

Assignment 7 MAC3309 Mathematical Analysis

Topic Continuity & Uniform continuity Score 10 marks

Time 9th Week

Teacher Assistant Professor Thanatyod Jampawai, Ph.D.

Division of Mathematics, Faculty of Education, Suan Sunandha Rajabhat University

- 1. Use definition to prove that $f(x) = \frac{1}{x}$ is continuous at x = 1.
- 2. Prove that if f is continuous at a, then

$$\lim_{h \to 0} f(a+h) = f(a).$$

3. Prove that if $\lim_{h\to 0} f(a+h) = f(a)$, then

f is continuous at a.

4. Let E be a nonempty subset of \mathbb{R} and $a \in E$. Suppose that $f: E \to \mathbb{R}$ is continuous at $a \in E$. Prove that

If x_n converges to a and $x_n \in E$, then $f(x_n) \to f(a)$ as $n \to \infty$.

- 5. Let $f(x) = x^2$. Prove that f is continuous on \mathbb{R} .
- 6. Use IVT to prove that $\ln x = 3 2x$ has at least one real root by using caculator to find an interval [a,b] of length 0.01 (the length of [a,b] means b-a) that contain a root.
- 7. Show that

$$f(x) = x^2 - x$$

is uniformly continuous on (0,1).

8. Show that

$$f(x) = \frac{1}{1+x^2}$$

is uniformly continuous on \mathbb{R} .

(Hint: Use the fact that $(|x|-1)^2 \ge 0$ for all $x \in \mathbb{R}$)

9. Let $f: I \to \mathbb{R}$ where I is open. Assume that f is continuous at a point $x_0 \in I$ and $f(x_0) > 0$. Prove that there are positive numbers ε and δ such that

$$|x - x_0| < \delta$$
 implies $f(x) > \varepsilon$.

10. Let f and g be real functions. If f is differentiable at a and g is differentiable at f(a), then $g \circ f$ is differentiable at a with

$$(g \circ f)'(a) = g'(f(a))f'(a).$$