

Assignment 8 MAC3309 Mathematical Analysis

TopicDifferentiabilityScore10 marksTime10th WeekTeacherAssistant Professor Thanatyod Jampawai, Ph.D.
Division of Mathematics, Faculty of Education, Suan Sunandha Rajabhat University

- 1. Show that f(x) = x|x| is differentiable on \mathbb{R} .
- 2. Show that the function

$$f(x) = \begin{cases} x \sin(\frac{1}{x}) & : x \neq 0\\ 0 & : x = 0 \end{cases}$$

is not differentiable at the origin.

Hint: Use the SCL to show that the limit does not exist.

- 3. Apply L'Hospital's Rule to find $\lim_{x \to \infty} x \left(\arctan x \frac{\pi}{2} \right)$.
- 4. Use the Mean Value Theorem to prove that

$$\sin x \le x$$
 for all $x \ge 0$.

5. Use the Mean Value Theorem to prove that

$$\cos x - 1 \le x$$
 for all $x \ge 0$.

6. Find condition of $a \in \mathbb{R}$ satisfying

$$f(x) = ax^2 + 3x + 5$$

is strictly increasing on interval (1, 2).

- 7. Let $f(x) = x^2 e^{x^2}$ where $x \in \mathbb{R}$.
 - 7.1 Use IFT to show that f^{-1} exists and its differentiable on $(0, \infty)$.
 - 7.2 Compute $(f^{-1})'(e)$.
- 8. Use the Inverse Function Theorem to prove that

$$(\arctan x)' = \frac{1}{1+x^2}$$
 for $x \in (-\infty, \infty)$.