

Solution Assignment 9 MAC3309 Mathematical Analysis

Topic Reimann Integral **Score** 10 marks **Time** 11*th* Week **Teacher** Assistant Professor Thanatyod Jampawai, Ph.D. Division of Mathematics, Faculty of Education, Suan Sunandha Rajabhat University

1. Let $f(x) = 1 - x^2$ on [0, 1]. Find $L(f, P)$ and $U(f, P)$ when $P = \begin{cases} \frac{j}{2} & \text{if } j \leq r \end{cases}$ $\left\{\frac{j}{2^n}: j = 0, 1, 2, ..., 2^n\right\}$

Solution.

Find $L(f, P)$. Consider $m_j(f) = f(\frac{j}{2^n})$ on the subinterval $[x_{j-1}, x_j]$ and $\Delta x_j = \frac{1}{2^n}$ for all $j = 1, 2, ..., 2^n$. We obtain

$$
L(f, P) = \sum_{j=1}^{2^n} m_j(f) \Delta x_j = \sum_{j=1}^{2^n} f\left(\frac{j}{2^n}\right) \frac{1}{2^n}
$$

= $\frac{1}{2^n} \sum_{j=1}^{2^n} \left[1 - \left(\frac{j}{2^n}\right)^2\right] = \frac{1}{2^n} \left[\sum_{j=1}^{2^n} 2^n - \sum_{j=1}^{2^n} \frac{1}{2^{2n}} \cdot j^2\right]$
= $\frac{1}{2^n} \left[2^n - \frac{1}{2^{2n}} \sum_{j=1}^{2^n} j^2\right] = \frac{1}{2^n} \left[2^n - \frac{1}{2^{2n}} \left(\frac{2^n(2^n+1)(2 \cdot 2^n+1)}{6}\right)\right]$
= $1 - \frac{2^n(2^n+1)(2^{n+1}+1)}{6 \cdot 2^{3n}} \quad \#$

Find $U(f, P)$

Consider $M_j(f) = f(\frac{j-1}{2^n})$ on the subinterval $[x_{j-1}, x_j]$ and $\Delta x_j = \frac{1}{n}$ $\frac{1}{n}$ for all $j = 1, 2, 3, ..., 2ⁿ$. We obtain

$$
U(f, P) = \sum_{j=1}^{2^n} M_j(f) \Delta x_j = \sum_{j=1}^{2^n} f\left(\frac{j-1}{2^n}\right) \frac{1}{2^n}
$$

= $\frac{1}{2^n} \sum_{j=1}^{2^n} \left[1 - \left(\frac{j-1}{2^n}\right)^2\right] = \frac{1}{2^n} \left[\sum_{j=1}^{2^n} 1 - \sum_{j=1}^{2^n} \frac{1}{2^{2n}} \cdot (j-1)^2\right]$
= $\frac{1}{2^n} \left[2^n - \frac{1}{2^{2n}} [0^2 + 1^2 + 2^2 + \dots + (2^n - 1)^2]\right]$
= $\frac{1}{2^n} \left(2^n - \frac{1}{2^{2n}} \cdot \frac{(2^n - 1)(2^n)(2(2^n - 1) + 1)}{6}\right)$
= $1 - \frac{(2^n - 1)(2 \cdot 2^n - 1)}{6 \cdot 2^{2n}} \frac{4}{3}$

2. Let $f(x) = 3x^2$ on [0, 1]. Find $L(f, P)$ and $U(f, P)$ when

$$
P=\left\{\frac{j}{n}:j=0,1,2,...,n\right\}
$$

Solution. Find $L(f, P)$

Consider $m_j(f) = f(\frac{j-1}{n})$ on the subinterval $[x_{j-1}, x_j]$ and $\Delta x_j = \frac{1}{n}$ $\frac{1}{n}$ for all $j = 1, 2, ..., n$. We obtain

$$
L(f, P) = \sum_{j=1}^{n} m_j(f) \Delta x_j = \sum_{j=1}^{n} f\left(\frac{j-1}{n}\right) \frac{1}{n}
$$

= $\frac{1}{n} \sum_{j=1}^{n} 3\left(\frac{j-1}{n}\right)^2 = \frac{3}{n} \sum_{j=1}^{n} \frac{1}{n^2} \cdot (j-1)^2$
= $\frac{3}{n^3} \sum_{j=1}^{n} (j-1)^2 = \frac{3}{n^3} [0^2 + 1^2 + 2^2 + \dots + (n-1)^2]$
= $\frac{3}{n^3} \left(\frac{(n-1)(n)(2(n-1)+1)}{6}\right)$
= $\frac{(n-1)(2n-1)}{2n^2} \frac{4}{n^3}$

Find *U*(*f, P*)

Consider $M_j(f) = f(\frac{j}{n})$ $\frac{j}{n}$) on the subinterval $[x_{j-1}, x_j]$ and $\Delta x_j = \frac{1}{n}$ $\frac{1}{n}$ for all $j = 1, 2, 3, ..., n$. We obtain

$$
U(f, P) = \sum_{j=1}^{n} M_j(f) \Delta x_j = \sum_{j=1}^{n} f\left(\frac{j}{n}\right) \frac{1}{n}
$$

= $\frac{1}{n} \sum_{j=1}^{n} 3\left(\frac{j}{n}\right)^2 = \frac{3}{n} \sum_{j=1}^{n} \frac{1}{n^2} \cdot j^2$
= $\frac{3}{n^3} \sum_{j=1}^{n} j^2 = \frac{3}{n^3} \left(\frac{n(n+1)(2n+1)}{6}\right)$
= $\frac{(n+1)(2n+1)}{2n^2} \neq$

3. Let $a > 0$ and $f(x) = ax^2 + 1$ where $x \in [-1, 1]$. Suppose that

$$
U(f, P) - L(P, f) = 1
$$
 where $P = \left\{-1, -\frac{1}{2}, 0, \frac{1}{2}, 1\right\}.$

What is *a* ?

Solution. A graph of *f* is

Then

$$
U(P, f) = \frac{1}{2} \left[f(-1) + f\left(-\frac{1}{2}\right) + f\left(\frac{1}{2}\right) + f(1) \right]
$$

$$
L(P, f) = \frac{1}{2} \left[f\left(-\frac{1}{2}\right) + f(0) + f(0) + f\left(\frac{1}{2}\right) \right]
$$

We obtain

$$
1 = U(P, f) - L(P, f) = \frac{1}{2} [f(-1) + f(1) - 2f(0)]
$$

=
$$
\frac{1}{2} [(a+1) + (a+1) - 2(1)]
$$

=
$$
\frac{1}{2} (2a) = a
$$

It follows that $a = 1$. #

4. Let $f(x) = x^4$ where $x \in [0, 1]$. Find

$$
U(f, P) - L(P, f)
$$

in term of *n* when

$$
P = \left\{ \frac{j}{n} : j = 0, 1, 2, ..., n \right\}.
$$

Solution. Let $x_j = \frac{j}{n}$ $\frac{j}{n}$ where $j = 0, 1, 2, ..., n$. Consider the subinterval $[x_{j-1}, x_j]$, we get $\Delta x_j = \frac{1}{n}$ $\frac{1}{n}$ for all $j = 1, 2, \ldots, n$. Since f is increasing on [0, 1],

$$
m_j(f) = f\left(\frac{j-1}{n}\right)
$$
 and $M_j(f) = f\left(\frac{j}{n}\right)$.

We obtain

$$
U(f, P) = \sum_{j=1}^{n} M_j(f) \Delta x_j = \sum_{j=1}^{n} f\left(\frac{j}{n}\right) \frac{1}{n}
$$

\n
$$
= \frac{1}{n} \left[f\left(\frac{1}{n}\right) + f\left(\frac{2}{n}\right) + f\left(\frac{3}{n}\right) + \dots + f\left(\frac{n-1}{n}\right) + f(1) \right]
$$

\n
$$
L(f, P) = \sum_{j=1}^{n} M_j(f) \Delta x_j = \sum_{j=1}^{n} f\left(\frac{j-1}{n}\right) \frac{1}{n}
$$

\n
$$
= \frac{1}{n} \left[f(0) + f\left(\frac{1}{n}\right) + f\left(\frac{2}{n}\right) + \dots + f\left(\frac{n-1}{n}\right) \right]
$$

\n
$$
U(P, f) - L(P, f) = \frac{1}{n} [f(1) - f(0)] = \frac{1}{n} (1 - 0) = \frac{1}{n}
$$

Hence,

$$
U(f, P) - L(P, f) = \frac{1}{n}. \quad #
$$

5. Let *f* be integrable on [a, b] and $f(x) \geq 0$. Prove that

$$
\int_{a}^{b} f(x) dx = 0 \quad \text{if and only if} \quad f(x) = 0 \text{ (zero function)}
$$

Proof. If $f(x) = 0$, then $m_j(f) = 0$ for all *j*. Thus, $L(f, P) = 0$ for all partition *P*. We conclude that

$$
\int_{a}^{b} f(x) dx = (L) \int_{a}^{b} f(x) dx = \sup \{ L(f, P) : P \text{ is a partition of } [a, b] \} = 0.
$$

Assume that \int^b *a* $f(x) dx = 0$. Then

$$
\int_a^b f(x) dx = (U) \int_a^b f(x) dx = \sup \{U(f, P) : P \text{ is a partition of } [a, b] \} = 0
$$

$$
\int_a^b f(x) dx = (L) \int_a^b f(x) dx = \inf \{U(f, P) : P \text{ is a partition of } [a, b] \} = 0
$$

We obtain

$$
0 \le L(f, P) \le U(f, P) \le 0
$$

Thus, $U(f, P) = 0$ for any partition P of $[a, b]$. So,

$$
0 = U(f, P) = \sum_{j=1}^{n} M_j(f) \Delta x_j
$$

Since, $\Delta x_j > 0$ and $f(x) \geq 0$, $M_j(f) = 0$ for all *j*. We conclude that $f(x) = 0$ for all $x \in [a, b]$

6. Let

$$
f(x) = \begin{cases} 1 & \text{if } 0 \le x < 1 \\ 2 & \text{if } 1 \le x < 2 \end{cases}
$$

 \Box

Show that f is integrable on $[0, 2]$

Solution. Let $\varepsilon > 0$. Case $\varepsilon \leq 1$. Choose $P = \left\{0, 1 - \frac{\varepsilon}{2}\right\}$ $\frac{\varepsilon}{2}$, 1, 1 + $\frac{\varepsilon}{2}$ $\frac{\varepsilon}{2}, 2 \Big\}$.

We obtain

$$
U(f, P) = 1\left(1 - \frac{\varepsilon}{2}\right) + 2\left(\frac{\varepsilon}{2}\right) + 2\left(\frac{\varepsilon}{2}\right) + 2\left(1 - \frac{\varepsilon}{2}\right)
$$

$$
L(f, P) = 1\left(1 - \frac{\varepsilon}{2}\right) + 1\left(\frac{\varepsilon}{2}\right) + 2\left(\frac{\varepsilon}{2}\right) + 2\left(1 - \frac{\varepsilon}{2}\right)
$$

$$
U(f, P) - L(f, P) = \frac{\varepsilon}{2} < \varepsilon.
$$

Case $\varepsilon > 1$. Choose $P = \{0, 1, 2\}$. Then

$$
U(f, P) = 2(1 - 0) + 2(2 - 1)
$$

$$
L(f, P) = 1(1 - 0) + 2(2 - 1)
$$

$$
U(f, P) - L(f, P) = 1 < \varepsilon.
$$

Thus, *f* is integrable on [0*,* 1].

7. Let

$$
f(x) = \begin{cases} 0 & \text{if } -1 \le x < 0 \\ 1 & \text{if } 0 \le x \le 1 \end{cases}
$$

Show that *f* is integrable on $[-1, 1]$

Solution. Let $\varepsilon > 0$. Case $\varepsilon \leq 1$. Choose $P = \{-1, -\frac{\varepsilon}{2}\}$ $\frac{\varepsilon}{2}, 0, \frac{\varepsilon}{2}$ $\frac{\varepsilon}{2}, 1$.

We obtain

$$
U(f, P) = 0\left(1 - \frac{\varepsilon}{2}\right) + 1\left(\frac{\varepsilon}{2}\right) + 1\left(\frac{\varepsilon}{2}\right) + 1\left(1 - \frac{\varepsilon}{2}\right)
$$

$$
L(f, P) = 0\left(1 - \frac{\varepsilon}{2}\right) + 0\left(\frac{\varepsilon}{2}\right) + 1\left(\frac{\varepsilon}{2}\right) + 1\left(1 - \frac{\varepsilon}{2}\right)
$$

$$
U(f, P) - L(f, P) = \frac{\varepsilon}{2} < \varepsilon.
$$

Case $\varepsilon > 1$. Choose $P = \{-1, 0, 1\}$. Then

$$
U(f, P) = 1 (0 - (-1)) + 1 (1 - 0)
$$

$$
L(f, P) = 0 (0 - (-1)) + 1 (1 - 0)
$$

$$
U(f, P) - L(f, P) = 1 < \varepsilon.
$$

Thus, *f* is integrable on [0*,* 1].

8. Let $n \in \mathbb{N}$ and define $f : [0, n] \to \mathbb{R}$ by

$$
f(x) = \begin{cases} 1 & \text{if } & 0 \le x < 1 \\ 4 & \text{if } & 1 \le x < 2 \\ 9 & \text{if } & 2 \le x < 3 \\ \vdots & \vdots & \vdots \\ n^2 & \text{if } & (n-1) \le x \le n \end{cases}
$$

If \int^n 0 $f(x) dx = 385$, what is *n*. **Solution.** Consider

$$
\int_0^n f(x) dx = \int_0^1 f(x) dx + \int_1^2 f(x) dx + \int_2^3 f(x) dx + \dots + \int_{(n-1)}^n f(x) dx
$$

=
$$
\int_0^1 1 dx + \int_1^2 4 dx + \int_2^3 9 dx + \dots + \int_{(n-1)}^n n^2 dx
$$

=
$$
1^2 + 2^2 + 3^2 + \dots + n^2
$$

=
$$
\frac{n(n+1)(2n+1)}{6}
$$

Then, $\frac{n(n+1)(2n+1)}{6} = 385$. That is

 $n(n+1)(2n+1) = 385 \cdot 6 = 11 \cdot 7 \cdot 5 \cdot 3 \cdot 2 = 10 \cdot 11 \cdot 21.$

Therefore, $n = 10$. #