

Quiz 3 (8 a.m.) MAC3309 Mathematical Analysis

Topic	Continuity & the Mean Value Theorem (MVT)	Score 10 marks
\mathbf{Time}	30 minutes (11th Week)	Semester 2/2023
Teacher	Assistant Professor Thanatyod Jampawai, Ph.D.	
	Division of Mathematics, Faculty of Education,	Suan Sunandha Rajabhat University
Name	ID	Sec

1. (5 marks) Let f(x) = (x-1)(x-2)(x-3). Use the Definition to prove that

f is continuous at 2.

2. (5 marks) Use the Mean Value Theorem (MVT) to prove that

 $\ln x \le x - 1 \quad \text{ for all } x \ge 1.$

Hints : Let a > 1 and consider a defined function on [1, a].

Quiz 3 (1 p.m.) MAC3309 Mathematical Analysis

Topic	Continuity & the Mean Value Theorem (MVT)	Score 10 marks
\mathbf{Time}	30 minutes (11th Week)	Semester 2/2023
Teacher	Assistant Professor Thanatyod Jampawai, Ph.D.	
	Division of Mathematics, Faculty of Education,	Suan Sunandha Rajabhat University
Name	ID	Sec

1. (5 marks) Let f(x) = (x-1)(x-2)(x-3). Use the Definition to prove that

f is continuous at 3.

2. (5 marks) Use the Mean Value Theorem (MVT) to prove that

 $\ln x < x$ for all $x \ge 1$.

Hints : Let a > 1 and consider a defined function on [1, a].