

Assignment 9 MAC3309 Mathematical Analysis

TopicReimann IntegralScore10 marksTime11th WeekTeacherAssistant Professor Thanatyod Jampawai, Ph.D.
Division of Mathematics, Faculty of Education, Suan Sunandha Rajabhat University

1. Let
$$f(x) = 1 - x^2$$
 on $[0, 1]$. Find $L(f, P)$ and $U(f, P)$ when $P = \left\{\frac{j}{2^n} : j = 0, 1, 2, ..., 2^n\right\}$
2. Let $f(x) = 3x^2$ on $[0, 1]$. Find $L(f, P)$ and $U(f, P)$ when $P = \left\{\frac{j}{n} : j = 0, 1, 2, ..., n\right\}$

3. Let a > 0 and $f(x) = ax^2 + 1$ where $x \in [-1, 1]$. Suppose that

$$U(f, P) - L(P, f) = 1$$
 where $P = \left\{-1, -\frac{1}{2}, 0, \frac{1}{2}, 1\right\}$.

What is a?

4. Let $f(x) = x^4$ where $x \in [0, 1]$. Find

$$U(f, P) - L(P, f)$$

in term of n when

$$P = \left\{ \frac{j}{n} : j = 0, 1, 2, ..., n \right\}.$$

5. Let f be integrable on [a, b] and $f(x) \ge 0$. Prove that

$$\int_{a}^{b} f(x) dx = 0 \quad \text{if and only if} \quad f(x) = 0 \text{ (zero function)}$$

6. Let

$$f(x) = \begin{cases} 1 & \text{if } 0 \le x < 1\\ 2 & \text{if } 1 \le x < 2 \end{cases}$$

Show that f is integrable on [0, 2]

7. Let

$$f(x) = \begin{cases} 0 & \text{if } -1 \le x < 0\\ 1 & \text{if } 0 \le x \le 1 \end{cases}$$

Show that f is integrable on [-1, 1]

8. Let $n \in \mathbb{N}$ and define $f : [0, n] \to \mathbb{R}$ by

$$f(x) = \begin{cases} 1 & \text{if } 0 \le x < 1\\ 4 & \text{if } 1 \le x < 2\\ 9 & \text{if } 2 \le x < 3\\ \vdots & \vdots\\ n^2 & \text{if } (n-1) \le x \le n \end{cases}$$

If $\int_0^n f(x) dx = 385$, what is n.