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1. Show that f(x) = x|x| is diferentiable on R.
Solution. By definition of absolute values,

f(x) =

{
x2 if x ≥ 0

−x2 if x < 0

It is clear that f is differentiable on (−∞, 0) and (0,∞) such that

f ′(x) =

{
2x if x > 0

−2x if x < 0

Finall, we will prove that f ′(0) = 0.

f ′(0) = lim
x→0

f(x)− f(0)

x− 0
= lim

x→0

x|x| − 0

x
= lim

x→0
|x| = 0.

Therefore, f is diferentiable on R. and

f ′(x) =

{
2x if x ≥ 0

−2x if x < 0
= 2|x|

2. Show that the function

f(x) =

{
x sin( 1x) : x ̸= 0

0 : x = 0

is not differentiable at the origin.
Hint: Use the SCL to show that the limit does not exist.

Proof. Consider the limit

lim
x→0

f(x)− f(0)

x− 0
= lim

x→0

x sin( 1x)
x

= lim
x→0

sin( 1
x
).

We will show that the limt does not exits by SCL.
Let g(x) = sin( 1x) where x ̸= 0. Then g(0) is undfined. Define two sequences

an =
2

(4n+ 1)π
where n = 1, 2, 3, ...

bn =
2

(4n+ 3)π
where n = 1, 2, 3, ...

Then lim
n→∞

an = lim
n→∞

bn = 0. Since an and bn are non zero for all n ∈ N,

g(an) = sin
(
(4n+ 1)π

2

)
= 1

g(bn) = sin
(
(4n+ 3)π

2

)
= −1

Hence, lim
n→∞

g(an) = 1 ̸= −1 = lim
n→∞

b(bn). By SCL, we conclude that lim
x→0

sin( 1
x
) does not exist.
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3. Apply L’Hospital’s Rule to find lim
x→∞

x
(

arctanx− π

2

)
Solution.

lim
x→∞

x
(

arctanx− π

2

)
= lim

x→∞

arctanx− π
2

1
x

= lim
x→∞

1
1+x2

− 1
x2

= lim
x→∞

−x2

1 + x2

= lim
x→∞

−1
1
x2 + 1

=
−1

1 + 0
= −1 #

4. Use the Mean Value Theorem to prove that

sinx ≤ x for all x ≥ 0

Proof. Let a > 0 and f(x) = sinx on [0, a] . Then f is continuous on [0, a] and differentiable on (0, a). By
the Mean Value Theorem (MVT), there is a c ∈ (0, a) such that

f(a)− f(0) = f ′(c)(a− 0)

sin a = a cos c

Since cos c ≤ 1

and a > 0, a cos c ≤ a. So, sin a ≤ a.
Therefore,

sinx ≤ x for all x ≥ 0.

5. Use the Mean Value Theorem to prove that

cosx− 1 ≤ x for all x ≥ 0

Proof. Let a > 0 and f(x) = cosx − 1 on [0, a]. Then f is continuous on [0, a] and differentiable on (0, a).
By the Mean Value Theorem (MVT), there is a c ∈ (0, a) such that

f(a)− f(0) = f ′(c)(a− 0)

cos a− 1− 0 = (− sin c)a

Since − sin c ≤ 1 and a > 0, −a sin c ≤ a. So, cos a− 1 ≤ a.
Therefore,

cosx− 1 ≤ x for all x ≥ 0
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6. Find all a ∈ R such that
f(x) = ax2 + 3x+ 5

is strictly increasing on interval (1, 2)
Solution. We can find a by considering f ′(x) = 2ax+ 3 ≥ 0 when 1 < x < 2.
Then If a = 0, f ′(x) = 3 ≥ 0. It is done.
Case a > 0. Then 2a > 0. So,

2a · 1 < 2a · x < 2a · 2
2a+ 3 < 2ax+ 3 < 4a+ 3

2a+ 3 < f ′(x) < 4a+ 3

Thus, f ′(x) > 0 when a > 0.
Case a < 0. Then 2a < 0

2a · 1 > 2a · x > 2a · 2
4a+ 3 < 2ax < 2a+ 3

4a+ 3 < f ′(x) < 2a+ 3

We must be 4a+ 3 ≥ 0. Thus, −3
4 < a < 0.

Therefore, f is strictly increasing on interval (1, 2) when a > −3
4 .

7. Let f(x) = x2ex
2 where x ∈ R.

7.1 Use IFT to show that f−1 exists and its differentiable on (0,∞).

Proof. We see that f is continous on R. It remains to show that f is 1-1 on (0,∞).
Let x1, x2 ∈ (0,∞) and f(x1) = f(x2). Then

x21e
x2
1 = x22e

x2
2 −→ x21

x22
· ex2

1−x2
2 = 1 ...(∗)

Suppose that x1 ̸= x2. WLOG x1 > x2. Then x21 > x22 or x21 − x22 > 0. So

x21
x22

> 1 and ex
2
1−x2

2 > 1

Thus, x21
x22

· ex2
1−x2

2 > 1. This contradiction to (∗). Thus, x1 = x2.

Therefore, f−1 exists and its differentiable on (0,∞) by IFT.

7.2 Compute (f−1)′(e).
Solution. We see that f ′(x) = 2xex

2
+ 2x3ex

2 and f(1) = e. So f−1(e) = 1. By IFT,

(f−1)′(e) =
1

f ′(f−1(e))
=

1

f ′(1)
=

1

4e
#

8. Use the Inverse Function Theorem to prove that

(arctanx)′ =
1

1 + x2
for x ∈ (−∞,∞)

Solution. Let f(x) = tanx when x ∈ [−π
2 ,

π
2 ]. Then f−1(x) = arctanx and f ′(x) = sec2 x.

By the Inverse Function Theorem, we obatin

(f−1(x))′ =
1

f ′(f−1(x))

(arctanx)′ =
1

f ′(arctanx)

=
1

sec2(arctanx)

=
1

1 + x2
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