

Solution Quiz 1 : (8 a.m.) MAC3309 Mathematical Analysis

1. **(5 marks)** Let $x \in \mathbb{R}$ such that $0 < x < 1$. Prove that

 $x < \sqrt{x}$.

Proof. Let $x \in \mathbb{R}$ such that $0 < x < 1$. Then $x > 0$. By O3.1, we have

$$
x^2 = x \cdot x < 1 \cdot x = x.
$$

We obtain $x^2 - x < 0$. It follows that

$$
x^{2} - (\sqrt{x})^{2} < 0
$$
\n
$$
(x - \sqrt{x})(x + \sqrt{x}) < 0.
$$

Since $x + \sqrt{x} > 0$, $(x + \sqrt{x})^{-1} > 0$. By O3.1 again,

$$
(x - \sqrt{x})(x + \sqrt{x})(x + \sqrt{x})^{-1} < 0 \cdot (x + \sqrt{x})^{-1}
$$

$$
x - \sqrt{x} < 0.
$$

 \Box

We conclude that $x < \sqrt{x}$.

2. **(5 marks)** Let *A* = \int 2 $\frac{2}{n+1}$: $n \in \mathbb{N}$ \mathcal{L} . Find inf *A* and prove it. We see that $A =$ $\sqrt{ }$ 1*,* 2 3 *,* 2 4 *,* 2 5 $, ...\}$. Claim that $\overline{\inf A = 0}$.

Proof. We will prove that $\inf A = 0$ Let $n \in \mathbb{N}$. Then $n \geq 1$. So, $n + 1 > 0$. We obtain

$$
\frac{2}{n+1}>0
$$

Thus, 0 is a lower bound of *A*.

Finally, we will show that 0 is the greatest lower bound of *A*. Assume that that there is a lower bound ℓ_0 of A such that

 $\ell_0 > 0.$

By definition,

$$
\ell_0 \le \frac{2}{n+1} \quad \text{ for all } n \in \mathbb{N} \qquad (*)
$$

From $\frac{\ell_0}{\sigma}$ $\frac{20}{2}$ > 0. By Archimendean property (2), there is an $n_0 \in \mathbb{N}$ such that

$$
\frac{1}{n_0} < \frac{\ell_0}{2} \qquad \longrightarrow \qquad \frac{2}{n_0} < \ell_0
$$

Since $n_0 + 1 > n_0$,

$$
\frac{2}{n_0+1} < \frac{2}{n_0} < \ell_0
$$

This is contradiction to $(*)$. Therefore, $\inf A = 0$.

 $\hfill \square$

Solution Quiz 1 : (1 p.m.) MAC3309 Mathematical Analysis

1. **(5 marks)** Let $x, y \in \mathbb{R}^+$. Prove that

$$
\sqrt{\frac{x}{y}}+\sqrt{\frac{y}{x}}\geq 2.
$$

Proof. Let $x, y \in \mathbb{R}^+$. In the fact that $(\sqrt{x} - \sqrt{y})^2 \ge 0$, we obtain

$$
x - 2\sqrt{x}\sqrt{y} + y \ge 0
$$

\n
$$
x + y \ge 2\sqrt{x}\sqrt{y}
$$

\n
$$
\frac{x}{\sqrt{x}\sqrt{y}} + \frac{y}{\sqrt{x}\sqrt{y}} \ge 2
$$

\n
$$
\sqrt{\frac{x}{y}} + \sqrt{\frac{y}{x}} \ge 2.
$$

2. **(5 marks)** Let *A* = $\int 2n$ $\frac{2n}{n+1}$: $n \in \mathbb{N}$ \mathcal{L} . Find sup *A* and prove it. We see that $A =$ $\sqrt{ }$ 1*,* 4 3 *,* 6 4 *,* 8 5 $, ...\}$. Claim that $\frac{\sup A = 2}{\sup A}$.

Proof. We will prove that $\frac{\sup A}{\sup A}$ = 2 Let *n* ∈ N. Then *n* ≥ 1. From $0 < 2$ So, $0 + 2n < 2 + 2n$. We obtain

$$
2n < 2(n+1)
$$
\n
$$
\frac{2n}{n+1} < 2
$$

Thus, 2 is an upper bound of *A*.

Finally, we will show that 2 is the least upper bound of *A*. Assume that that there is an upper bound u_0 of A such that

 $u_0 < 2$.

By definition,

$$
\frac{2n}{n+1} \le u_0 \quad \text{ for all } n \in \mathbb{N} \qquad (*)
$$

From $\frac{2 - u_0}{2}$ $\frac{a_0}{2}$ > 0. By Archimendean property (2), there is an $n_0 \in \mathbb{N}$ such that

$$
\frac{1}{n_0} < \frac{2 - u_0}{2} \qquad \longrightarrow \qquad \frac{2}{n_0} < 2 - u_0
$$

Since $n_0 + 1 > n_0$,

$$
\frac{2}{n_0+1} < \frac{2}{n_0} < 2 - u_0
$$
\n
$$
u_0 < 2 - \frac{2}{n_0+1} = \frac{2n_0}{n_0+1}.
$$

This is contradiction to (*). Therefore, $\sup A = 2$.

 \Box