

Solution Assignment 8 MAC3309 Mathematical Analysis

TopicDifferentiabilityScore10 marksTime10th WeekTeacherAssistant Professor Thanatyod Jampawai, Ph.D.
Division of Mathematics, Faculty of Education, Suan Sunandha Rajabhat University

1. Show that f(x) = x|x| is differentiable on \mathbb{R} .

Solution. By definition of absolute values,

$$f(x) = \begin{cases} x^2 & \text{if } x \ge 0\\ -x^2 & \text{if } x < 0 \end{cases}$$

It is clear that f is differentiable on $(-\infty, 0)$ and $(0, \infty)$ such that

$$f'(x) = \begin{cases} 2x & \text{if } x > 0\\ -2x & \text{if } x < 0 \end{cases}$$

Finall, we will prove that f'(0) = 0.

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{x|x| - 0}{x} = \lim_{x \to 0} |x| = 0.$$

Therefore, f is differentiable on \mathbb{R} . and

$$f'(x) = \begin{cases} 2x & \text{if } x \ge 0\\ -2x & \text{if } x < 0 \end{cases} = 2|x|$$

2. Show that the function

$$f(x) = \begin{cases} x \sin(\frac{1}{x}) & : x \neq 0\\ 0 & : x = 0 \end{cases}$$

is not differentiable at the origin.

Hint: Use the SCL to show that the limit does not exist.

Proof. Consider the limit

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{x \sin(\frac{1}{x})}{x} = \lim_{x \to 0} \sin(\frac{1}{x}).$$

We will show that the limt does not exits by SCL. Let $g(x) = \sin(\frac{1}{x})$ where $x \neq 0$. Then g(0) is undfined. Define two sequences

$$a_n = \frac{2}{(4n+1)\pi}$$
 where $n = 1, 2, 3, ...$
 $b_n = \frac{2}{(4n+3)\pi}$ where $n = 1, 2, 3, ...$

Then $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = 0$. Since a_n and b_n are non zero for all $n \in \mathbb{N}$,

$$g(a_n) = \sin\left(\frac{(4n+1)\pi}{2}\right) = 1$$
$$g(b_n) = \sin\left(\frac{(4n+3)\pi}{2}\right) = -1$$

Hence, $\lim_{n \to \infty} g(a_n) = 1 \neq -1 = \lim_{n \to \infty} b(b_n)$. By SCL, we conclude that $\lim_{x \to 0} \sin(\frac{1}{x})$ does not exist.

3. Apply L'Hospital's Rule to find $\lim_{x\to\infty} x\left(\arctan x - \frac{\pi}{2}\right)$ Solution.

$$\lim_{x \to \infty} x \left(\arctan x - \frac{\pi}{2} \right) = \lim_{x \to \infty} \frac{\arctan x - \frac{\pi}{2}}{\frac{1}{x}}$$
$$= \lim_{x \to \infty} \frac{\frac{1}{1+x^2}}{-\frac{1}{x^2}}$$
$$= \lim_{x \to \infty} \frac{-x^2}{1+x^2}$$
$$= \lim_{x \to \infty} \frac{-1}{\frac{1}{x^2}+1}$$
$$= \frac{-1}{1+0} = -1 \quad \#$$

4. Use the Mean Value Theorem to prove that

 $\sin x \le x$ for all $x \ge 0$

Proof. Let a > 0 and $f(x) = \sin x$ on [0, a]. Then f is continuous on [0, a] and differentiable on (0, a). By the Mean Value Theorem (MVT), there is a $c \in (0, a)$ such that

$$f(a) - f(0) = f'(c)(a - 0)$$
$$\sin a = a \cos c$$

Since $\cos c \le 1$ and a > 0, $a \cos c \le a$. So, $\sin a \le a$. Therefore,

$$\sin x \le x$$
 for all $x \ge 0$.

L		

5. Use the Mean Value Theorem to prove that

$$\cos x - 1 \le x$$
 for all $x \ge 0$

Proof. Let a > 0 and $f(x) = \cos x - 1$ on [0, a]. Then f is continuous on [0, a] and differentiable on (0, a). By the Mean Value Theorem (MVT), there is a $c \in (0, a)$ such that

$$f(a) - f(0) = f'(c)(a - 0)$$

$$\cos a - 1 - 0 = (-\sin c)a$$

Since $-\sin c \le 1$ and a > 0, $-a\sin c \le a$. So, $\cos a - 1 \le a$. Therefore,

$$\cos x - 1 \le x$$
 for all $x \ge 0$

6. Find all $a \in \mathbb{R}$ such that

$$f(x) = ax^2 + 3x + 5$$

is strictly increasing on interval (1, 2)

Solution. We can find a by considering $f'(x) = 2ax + 3 \ge 0$ when 1 < x < 2. Then If a = 0, $f'(x) = 3 \ge 0$. It is done. Case a > 0. Then 2a > 0. So,

$$2a \cdot 1 < 2a \cdot x < 2a \cdot 2$$

$$2a + 3 < 2ax + 3 < 4a + 3$$

$$2a + 3 < f'(x) < 4a + 3$$

Thus, f'(x) > 0 when a > 0. Case a < 0. Then 2a < 0

$$2a \cdot 1 > 2a \cdot x > 2a \cdot 2$$

$$4a + 3 < 2ax < 2a + 3$$

$$4a + 3 < f'(x) < 2a + 3$$

We must be $4a + 3 \ge 0$. Thus, $-\frac{3}{4} < a < 0$. Therefore, f is strictly increasing on interval (1, 2) when $a > -\frac{3}{4}$.

- 7. Let $f(x) = x^2 e^{x^2}$ where $x \in \mathbb{R}$.
 - 7.1 Use IFT to show that f^{-1} exists and its differentiable on $(0, \infty)$.

Proof. We see that f is continuous on \mathbb{R} . It remains to show that f is 1-1 on $(0, \infty)$. Let $x_1, x_2 \in (0, \infty)$ and $f(x_1) = f(x_2)$. Then

$$x_1^2 e^{x_1^2} = x_2^2 e^{x_2^2} \longrightarrow \frac{x_1^2}{x_2^2} \cdot e^{x_1^2 - x_2^2} = 1 \dots (*)$$

Suppose that $x_1 \neq x_2$. WLOG $x_1 > x_2$. Then $x_1^2 > x_2^2$ or $x_1^2 - x_2^2 > 0$. So $\frac{x_1^2}{x_2^2} > 1$ and $e^{x_1^2 - x_2^2} > 1$

Thus, $\frac{x_1^2}{x_2^2} \cdot e^{x_1^2 - x_2^2} > 1$. This contradiction to (*). Thus, $x_1 = x_2$. Therefore, f^{-1} exists and its differentiable on $(0, \infty)$ by IFT.

7.2 Compute $(f^{-1})'(e)$.

Solution. We see that $f'(x) = 2xe^{x^2} + 2x^3e^{x^2}$ and f(1) = e. So $f^{-1}(e) = 1$. By IFT,

$$(f^{-1})'(e) = \frac{1}{f'(f^{-1}(e))} = \frac{1}{f'(1)} = \frac{1}{4e} \quad \#$$

8. Use the Inverse Function Theorem to prove that

$$(\arctan x)' = \frac{1}{1+x^2}$$
 for $x \in (-\infty, \infty)$

Solution. Let $f(x) = \tan x$ when $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. Then $f^{-1}(x) = \arctan x$ and $f'(x) = \sec^2 x$. By the Inverse Function Theorem, we obtain

$$(f^{-1}(x))' = \frac{1}{f'(f^{-1}(x))}$$
$$(\arctan x)' = \frac{1}{f'(\arctan x)}$$
$$= \frac{1}{\sec^2(\arctan x)}$$
$$= \frac{1}{1+r^2}$$