

Quiz 2 (8 a.m.) MAC3309 Mathematical Analysis

Topic	Limit of Sequences	Score 10 marks
Time	30 minutes (5th Week)	Semester 2/2023
Teacher	Assistant Professor Thanatyod Jampawai, Ph.D.	
	Division of Mathematics, Faculty of Education,	Suan Sunandha Rajabhat University
Name	ID	Sec

1. (5 marks) Use the Definition to prove that

$$\lim_{n \to \infty} \frac{2n}{n+1} = 2$$

2. (5 marks) Use the Definition to prove that

$$\lim_{n \to \infty} \frac{2n^2}{n+1} = +\infty.$$

Quiz 2 (1 p.m.) MAC3309 Mathematical Analysis

Topic	Limit of Sequences	Score 10 marks
\mathbf{Time}	30 minutes (5th Week)	Semester 2/2023
Teacher	Assistant Professor Thanatyod Jampawai, Ph.D.	
	Division of Mathematics, Faculty of Education,	Suan Sunandha Rajabhat University
Name	ID	Sec

1. (5 marks) Use the Definition to prove that

$$\lim_{n \to \infty} \frac{2n}{n^2 + 1} = 0.$$

2. (5 marks) Use the Definition to prove that

$$\lim_{n \to \infty} \frac{1 - n^2}{n} = -\infty.$$