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1. Let f(x) = 1− x2 on [0, 1]. Find L(f, P ) and U(f, P ) when P =

{
j

2n
: j = 0, 1, 2, ..., 2n

}
Solution.

X

Y

f(x) = 1− x2

0 1

1

Find L(f, P ). Consider mj(f) = f( j
2n ) on the subinterval [xj−1, xj ] and ∆xj =

1
2n for all j = 1, 2, ..., 2n.

We obtain

L(f, P ) =

2n∑
j=1

mj(f)∆xj =

2n∑
j=1

f

(
j

2n

)
1

2n

=
1

2n

2n∑
j=1

[
1−

(
j

2n

)2
]
=

1

2n

 2n∑
j=1

2n −
2n∑
j=1

1

22n
· j2


=

1

2n

2n − 1

22n

2n∑
j=1

j2

 =
1

2n

[
2n − 1

22n

(
2n(2n + 1)(2 · 2n + 1)

6

)]

= 1− 2n(2n + 1)(2n+1 + 1)

6 · 23n
#

Find U(f, P )

Consider Mj(f) = f( j−1
2n ) on the subinterval [xj−1, xj ] and ∆xj =

1
n for all j = 1, 2, 3, ..., 2n.

We obtain

U(f, P ) =

2n∑
j=1

Mj(f)∆xj =

2n∑
j=1

f

(
j − 1

2n

)
1

2n

=
1

2n

2n∑
j=1

[
1−

(
j − 1

2n

)2
]
=

1

2n

 2n∑
j=1

1−
2n∑
j=1

1

22n
· (j − 1)2


=

1

2n

[
2n − 1

22n
[02 + 12 + 22 + · · ·+ (2n − 1)2]

]
=

1

2n

(
2n − 1

22n
· (2

n − 1)(2n)(2(2n − 1) + 1)

6

)
= 1− (2n − 1)(2 · 2n − 1)

6 · 22n
#
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2. Let f(x) = 3x2 on [0, 1]. Find L(f, P ) and U(f, P ) when

P =

{
j

n
: j = 0, 1, 2, ..., n

}
Solution. Find L(f, P )

Consider mj(f) = f( j−1
n ) on the subinterval [xj−1, xj ] and ∆xj =

1
n for all j = 1, 2, ..., n.

We obtain

L(f, P ) =

n∑
j=1

mj(f)∆xj =

n∑
j=1

f

(
j − 1

n

)
1

n

=
1

n

n∑
j=1

3

(
j − 1

n

)2

=
3

n

n∑
j=1

1

n2
· (j − 1)2

=
3

n3

n∑
j=1

(j − 1)2 =
3

n3
[02 + 12 + 22 + · · ·+ (n− 1)2]

=
3

n3

(
(n− 1)(n)(2(n− 1) + 1)

6

)
=

(n− 1)(2n− 1)

2n2
#

Find U(f, P )

Consider Mj(f) = f( jn) on the subinterval [xj−1, xj ] and ∆xj =
1
n for all j = 1, 2, 3, ..., n.

We obtain

U(f, P ) =
n∑

j=1

Mj(f)∆xj =
n∑

j=1

f

(
j

n

)
1

n

=
1

n

n∑
j=1

3

(
j

n

)2

=
3

n

n∑
j=1

1

n2
· j2

=
3

n3

n∑
j=1

j2 =
3

n3

(
n(n+ 1)(2n+ 1)

6

)
=

(n+ 1)(2n+ 1)

2n2
#

3. Let a > 0 and f(x) = ax2 + 1 where x ∈ [−1, 1]. Suppose that

U(f, P )− L(P, f) = 1 where P =

{
−1,−1

2
, 0,

1

2
, 1

}
.

What is a ?
Solution. A graph of f is

X

Y f(x) = ax2 + 1

0 1
2

1−1
2

−1

2



Then

U(P, f) =
1

2

[
f(−1) + f

(
−1

2

)
+ f

(
1

2

)
+ f(1)

]
L(P, f) =

1

2

[
f

(
−1

2

)
+ f(0) + f(0) + f

(
1

2

)]
We obtain

1 = U(P, f)− L(P, f) =
1

2
[f(−1) + f(1)− 2f(0)]

=
1

2
[(a+ 1) + (a+ 1)− 2(1)]

=
1

2
(2a) = a

It follows that a = 1. #

4. Let f(x) = x4 where x ∈ [0, 1]. Find

U(f, P )− L(P, f)

in term of n when
P =

{
j

n
: j = 0, 1, 2, ..., n

}
.

Solution. Let xj =
j

n
where j = 0, 1, 2, ..., n. Consider the subinterval [xj−1, xj ], we get ∆xj =

1

n
for all

j = 1, 2, ..., n. Since f is increasing on [0, 1],

mj(f) = f

(
j − 1

n

)
and Mj(f) = f

(
j

n

)
.

We obtain

U(f, P ) =

n∑
j=1

Mj(f)∆xj =

n∑
j=1

f

(
j

n

)
1

n

=
1

n

[
f

(
1

n

)
+ f

(
2

n

)
+ f

(
3

n

)
+ · · ·+ f

(
n− 1

n

)
+ f(1)

]
L(f, P ) =

n∑
j=1

Mj(f)∆xj =

n∑
j=1

f

(
j − 1

n

)
1

n

=
1

n

[
f(0) + f

(
1

n

)
+ f

(
2

n

)
+ · · ·+ f

(
n− 1

n

)]
U(P, f)− L(P, f) =

1

n
[f(1)− f(0)] =

1

n
(1− 0) =

1

n

Hence,
U(f, P )− L(P, f) =

1

n
. #

3



5. Let f be integrable on [a, b] and f(x) ≥ 0. Prove that∫ b

a
f(x) dx = 0 if and only if f(x) = 0 (zero function)

Proof. If f(x) = 0, then mj(f) = 0 for all j. Thus, L(f, P ) = 0 for all partition P . We conclude that∫ b

a
f(x) dx = (L)

∫ b

a
f(x) dx = sup{L(f, P ) : P is a partition of [a, b]} = 0.

Assume that
∫ b

a
f(x) dx = 0. Then

∫ b

a
f(x) dx = (U)

∫ b

a
f(x) dx = sup{U(f, P ) : P is a partition of [a, b]} = 0

∫ b

a
f(x) dx = (L)

∫ b

a
f(x) dx = inf{U(f, P ) : P is a partition of [a, b]} = 0

We obtain
0 ≤ L(f, P ) ≤ U(f, P ) ≤ 0

Thus, U(f, P ) = 0 for any partition P of [a, b]. So,

0 = U(f, P ) =

n∑
j=1

Mj(f)∆xj

Since, ∆xj > 0 and f(x) ≥ 0, Mj(f) = 0 for all j. We conclude that f(x) = 0 for all x ∈ [a, b]

6. Let

f(x) =

{
1 if 0 ≤ x < 1

2 if 1 ≤ x < 2

Show that f is integrable on [0, 2]

Solution. Let ε > 0. Case ε ≤ 1. Choose P =
{
0, 1− ε

2
, 1, 1 +

ε

2
, 2
}

.

X

Y

0 1 2

1

2

1− ε
2 1 + ε

2

We obtain

U(f, P ) = 1
(
1− ε

2

)
+ 2

(ε
2

)
+ 2

(ε
2

)
+ 2

(
1− ε

2

)
L(f, P ) = 1

(
1− ε

2

)
+ 1

(ε
2

)
+ 2

(ε
2

)
+ 2

(
1− ε

2

)
U(f, P )− L(f, P ) =

ε

2
< ε.

Case ε > 1. Choose P = {0, 1, 2}. Then

U(f, P ) = 2 (1− 0) + 2 (2− 1)

L(f, P ) = 1 (1− 0) + 2 (2− 1)

U(f, P )− L(f, P ) = 1 < ε.

Thus, f is integrable on [0, 1].
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7. Let

f(x) =

{
0 if − 1 ≤ x < 0

1 if 0 ≤ x ≤ 1

Show that f is integrable on [−1, 1]

Solution. Let ε > 0. Case ε ≤ 1. Choose P =
{
−1,−ε

2
, 0,

ε

2
, 1
}

.

X

Y

−1 0 1

1

− ε
2

ε
2

We obtain

U(f, P ) = 0
(
1− ε

2

)
+ 1

(ε
2

)
+ 1

(ε
2

)
+ 1

(
1− ε

2

)
L(f, P ) = 0

(
1− ε

2

)
+ 0

(ε
2

)
+ 1

(ε
2

)
+ 1

(
1− ε

2

)
U(f, P )− L(f, P ) =

ε

2
< ε.

Case ε > 1. Choose P = {−1, 0, 1}. Then

U(f, P ) = 1 (0− (−1)) + 1 (1− 0)

L(f, P ) = 0 (0− (−1)) + 1 (1− 0)

U(f, P )− L(f, P ) = 1 < ε.

Thus, f is integrable on [0, 1].

8. Let n ∈ N and define f : [0, n] → R by

f(x) =



1 if 0 ≤ x < 1

4 if 1 ≤ x < 2

9 if 2 ≤ x < 3
...

...
n2 if (n− 1) ≤ x ≤ n

If
∫ n

0
f(x) dx = 385, what is n.

Solution. Consider∫ n

0
f(x) dx =

∫ 1

0
f(x) dx+

∫ 2

1
f(x) dx+

∫ 3

2
f(x) dx+ · · ·+

∫ n

(n−1)
f(x) dx

=

∫ 1

0
1 dx+

∫ 2

1
4 dx+

∫ 3

2
9 dx+ · · ·+

∫ n

(n−1)
n2 dx

= 12 + 22 + 32 + · · ·+ n2

=
n(n+ 1)(2n+ 1)

6

Then, n(n+ 1)(2n+ 1)

6
= 385. That is

n(n+ 1)(2n+ 1) = 385 · 6 = 11 · 7 · 5 · 3 · 2 = 10 · 11 · 21.

Therefore, n = 10. #
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