

Solution Assignment 7 MAC3309 Mathematical Analysis

TopicContinuity & Uniform continuityScore10 marksTime9th WeekTeacherAssistant Professor Thanatyod Jampawai, Ph.D.
Division of Mathematics, Faculty of Education, Suan Sunandha Rajabhat University

1. Use definition to prove that $f(x) = \frac{1}{x}$ is continuous at x = 1.

Proof. Let $\varepsilon > 0$. Choose $\delta = \min\{0.5, \frac{\varepsilon}{2}\}$ such that $|x - 1| < \delta$. Then |x - 1| < 0.5. So,

-0.5 < x - 1 < 0.5 or 0.5 < |x| < 1.5.

Thus, $\frac{1}{|x|} < 2$. We obtain

$$\begin{aligned} |f(x) - f(1)| &= \left|\frac{1}{x} - 1\right| = \left|\frac{1 - x}{x}\right| \\ &= \frac{1}{|x|} \cdot |x - 1| < 2\delta < 2 \cdot \frac{\varepsilon}{2} = \varepsilon. \end{aligned}$$

Therefore, f is continuous at x = 1.

2. Prove that if f is continuous at a, then

$$\lim_{h \to 0} f(a+h) = f(a).$$

Proof. Assume that f is continuous at a. Let $\varepsilon > 0$. There is a $\delta > 0$ such that

 $|x-a| < \delta$ imples $|f(x) - f(a)| < \varepsilon$ (*)

Let $h \in \mathbb{R}$ such that $0 < |h| < \delta$. Choose x = a + h. Then $0 < |x - a| = |h| < \delta$ satisfying (*). So,

$$|f(a+h) - f(a)| < \varepsilon.$$

Hence, $f(a+h) \to f(a)$ as $h \to 0$.

3. Prove that if $\lim_{h \to 0} f(a+h) = f(a)$, then

f is continuous at a.

Proof. Assume that $\lim_{h \to 0} f(a+h) = f(a)$. Let $\varepsilon > 0$. There is a $\delta > 0$ such that

$$0 < |h| < \delta$$
 imples $|f(a+h) - f(a)| < \varepsilon$ (**)

Let $x \in \mathbb{R}$ such that $|x-a| < \delta$. Case $x \neq a$. Choose h = x - a. Then $0 < |h| = |x-a| < \delta$. By (**), $|f(a + (x - a)) - f(a)| < \varepsilon$, i.e., $|f(x) - f(a)| < \varepsilon$.

$$|f(x) - f(a)| = |f(a+h) - f(a)| < \varepsilon$$

Case x = a. It's clear that $|f(x) - f(a)| = 0 < \varepsilon$. Therefore, f is continuous at a.

4. Let E be a nonempty subset of \mathbb{R} and $a \in E$. Suppose that $f : E \to \mathbb{R}$ is continuous at $a \in E$. Prove that

If
$$x_n$$
 converges to a and $x_n \in E$, then $f(x_n) \to f(a)$ as $n \to \infty$

Proof. Assume that f is continuous at $a \in E$ and x_n converges to a and $x_n \in E$. Let $\varepsilon > 0$. There is an $\delta > 0$ such that

$$|x-a| < \delta$$
 implies that $|f(x) - f(a)| < \varepsilon$ (*)

From x_n converges to a, there is an $N \in \mathbb{N}$ such that

 $n \ge N$ implies that $|x_n - a| < \delta$ (**)

Let $n \in \mathbb{N}$ such that $n \geq N$. Then n satisfies (**) , i.e., $|x_n - a| < \delta$. So, x_n satisfies (*). Thus,

$$|f(x) - f(a)| < \varepsilon.$$

Therefore, $f(x_n) \to f(a)$ as $n \to \infty$.

5. Let $f(x) = x^2$. Prove that f is continuous on \mathbb{R} .

Proof. Let $a \in \mathbb{R}$ and $\varepsilon > 0$. Choose $\delta = \min\{1, \frac{\varepsilon}{1+2|a|}\}$ such that $|x - a| < \delta$. Then |x - a| < 1. So, |x| - |a| < |x - a| < 1 or |x| < 1 + |a|. We obtain

ve obtain

$$\begin{split} |f(x) - f(a)| &= |x^2 - a^2| = |(x - a)(x + a)| = |x - a||x + a| \\ &< \delta(|x| + |a|) < \delta(1 + 2|a|) \\ &< \frac{\varepsilon}{1 + 2|a|} \cdot (1 + 2|a|) = \varepsilon. \end{split}$$

Therefore, f is continuous on \mathbb{R} .

6. Use IVT to prove that $\ln x = 3 - 2x$ has at least one real root by using caculator to find an interval [a, b] of length 0.01 (the length of [a, b] means b - a) that contain a root.

Solution. Let $f(x) = \ln x + 2x - 3$. Consider each values of f(x) by calculator

	x	$\int f(x)$	Interval	Length of Interval
	2	1.6931		
	1	-1	[1,2]	1
-	1.4	0.1365		
	1.3	-0.1376	[1.3, 1.4]	0.1
	1.35	0.00010		
	1.34	-0.02733	[1.34, 1.35]	0.01

Since f is continuous on (1.34, 1.35), we obtain that there is an $c \in (1.34, 1.35)$ such that

$$\ln c + 2c - 3 = f(c) = 0$$

Thus, there exists a real number c such that $\ln c = 3 - 2c$.

We may approximate the root by choosing midpoint c = 1.345 of (1.34, 1.35). It follows that f(c) = -0.0136 which has error 0.01.

7. Show that

$$f(x) = x^2 - x$$

is uniformly continuous on (0, 1).

Proof. Let $\varepsilon > 0$. Choose $\delta = \frac{\varepsilon}{3}$ Supose $x, a \in (0, 1)$ and $|x - a| < \delta$. Then |x + a| < 2. We obtain

$$\begin{split} |f(x) - f(a)| &= |(x^2 - x) - (a^2 - a)| \\ &= |(x^2 - a^2) - (x - a)| \\ &= |(x - a)(x + a) - (x - a)| \\ &= |(x - a)(x + a - 1)| \\ &= |x - a||x + a - 1| \\ &< \delta(|x + a| + 1) \\ &< \delta \cdot 3 \\ &< \varepsilon \end{split}$$

8. Show that

$$f(x) = \frac{1}{1+x^2}$$

is uniformly continuous on \mathbb{R} . (Hint: Use the fact that $(|x|-1)^2 \ge 0$ for all $x \in \mathbb{R}$)

Proof. Let $\varepsilon > 0$. Choose $\delta = \varepsilon$ Supose $x, a \in \mathbb{R}$ and $|x - a| < \delta$. We obtain

$$\begin{split} |f(x) - f(a)| &= \left| \frac{1}{1+x^2} - \frac{1}{1+a^2} \right| \\ &= \left| \frac{a^2 - x^2}{(1+x^2)(1+a^2)} \right| \\ &= \left| \frac{(x-a)(x+a)}{(1+x^2)(1+a^2)} \right| \\ &\leq |x-a| \cdot \frac{|x|+|a|}{(1+x^2)(1+a^2)} \\ &= |x-a| \left(\frac{|x|}{(1+x^2)(1+a^2)} + \frac{|a|}{(1+x^2)(1+a^2)} \right) \\ &\leq |x-a| \left(\frac{1}{2(1+a^2)} + \frac{1}{2(1+x^2)} \right) \\ &\leq |x-a| \left(\frac{1}{2(1+a^2)} + \frac{1}{2(1+x^2)} \right) \\ &\leq |x-a| \left(\frac{1}{2} + \frac{1}{2} \right) \\ &= |x-a| \\ &< \delta = \varepsilon \end{split}$$

9. Let $f: I \to \mathbb{R}$ where I is open. Assume that f is continuous at a point $x_0 \in I$ and $f(x_0) > 0$. Prove that there are positive numbers ε and δ such that

$$|x - x_0| < \delta$$
 implies $f(x) > \varepsilon$.

Proof. Assume that f is continuous at a point $x_0 \in I$ and $f(x_0) > 0$. Given $\varepsilon = \frac{f(x_0)}{2}$. There is a $\delta > 0$ such that

$$|x - x_0| < \delta$$
 and $x \in I$ imply $|f(x) - f(x_0)| < \frac{f(x_0)}{2}$.

It follows that

$$\begin{array}{rcl} -\frac{f(x_0)}{2} &< f(x) - f(x_0) &< \frac{f(x_0)}{2} \\ \frac{f(x_0)}{2} &< f(x) &< \frac{3f(x_0)}{2} \end{array}$$

Thus, $f(x) > \frac{f(x_0)}{2} = \varepsilon$.

10. Let f and g be real functions. If f is differentiable at a and g is differentiable at f(a), then $g \circ f$ is differentiable at a with

$$(g \circ f)'(a) = g'(f(a))f'(a).$$

Proof. Assume that f is differentiable at a and g is differentiable at f(a). Then f'(a) and g'(f(a)) exist. We consider

$$f(x) = \frac{f(x) - f(a)}{x - a} \cdot (x - a) + f(a), \qquad x \neq a$$

$$g(y) = \frac{g(y) - g(f(a))}{y - f(a)} \cdot (y - f(a)) + g(f(a)), \qquad y \neq f(a)$$
(0.1)

Since f is continuous at a, substitue y = f(x) in (0.1) to write

$$g(f(x)) = \frac{g(f(x)) - g(f(a))}{f(x) - f(a)} \cdot (f(x) - f(a)) + g(f(a))$$
$$g(f(x)) = \frac{g(f(x)) - g(f(a))}{f(x) - f(a)} \cdot \frac{f(x) - f(a)}{x - a} \cdot (x - a) + g(f(a))$$
$$\frac{g(f(x)) - g(f(a))}{x - a} = \frac{g(f(x)) - g(f(a))}{f(x) - f(a)} \cdot \frac{f(x) - f(a)}{x - a}$$
$$\lim_{x \to a} \frac{g(f(x)) - g(f(a))}{x - a} = \lim_{x \to a} \frac{g(f(x)) - g(f(a))}{f(x) - f(a)} \cdot \frac{f(x) - f(a)}{x - a}$$
$$(g \circ f)'(a) = g'(f(a)) \cdot f'(a)$$

 _	