

Solution Assignment 7 MAC3309 Mathematical Analysis

Topic Continuity & Uniform continuity **Score** 10 marks **Time** 9*th* Week **Teacher** Assistant Professor Thanatyod Jampawai, Ph.D. Division of Mathematics, Faculty of Education, Suan Sunandha Rajabhat University

1. Use definition to prove that $f(x) = \frac{1}{x}$ is continuous at $x = 1$.

Proof. Let $\varepsilon > 0$. Choose $\delta = \min\{0.5, \frac{\varepsilon}{2}\}$ $\frac{ε}{2}$ } such that $|x - 1| < δ$. Then $|x - 1| < 0.5$. So,

*−*0*.*5 *< x −* 1 *<* 0*.*5 or 0*.*5 *< |x| <* 1*.*5.

Thus, $\frac{1}{1}$ $\frac{1}{|x|}$ < 2. We obtain

$$
|f(x) - f(1)| = \left| \frac{1}{x} - 1 \right| = \left| \frac{1 - x}{x} \right|
$$

= $\frac{1}{|x|} \cdot |x - 1| < 2\delta < 2 \cdot \frac{\varepsilon}{2} = \varepsilon$.

Therefore, f is continuous at $x = 1$.

2. Prove that if *f* is continuous at *a*, then

$$
\lim_{h \to 0} f(a+h) = f(a).
$$

Proof. Assume that *f* is continuous at *a*. Let $\varepsilon > 0$. There is a $\delta > 0$ such that

|<i>x − *a|* < *δ* imples $|f(x) - f(a)| < \varepsilon$ (*)

Let $h \in \mathbb{R}$ such that $0 < |h| < \delta$. Choose $x = a + h$. Then $0 < |x - a| = |h| < \delta$ satisfying (*). So,

$$
|f(a+h) - f(a)| < \varepsilon.
$$

Hence, $f(a+h) \rightarrow f(a)$ as $h \rightarrow 0$.

3. Prove that if lim *h→*0 $f(a+h) = f(a)$, then

f is continuous at *a*.

Proof. Assume that lim *h→*0 $f(a+h) = f(a)$. Let $\varepsilon > 0$. There is a $\delta > 0$ such that

$$
0 < |h| < \delta \quad \text{imples} \quad |f(a+h) - f(a)| < \varepsilon \qquad (**)
$$

 \Box

Let $x \in \mathbb{R}$ such that $|x - a| < \delta$. Case $x \neq a$. Choose $h = x - a$. Then $0 < |h| = |x - a| < \delta$. By $(**)$, $|f(a + (x - a)) - f(a)| < \varepsilon$, i.e., $|f(x) - f(a)| < \varepsilon$.

$$
|f(x) - f(a)| = |f(a+h) - f(a)| < \varepsilon
$$

Case $x = a$. It's clear that $|f(x) - f(a)| = 0 < \varepsilon$. Therefore, f is continuous at *a*.

4. Let *E* be a nonempty subset of \mathbb{R} and $a \in E$. Suppose that $f : E \to \mathbb{R}$ is continuous at $a \in E$. Prove that

If
$$
x_n
$$
 converges to a and $x_n \in E$, then $f(x_n) \to f(a)$ as $n \to \infty$.

Proof. Assume that *f* is continuous at $a \in E$ and x_n converges to *a* and $x_n \in E$. Let $\varepsilon > 0$. There is an $\delta > 0$ such that

$$
|x - a| < \delta \text{ implies that } |f(x) - f(a)| < \varepsilon. \qquad \dots \ (*)
$$

From x_n converges to a , there is an $N \in \mathbb{N}$ such that

 $n \geq N$ implies that $|x_n - a| < \delta$ (**)

Let $n \in \mathbb{N}$ such that $n \geq N$. Then *n* satisfies (**) ,i.e., $|x_n - a| < \delta$. So, x_n satisfies (*). Thus,

$$
|f(x) - f(a)| < \varepsilon.
$$

Therefore, $f(x_n) \to f(a)$ as $n \to \infty$.

5. Let $f(x) = x^2$. Prove that f is continuous on R.

Proof. Let $a \in \mathbb{R}$ and $\varepsilon > 0$. Choose $\delta = \min\{1, \frac{\varepsilon}{1+2}\}$ $\frac{\varepsilon}{1+2|a|}$ such that $|x-a| < \delta$. Then $|x-a| < 1$. So, $|x| - |a| < |x - a| < 1$ or $|x| < 1 + |a|$. We obtain

$$
|f(x) - f(a)| = |x^2 - a^2| = |(x - a)(x + a)| = |x - a||x + a|
$$

< $\langle \delta(|x| + |a|) \langle \delta(1 + 2|a|)$
< $\frac{\varepsilon}{1 + 2|a|} \cdot (1 + 2|a|) = \varepsilon.$

Therefore, *f* is continuous on R.

6. Use IVT to prove that ln *x* = 3 *−* 2*x* has **at least one real root** by using caculator to **find an interval** $[a, b]$ **of length 0.01** (the length of $[a, b]$ means $b - a$) that contain a root.

Solution. Let $f(x) = \ln x + 2x - 3$. Consider each values of $f(x)$ by calculator

Since f is continuous on $(1.34, 1.35)$, we obtain that there is an $c \in (1.34, 1.35)$ such that

$$
\ln c + 2c - 3 = f(c) = 0.
$$

Thus, there exists a real number *c* such that $\ln c = 3 - 2c$. We may approximate the root by choosing midpoint $c = 1.345$ of (1.34, 1.35). It follows that $f(c) = -0.0136$ which has error 0.01.

 \Box

 \Box

7. Show that

$$
f(x) = x^2 - x
$$

is uniformly continuous on (0*,* 1).

Proof. Let $\varepsilon > 0$. Choose $\delta = \frac{\varepsilon}{3}$ Supose $x, a \in (0, 1)$ and $|x - a| < \delta$. Then $|x + a| < 2$. We obtain

$$
|f(x) - f(a)| = |(x^{2} - x) - (a^{2} - a)|
$$

= |(x^{2} - a^{2}) - (x - a)|
= |(x - a)(x + a) - (x - a)|
= |(x - a)(x + a - 1)|
= |x - a||x + a - 1|
< \delta(|x + a| + 1)
< \delta \cdot 3
< \varepsilon

8. Show that

$$
f(x) = \frac{1}{1+x^2}
$$

is uniformly continuous on \mathbb{R} . (Hint: Use the fact that $(|x| - 1)^2 \ge 0$ for all $x \in \mathbb{R}$)

Proof. Let $\varepsilon > 0$. Choose $\delta = \varepsilon$ Supose $x, a \in \mathbb{R}$ and $|x - a| < \delta$. We obtain

$$
|f(x) - f(a)| = \left| \frac{1}{1 + x^2} - \frac{1}{1 + a^2} \right|
$$

\n
$$
= \left| \frac{a^2 - x^2}{(1 + x^2)(1 + a^2)} \right|
$$

\n
$$
= \left| \frac{(x - a)(x + a)}{(1 + x^2)(1 + a^2)} \right|
$$

\n
$$
\leq |x - a| \cdot \frac{|x| + |a|}{(1 + x^2)(1 + a^2)}
$$

\n
$$
= |x - a| \left(\frac{|x|}{(1 + x^2)(1 + a^2)} + \frac{|a|}{(1 + x^2)(1 + a^2)} \right)
$$

\n
$$
\leq |x - a| \left(\frac{1}{2(1 + a^2)} + \frac{1}{2(1 + x^2)} \right)
$$

\n
$$
\leq |x - a| \left(\frac{1}{2} + \frac{1}{2} \right)
$$

\n
$$
= |x - a|
$$

\n
$$
< \delta = \varepsilon
$$

 \Box

9. Let $f: I \to \mathbb{R}$ where *I* is open. Assume that *f* is continuous at a point $x_0 \in I$ and $f(x_0) > 0$. Prove that there are positive numbers ε and δ such that

$$
|x - x_0| < \delta \quad \text{ implies } \quad f(x) > \varepsilon.
$$

Proof. Assume that *f* is continuous at a point $x_0 \in I$ and $f(x_0) > 0$. Given $\varepsilon = \frac{f(x_0)}{2}$ $\frac{x_{0}}{2}$. There is a $\delta > 0$ such that

$$
|x - x_0| < \delta
$$
 and $x \in I$ imply $|f(x) - f(x_0)| < \frac{f(x_0)}{2}$.

It follows that

$$
-\frac{f(x_0)}{2} < f(x) - f(x_0) < \frac{f(x_0)}{2} \\
\frac{f(x_0)}{2} < f(x) < \frac{3f(x_0)}{2}
$$

Thus, $f(x) > \frac{f(x_0)}{2}$ $\frac{1}{2}$ = ε .

10. Let *f* and *g* be real functions. If *f* is differentiable at *a* and *g* is differentiable at $f(a)$, then $g \circ f$ is differentiable at *a* with

$$
(g \circ f)'(a) = g'(f(a))f'(a).
$$

Proof. Assume that *f* is differentiable at *a* and *g* is differentiable at *f*(*a*). Then $f'(a)$ and $g'(f(a))$ exist. We consider

$$
f(x) = \frac{f(x) - f(a)}{x - a} \cdot (x - a) + f(a), \qquad x \neq a
$$

$$
g(y) = \frac{g(y) - g(f(a))}{y - f(a)} \cdot (y - f(a)) + g(f(a)), \qquad y \neq f(a)
$$
 (0.1)

Since *f* is continuous at *a*, substitue $y = f(x)$ in (0.1) to write

$$
g(f(x)) = \frac{g(f(x)) - g(f(a))}{f(x) - f(a)} \cdot (f(x) - f(a)) + g(f(a))
$$

$$
g(f(x)) = \frac{g(f(x)) - g(f(a))}{f(x) - f(a)} \cdot \frac{f(x) - f(a)}{x - a} \cdot (x - a) + g(f(a))
$$

$$
\frac{g(f(x)) - g(f(a))}{x - a} = \frac{g(f(x)) - g(f(a))}{f(x) - f(a)} \cdot \frac{f(x) - f(a)}{x - a}
$$

$$
\lim_{x \to a} \frac{g(f(x)) - g(f(a))}{x - a} = \lim_{x \to a} \frac{g(f(x)) - g(f(a))}{f(x) - f(a)} \cdot \frac{f(x) - f(a)}{x - a}
$$

$$
(g \circ f)'(a) = g'(f(a)) \cdot f'(a)
$$

