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1. Use definition to prove that f(x) =
1

x
is continuous at x = 1.

Proof. Let ε > 0. Choose δ = min{0.5, ε2} such that |x− 1| < δ. Then |x− 1| < 0.5. So,

−0.5 < x− 1 < 0.5 or 0.5 < |x| < 1.5.

Thus, 1

|x|
< 2. We obtain

|f(x)− f(1)| =
∣∣∣∣1x − 1

∣∣∣∣ = ∣∣∣∣1− x

x

∣∣∣∣
=

1

|x|
· |x− 1| < 2δ < 2 · ε

2
= ε.

Therefore, f is continuous at x = 1.

2. Prove that if f is continuous at a, then

lim
h→0

f(a+ h) = f(a).

Proof. Assume that f is continuous at a. Let ε > 0. There is a δ > 0 such that

|x− a| < δ imples |f(x)− f(a)| < ε (∗)

Let h ∈ R such that 0 < |h| < δ. Choose x = a+ h. Then 0 < |x− a| = |h| < δ satisfying (∗). So,

|f(a+ h)− f(a)| < ε.

Hence, f(a+ h) → f(a) as h → 0.

3. Prove that if lim
h→0

f(a+ h) = f(a), then

f is continuous at a.

Proof. Assume that lim
h→0

f(a+ h) = f(a). Let ε > 0. There is a δ > 0 such that

0 < |h| < δ imples |f(a+ h)− f(a)| < ε (∗∗)

1



Let x ∈ R such that |x− a| < δ.
Case x ̸= a. Choose h = x− a. Then 0 < |h| = |x− a| < δ. By (∗∗), |f(a+ (x− a))− f(a)| < ε, i.e.,

|f(x)− f(a)| < ε.

|f(x)− f(a)| = |f(a+ h)− f(a)| < ε

Case x = a. It’s clear that |f(x)− f(a)| = 0 < ε.
Therefore, f is continuous at a.

4. Let E be a nonempty subset of R and a ∈ E. Suppose that f : E → R is continuous at a ∈ E.
Prove that

If xn converges to a and xn ∈ E, then f(xn) → f(a) as n → ∞.

Proof. Assume that f is continuous at a ∈ E and xn converges to a and xn ∈ E.
Let ε > 0. There is an δ > 0 such that

|x− a| < δ implies that |f(x)− f(a)| < ε. ... (∗)

From xn converges to a, there is an N ∈ N such that

n ≥ N implies that |xn − a| < δ. ... (∗∗)

Let n ∈ N such that n ≥ N . Then n satisfies (∗∗) ,i.e., |xn − a| < δ. So, xn satisfies (∗). Thus,

|f(x)− f(a)| < ε.

Therefore, f(xn) → f(a) as n → ∞.

5. Let f(x) = x2. Prove that f is continuous on R.

Proof. Let a ∈ R and ε > 0. Choose δ = min{1, ε
1+2|a|} such that |x − a| < δ. Then |x − a| < 1. So,

|x| − |a| < |x− a| < 1 or |x| < 1 + |a|.
We obtain

|f(x)− f(a)| = |x2 − a2| = |(x− a)(x+ a)| = |x− a||x+ a|
< δ(|x|+ |a|) < δ(1 + 2|a|)

<
ε

1 + 2|a|
· (1 + 2|a|) = ε.

Therefore, f is continuous on R.

6. Use IVT to prove that lnx = 3 − 2x has at least one real root by using caculator to find an interval
[a, b] of length 0.01 (the length of [a, b] means b− a) that contain a root.
Solution. Let f(x) = lnx+ 2x− 3. Consider each values of f(x) by calculator

x f(x) Interval Length of Interval
2 1.6931
1 −1 [1, 2] 1

1.4 0.1365
1.3 −0.1376 [1.3, 1.4] 0.1

1.35 0.00010
1.34 −0.02733 [1.34, 1.35] 0.01

Since f is continuous on (1.34, 1.35), we obtain that there is an c ∈ (1.34, 1.35) such that

ln c+ 2c− 3 = f(c) = 0.

Thus, there exists a real number c such that ln c = 3− 2c.
We may approximate the root by choosing midpoint c = 1.345 of (1.34, 1.35). It follows that f(c) = −0.0136
which has error 0.01.
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7. Show that
f(x) = x2 − x

is uniformly continuous on (0, 1).

Proof. Let ε > 0. Choose δ = ε
3

Supose x, a ∈ (0, 1) and |x− a| < δ. Then |x+ a| < 2. We obtain

|f(x)− f(a)| = |(x2 − x)− (a2 − a)|
= |(x2 − a2)− (x− a)|
= |(x− a)(x+ a)− (x− a)|
= |(x− a)(x+ a− 1)|
= |x− a||x+ a− 1|
< δ(|x+ a|+ 1)

< δ · 3
< ε

8. Show that
f(x) =

1

1 + x2

is uniformly continuous on R. (Hint: Use the fact that (|x| − 1)2 ≥ 0 for all x ∈ R)

Proof. Let ε > 0. Choose δ = ε
Supose x, a ∈ R and |x− a| < δ. We obtain

|f(x)− f(a)| =
∣∣∣∣ 1

1 + x2
− 1

1 + a2

∣∣∣∣
=

∣∣∣∣ a2 − x2

(1 + x2)(1 + a2)

∣∣∣∣
=

∣∣∣∣ (x− a)(x+ a)

(1 + x2)(1 + a2)

∣∣∣∣
≤ |x− a| · |x|+ |a|

(1 + x2)(1 + a2)

= |x− a|
(

|x|
(1 + x2)(1 + a2)

+
|a|

(1 + x2)(1 + a2)

)
≤ |x− a|

(
1

2(1 + a2)
+

1

2(1 + x2)

)
2|x| ≤ x2 + 1 and 2|a| ≤ 1 + a2

≤ |x− a|
(
1

2
+

1

2

)
1 + x2 > 1 and 1 + a2 > 1

= |x− a|
< δ = ε
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9. Let f : I → R where I is open. Assume that f is continuous at a point x0 ∈ I and f(x0) > 0.
Prove that there are positive numbers ε and δ such that

|x− x0| < δ implies f(x) > ε.

Proof. Assume that f is continuous at a point x0 ∈ I and f(x0) > 0.
Given ε =

f(x0)

2
. There is a δ > 0 such that

|x− x0| < δ and x ∈ I imply |f(x)− f(x0)| <
f(x0)

2
.

It follows that
−f(x0)

2
< f(x)− f(x0) <

f(x0)

2
f(x0)

2
< f(x) <

3f(x0)

2

Thus, f(x) > f(x0)

2
= ε.

10. Let f and g be real functions. If f is differentiable at a and g is differentiable at f(a), then g ◦ f is
differentiable at a with

(g ◦ f)′(a) = g′(f(a))f ′(a).

Proof. Assume that f is differentiable at a and g is differentiable at f(a).
Then f ′(a) and g′(f(a)) exist. We consider

f(x) =
f(x)− f(a)

x− a
· (x− a) + f(a), x ̸= a

g(y) =
g(y)− g(f(a))

y − f(a)
· (y − f(a)) + g(f(a)), y ̸= f(a) (0.1)

Since f is continuous at a, substitue y = f(x) in (0.1) to write

g(f(x)) =
g(f(x))− g(f(a))

f(x)− f(a)
· (f(x)− f(a)) + g(f(a))

g(f(x)) =
g(f(x))− g(f(a))

f(x)− f(a)
· f(x)− f(a)

x− a
· (x− a) + g(f(a))

g(f(x))− g(f(a))

x− a
=

g(f(x))− g(f(a))

f(x)− f(a)
· f(x)− f(a)

x− a

lim
x→a

g(f(x))− g(f(a))

x− a
= lim

x→a

g(f(x))− g(f(a))

f(x)− f(a)
· f(x)− f(a)

x− a

(g ◦ f)′(a) = g′(f(a)) · f ′(a)
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