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1. Use definition to prove that f(x) =
1

x
is continuous at x = 1.

2. Prove that if f is continuous at a, then

lim
h→0

f(a+ h) = f(a).

3. Prove that if lim
h→0

f(a+ h) = f(a), then

f is continuous at a.

4. Let E be a nonempty subset of R and a ∈ E. Suppose that f : E → R is continuous at a ∈ E.
Prove that

If xn converges to a and xn ∈ E, then f(xn) → f(a) as n → ∞.

5. Let f(x) = x2. Prove that f is continuous on R.

6. Use IVT to prove that lnx = 3 − 2x has at least one real root by using caculator to find an interval
[a, b] of length 0.01 (the length of [a, b] means b− a) that contain a root.

7. Show that
f(x) = x2 − x

is uniformly continuous on (0, 1).

8. Show that
f(x) =

1

1 + x2

is uniformly continuous on R.
(Hint: Use the fact that (|x| − 1)2 ≥ 0 for all x ∈ R)

9. Let f : I → R where I is open. Assume that f is continuous at a point x0 ∈ I and f(x0) > 0.
Prove that there are positive numbers ε and δ such that

|x− x0| < δ implies f(x) > ε.

10. Let f and g be real functions. If f is differentiable at a and g is differentiable at f(a), then g ◦ f is
differentiable at a with

(g ◦ f)′(a) = g′(f(a))f ′(a).
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