

Solution Quiz 1 : (8 a.m.) MAC3309 Mathematical Analysis

TopicOrdered field axiom, Supremum & InfimumeScore10 marksTime30 minutes (3th Week)Semester 2/2023TeacherAssistant Professor Thanatyod Jampawai, Ph.D.
Division of Mathematics, Faculty of Education,Suan Sunandha Rajabhat University

1. (5 marks) Let $x \in \mathbb{R}$ such that 0 < x < 1. Prove that

 $x < \sqrt{x}$.

Proof. Let $x \in \mathbb{R}$ such that 0 < x < 1. Then x > 0. By O3.1, we have

$$x^2 = x \cdot x < 1 \cdot x = x.$$

We obtain $x^2 - x < 0$. It follows that

$$x^2 - (\sqrt{x})^2 < 0$$
$$(x - \sqrt{x})(x + \sqrt{x}) < 0.$$

Since $x + \sqrt{x} > 0$, $(x + \sqrt{x})^{-1} > 0$. By O3.1 again,

$$\begin{aligned} (x - \sqrt{x})(x + \sqrt{x})(x + \sqrt{x})^{-1} &< 0 \cdot (x + \sqrt{x})^{-1} \\ x - \sqrt{x} &< 0. \end{aligned}$$

We conclude that $x < \sqrt{x}$.

2. (5 marks) Let $A = \left\{ \frac{2}{n+1} : n \in \mathbb{N} \right\}$. Find $\inf A$ and prove it. We see that $A = \left\{ 1, \frac{2}{3}, \frac{2}{4}, \frac{2}{5}, \ldots \right\}$. Claim that $\inf A = 0$.

Proof. We will prove that $\inf A = 0$ Let $n \in \mathbb{N}$. Then $n \ge 1$. So, n + 1 > 0. We obtain

$$\frac{2}{n+1} > 0$$

Thus, 0 is a lower bound of A.

Finally, we will show that 0 is the greatest lower bound of A. Assume that there is a lower bound ℓ_0 of A such that

 $\ell_0 > 0.$

By definition,

$$\ell_0 \le \frac{2}{n+1}$$
 for all $n \in \mathbb{N}$ (*)

From $\frac{\ell_0}{2} > 0$. By Archimendean property (2), there is an $n_0 \in \mathbb{N}$ such that

$$\frac{1}{n_0} < \frac{\ell_0}{2} \qquad \longrightarrow \qquad \frac{2}{n_0} < \ell_0$$

Since $n_0 + 1 > n_0$,

$$\frac{2}{n_0+1} < \frac{2}{n_0} < \ell_0$$

This is contradiction to (*). Therefore, $\inf A = 0$.

Solution Quiz 1 : (1 p.m.) MAC3309 Mathematical Analysis

Topic	Ordered field axiom, Supremum & Infimume	Score 10 marks		
Time	30 minutes (3th Week)	Semester 2/2023		
Teacher	Assistant Professor Thanatyod Jampawai, Ph.D.			
	Division of Mathematics, Faculty of Education,	Suan Sunandha Rajabhat		

1. (5 marks) Let $x, y \in \mathbb{R}^+$. Prove that

$$\sqrt{\frac{x}{y}} + \sqrt{\frac{y}{x}} \ge 2.$$

Proof. Let $x, y \in \mathbb{R}^+$. In the fact that $(\sqrt{x} - \sqrt{y})^2 \ge 0$, we obtain

$$\begin{aligned} x - 2\sqrt{x}\sqrt{y} + y &\geq 0\\ x + y &\geq 2\sqrt{x}\sqrt{y}\\ \frac{x}{\sqrt{x}\sqrt{y}} + \frac{y}{\sqrt{x}\sqrt{y}} &\geq 2\\ \sqrt{\frac{x}{y}} + \sqrt{\frac{y}{x}} &\geq 2. \end{aligned}$$

2. (5 marks) Let $A = \left\{ \frac{2n}{n+1} : n \in \mathbb{N} \right\}$. Find $\sup A$ and prove it. We see that $A = \left\{ 1, \frac{4}{3}, \frac{6}{4}, \frac{8}{5}, \dots \right\}$. Claim that $\sup A = 2$.

Proof. We will prove that $\sup A = 2$ Let $n \in \mathbb{N}$. Then $n \ge 1$. From 0 < 2 So, 0 + 2n < 2 + 2n. We obtain

$$2n < 2(n+1)$$
$$\frac{2n}{n+1} < 2$$

Thus, 2 is an upper bound of A.

Finally, we will show that 2 is the least upper bound of A. Assume that there is an upper bound u_0 of A such that

 $u_0 < 2.$

By definition,

$$\frac{2n}{n+1} \le u_0 \quad \text{for all } n \in \mathbb{N} \qquad (*)$$

From $\frac{2-u_0}{2} > 0$. By Archimendean property (2), there is an $n_0 \in \mathbb{N}$ such that

$$\frac{1}{n_0} < \frac{2-u_0}{2} \qquad \longrightarrow \qquad \frac{2}{n_0} < 2-u_0$$

1			٦.

University

Since $n_0 + 1 > n_0$,

$$\frac{2}{n_0+1} < \frac{2}{n_0} < 2 - u_0$$
$$u_0 < 2 - \frac{2}{n_0+1} = \frac{2n_0}{n_0+1}.$$

This is contradiction to (*). Therefore, $\sup A = 2$.