac{1}{2-x} < -\frac{1}{\delta} = M$$

Thus, $\lim_{x \to 2^+} \frac{1}{2-x} = -\infty.$

7. Use definition to prove that

$$\lim_{x \to 2^{-}} \frac{1}{x - 2} = -\infty.$$

Proof. Let M < 0. Choose $\delta = -\frac{1}{M}$. Then $\delta > 0$. Let $x \in \mathbb{R}$ such that $-\delta < x - 2 < 0$. We obtain

$$\frac{1}{x-2} < -\frac{1}{\delta} = M$$

Thus, $\lim_{x \to 2^{-}} \frac{1}{x-2} = -\infty.$

8. Let f and g be real functions defined everywhere on I except possibly at a such that

$$f(x) \le g(x)$$
 for all $x \in I - \{a\}$.

Prove that if $f(x) \to \infty$ as $x \to a$, then $g(x) \to \infty$ as $x \to a$.

Proof. Assume that $f(x) \leq g(x)$ for all $x \in I - \{a\}$ and $f(x) \to \infty$ as $x \to a$. Let M > 0. There is a $\delta_0 > 0$ such that

for all $x \in \mathbb{R}$ satisfying $0 < |x - a| < \delta_0$, implies that f(x) > M.

Since $f(x) \leq g(x)$ for $x \in \mathbb{R}$ satisfying $0 < |x - a| < \delta_0$,

$$g(x) \ge f(x) > M$$

Therefore, $g(x) \to \infty$ as $x \to a$.